We propose and experimentally demonstrate capacitive actuation of a graphene–silicon micro-ring add/drop filter. The mechanism is based on a silicon–SiO2–graphene capacitor on top of the ring waveguide. We show the capacitive actuation of the add/drop functionality by a voltage-driven change of the graphene optical absorption. The proposed capacitive solution overcomes the need for continuous heating to keep tuned the filter’s in/out resonance and therefore eliminates “in operation” energy consumption.

Capacitive actuation and switching of add–drop graphene-silicon micro-ring filters

Cassese, Tommaso;De Angelis, Gabriele;Midrio, Michele;Romagnoli, Marco
2017-01-01

Abstract

We propose and experimentally demonstrate capacitive actuation of a graphene–silicon micro-ring add/drop filter. The mechanism is based on a silicon–SiO2–graphene capacitor on top of the ring waveguide. We show the capacitive actuation of the add/drop functionality by a voltage-driven change of the graphene optical absorption. The proposed capacitive solution overcomes the need for continuous heating to keep tuned the filter’s in/out resonance and therefore eliminates “in operation” energy consumption.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/519236
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
social impact