In an attempt to overcome the several limitations of currently available/investigated human-machine interfaces (HMI) for the control of robotic hand prostheses, we propose a new HMI exploiting the magnetic field produced by magnets implanted in the muscles. As a magnet is implanted in a muscle it will travel with it, and its localization could provide a direct measure of the contraction/elongation of that muscle, which is voluntarily controlled by the individual. Here we present a proof of concept of a single magnet localizer, which computes on-line the position of a magnet in a certain workspace. In particular, the system comprises a pair of magnetic field sensors mounted on custom printed circuit boards, and an algorithm that resolves the inverse magnetic problem using the magnetic dipole model. The accuracy and the repeatability of our system were evaluated using six miniature magnets. Ongoing results suggest that the envisioned system is viable.

A myokinetic hmi for the control of hand prostheses: A feasibility study

Tarantino, Sergio;Clemente, Francesco;Barone, Diego;Controzzi, Marco;Cipriani, Christian
2017-01-01

Abstract

In an attempt to overcome the several limitations of currently available/investigated human-machine interfaces (HMI) for the control of robotic hand prostheses, we propose a new HMI exploiting the magnetic field produced by magnets implanted in the muscles. As a magnet is implanted in a muscle it will travel with it, and its localization could provide a direct measure of the contraction/elongation of that muscle, which is voluntarily controlled by the individual. Here we present a proof of concept of a single magnet localizer, which computes on-line the position of a magnet in a certain workspace. In particular, the system comprises a pair of magnetic field sensors mounted on custom printed circuit boards, and an algorithm that resolves the inverse magnetic problem using the magnetic dipole model. The accuracy and the repeatability of our system were evaluated using six miniature magnets. Ongoing results suggest that the envisioned system is viable.
2017
978-3-319-46668-2
978-3-319-46669-9
File in questo prodotto:
File Dimensione Formato  
ICNR2016_Tarantino_et_al.pdf

accesso aperto

Descrizione: Articolo post-print
Tipologia: Documento in Post-print/Accepted manuscript
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 417.07 kB
Formato Adobe PDF
417.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/520711
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact