In many applications, robots should be able to move autonomously in semi-structured or unstructured environments. Autonomous robots can be employed for instance in area patrolling tasks in order to perform surveillance of sites. To autonomously navigate in an unknown outdoor scenario, a robot should be able to acquire sensible information about the environment by means of its own sensors and at the same time perform some reasoning to decide where and how to move. In this paper, we present a vision-based solution for the decision making and a behavior based low-level control for the navigation. Three different testing scenarios have been employed to assess the capabilities of the proposed approach: a computer simulated scenario, an indoor test on a real robotic platform and finally an outdoor test in a city park.
Visual navigation of mobile robots for autonomous patrolling of indoor and outdoor areas
Di Fava, Alessandro
;Satler, Massimo;Tripicchio, Paolo
2015-01-01
Abstract
In many applications, robots should be able to move autonomously in semi-structured or unstructured environments. Autonomous robots can be employed for instance in area patrolling tasks in order to perform surveillance of sites. To autonomously navigate in an unknown outdoor scenario, a robot should be able to acquire sensible information about the environment by means of its own sensors and at the same time perform some reasoning to decide where and how to move. In this paper, we present a vision-based solution for the decision making and a behavior based low-level control for the navigation. Three different testing scenarios have been employed to assess the capabilities of the proposed approach: a computer simulated scenario, an indoor test on a real robotic platform and finally an outdoor test in a city park.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.