Partial hand amputation is the most frequent amputation level worldwide, accounting for approximately 90% of all upper limb amputations. Passive cosmetic prostheses represent one of the possible choices for its treatment, probably the most affordable one. However, these devices restore very limited motor function and subtle sensory feedback. The latter is an important component for restoring the body schema. In this work we present a simple yet potentially effective and low cost cosmetic digital prosthesis that embeds touch feedback; we dubbed this DESC-finger. It delivers short-lasting vibrotactile bursts when it makes and breaks contact with the environment, based on the Discrete Event-driven Sensory feedback Control (DESC) policy. One prototype was developed and used by one amputee at home, for two months. The effectiveness of the device was experimentally assessed by means of an interview and a virtual eggs test, which showed, albeit preliminarily, that time discrete feedback can improve the motor control of a partial hand prosthesis in daily life conditions. Besides targeting people that already use cosmetic digits, the DESC-finger targets those that do not use them complaining for loss of sensibility. The production costs and manufacturing process makes the DESC-finger suitable for exploitation in high- and low-income countries.

A cosmetic prosthetic digit with bioinspired embedded touch feedback

Barone, Diego;D'Alonzo, Marco;Controzzi, Marco;Clemente, Francesco;Cipriani, Christian
2017-01-01

Abstract

Partial hand amputation is the most frequent amputation level worldwide, accounting for approximately 90% of all upper limb amputations. Passive cosmetic prostheses represent one of the possible choices for its treatment, probably the most affordable one. However, these devices restore very limited motor function and subtle sensory feedback. The latter is an important component for restoring the body schema. In this work we present a simple yet potentially effective and low cost cosmetic digital prosthesis that embeds touch feedback; we dubbed this DESC-finger. It delivers short-lasting vibrotactile bursts when it makes and breaks contact with the environment, based on the Discrete Event-driven Sensory feedback Control (DESC) policy. One prototype was developed and used by one amputee at home, for two months. The effectiveness of the device was experimentally assessed by means of an interview and a virtual eggs test, which showed, albeit preliminarily, that time discrete feedback can improve the motor control of a partial hand prosthesis in daily life conditions. Besides targeting people that already use cosmetic digits, the DESC-finger targets those that do not use them complaining for loss of sensibility. The production costs and manufacturing process makes the DESC-finger suitable for exploitation in high- and low-income countries.
2017
9781538622964
File in questo prodotto:
File Dimensione Formato  
Barone2017_ICORR_Personal.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/520706
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
social impact