Optical connections support virtual links in MPLS-over-optical multilayer networks and therefore, errors in the optical layer impact on the quality of the services deployed on such networks. Monitoring the performance of the physical layer allows verifying the proper operation of optical connections, as well as detecting bit error rate (BER) degradations and anticipating connection disruption. In addition, failure identification facilitates localizing the cause of the failure by providing a short list of potential failed elements and enables self-decision making to keep committed service level. In this paper, we analyze several failure causes affecting the quality of optical connections and propose two different algorithms: one focused on detecting significant BER changes in optical connections, named as BANDO, and the other focused on identifying the most probable failure pattern, named as LUCIDA. BANDO runs inside the network nodes to accelerate degradation detection and sends a notification to the LUCIDA algorithm running on the centralized controller. Experimental measures were carried out on two different setups to obtain values for BER and received power and used to generate synthetic data used in subsequent simulations. Results show significant improvement anticipating maximum BER violation with small failure identification errors.

BER Degradation Detection and Failure Identification in Elastic Optical Networks

Fresi, Francesco;Sambo, Nicola;Cugini, Filippo;Meloni, Gianluca;Poti, Luca;Castoldi, Piero
2017-01-01

Abstract

Optical connections support virtual links in MPLS-over-optical multilayer networks and therefore, errors in the optical layer impact on the quality of the services deployed on such networks. Monitoring the performance of the physical layer allows verifying the proper operation of optical connections, as well as detecting bit error rate (BER) degradations and anticipating connection disruption. In addition, failure identification facilitates localizing the cause of the failure by providing a short list of potential failed elements and enables self-decision making to keep committed service level. In this paper, we analyze several failure causes affecting the quality of optical connections and propose two different algorithms: one focused on detecting significant BER changes in optical connections, named as BANDO, and the other focused on identifying the most probable failure pattern, named as LUCIDA. BANDO runs inside the network nodes to accelerate degradation detection and sends a notification to the LUCIDA algorithm running on the centralized controller. Experimental measures were carried out on two different setups to obtain values for BER and received power and used to generate synthetic data used in subsequent simulations. Results show significant improvement anticipating maximum BER violation with small failure identification errors.
2017
File in questo prodotto:
File Dimensione Formato  
ber_degradation_jlt.pdf

solo utenti autorizzati

Tipologia: Altro materiale
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.85 MB
Formato Adobe PDF
2.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/520030
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 118
social impact