Daily activity recognition can help people to maintain a healthy lifestyle and robot to better interact with users. Robots could therefore use the information coming from the activities performed by users to give them some custom hints to improve lifestyle and daily routine. The pervasiveness of smart things together with advances in cloud robotics can help the robot to perceive and collect more information about the users and the environment. In particular thanks to the miniaturization and low cost of Inertial Measurement Units, in the last years, body-worn activity recognition has gained popularity. In this work, we investigated the performances with an unsupervised approach to recognize eight different gestures performed in daily living wearing a system composed of two inertial sensors placed on the hand and on the wrist. In this context our aim is to evaluate whether the system is able to recognize the gestures in more realistic applications, where is not possible to have a training set. The classification problem was analyzed using two unsupervised approaches (K-Mean and Gaussian Mixture Model), with an intra-subject and an inter-subject analysis, and two supervised approaches (Support Vector Machine and Random Forest), with a 10-fold cross validation analysis and with a Leave-One-Subject-Out analysis to compare the results. The outcomes show that even in an unsupervised context the system is able to recognize the gestures with an averaged accuracy of 0.917 in the K-Mean inter-subject approach and 0.796 in the Gaussian Mixture Model inter-subject one.
Daily activity recognition with inertial ring and bracelet: An unsupervised approach
Moschetti, Alessandra;Fiorini, Laura;Esposito, Dario;Dario, Paolo;Cavallo, Filippo
2017-01-01
Abstract
Daily activity recognition can help people to maintain a healthy lifestyle and robot to better interact with users. Robots could therefore use the information coming from the activities performed by users to give them some custom hints to improve lifestyle and daily routine. The pervasiveness of smart things together with advances in cloud robotics can help the robot to perceive and collect more information about the users and the environment. In particular thanks to the miniaturization and low cost of Inertial Measurement Units, in the last years, body-worn activity recognition has gained popularity. In this work, we investigated the performances with an unsupervised approach to recognize eight different gestures performed in daily living wearing a system composed of two inertial sensors placed on the hand and on the wrist. In this context our aim is to evaluate whether the system is able to recognize the gestures in more realistic applications, where is not possible to have a training set. The classification problem was analyzed using two unsupervised approaches (K-Mean and Gaussian Mixture Model), with an intra-subject and an inter-subject analysis, and two supervised approaches (Support Vector Machine and Random Forest), with a 10-fold cross validation analysis and with a Leave-One-Subject-Out analysis to compare the results. The outcomes show that even in an unsupervised context the system is able to recognize the gestures with an averaged accuracy of 0.917 in the K-Mean inter-subject approach and 0.796 in the Gaussian Mixture Model inter-subject one.File | Dimensione | Formato | |
---|---|---|---|
C034 - Daily activity recognition with inertial rings and bracelet.pdf
accesso aperto
Tipologia:
Documento in Pre-print/Submitted manuscript
Licenza:
Dominio pubblico
Dimensione
355.95 kB
Formato
Adobe PDF
|
355.95 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.