Stimulation of peripheral nerves has transiently restored lost sensation and has the potential to alleviate motor deficits. However, incomplete characterization of the long-term usability and bio-integration of intra-neural implants has restricted their use for clinical applications. Here, we conducted a longitudinal assessment of the selectivity, stability, functionality, and biocompatibility of polyimide-based intra-neural implants that were inserted in the sciatic nerve of twenty-three healthy adult rats for up to six months. We found that the stimulation threshold and impedance of the electrodes increased moderately during the first four weeks after implantation, and then remained stable over the following five months. The time course of these adaptations correlated with the progressive development of a fibrotic capsule around the implants. The selectivity of the electrodes enabled the preferential recruitment of extensor and flexor muscles of the ankle. Despite the foreign body reaction, this selectivity remained stable over time. These functional properties supported the development of control algorithms that modulated the forces produced by ankle extensor and flexor muscles with high precision. The comprehensive characterization of the implant encapsulation revealed hyper-cellularity, increased microvascular density, Wallerian degeneration, and infiltration of macrophages within the endoneurial space early after implantation. Over time, the amount of macrophages markedly decreased, and a layer of multinucleated giant cells surrounded by a capsule of fibrotic tissue developed around the implant, causing an enlargement of the diameter of the nerve. However, the density of nerve fibers above and below the inserted implant remained unaffected. Upon removal of the implant, we did not detect alteration of skilled leg movements and only observed mild tissue reaction. Our study characterized the interplay between the development of foreign body responses and changes in the electrical properties of actively used intra-neural electrodes, highlighting functional stability of polyimide-based implants over more than six months. These results are essential for refining and validating these implants and open a realistic pathway for long-term clinical applications in humans.

Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes

CAPOGROSSO, MARCO;RASPOPOVIC, STANISA;CUTRONE, Annarita;PIERSIGILLI, ALESSANDRA;RIGOSA, Jacopo;COURTINE, GREGOIRE;MICERA, Silvestro
2017-01-01

Abstract

Stimulation of peripheral nerves has transiently restored lost sensation and has the potential to alleviate motor deficits. However, incomplete characterization of the long-term usability and bio-integration of intra-neural implants has restricted their use for clinical applications. Here, we conducted a longitudinal assessment of the selectivity, stability, functionality, and biocompatibility of polyimide-based intra-neural implants that were inserted in the sciatic nerve of twenty-three healthy adult rats for up to six months. We found that the stimulation threshold and impedance of the electrodes increased moderately during the first four weeks after implantation, and then remained stable over the following five months. The time course of these adaptations correlated with the progressive development of a fibrotic capsule around the implants. The selectivity of the electrodes enabled the preferential recruitment of extensor and flexor muscles of the ankle. Despite the foreign body reaction, this selectivity remained stable over time. These functional properties supported the development of control algorithms that modulated the forces produced by ankle extensor and flexor muscles with high precision. The comprehensive characterization of the implant encapsulation revealed hyper-cellularity, increased microvascular density, Wallerian degeneration, and infiltration of macrophages within the endoneurial space early after implantation. Over time, the amount of macrophages markedly decreased, and a layer of multinucleated giant cells surrounded by a capsule of fibrotic tissue developed around the implant, causing an enlargement of the diameter of the nerve. However, the density of nerve fibers above and below the inserted implant remained unaffected. Upon removal of the implant, we did not detect alteration of skilled leg movements and only observed mild tissue reaction. Our study characterized the interplay between the development of foreign body responses and changes in the electrical properties of actively used intra-neural electrodes, highlighting functional stability of polyimide-based implants over more than six months. These results are essential for refining and validating these implants and open a realistic pathway for long-term clinical applications in humans.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/517468
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 124
social impact