Parallel and distributed computing is becoming essential to process in real time the increasingly massive volume of data collected by telecommunications companies. Existing computational paradigms such as MapReduce (and its popular open-source implementation Hadoop) provide a scalable, fault tolerant mechanism for large scale batch computations. However, many applications in the telco ecosystem require a real time, incremental streaming approach to process data in real time and enable proactive care. Storm is a scalable, fault tolerant framework for the analysis of real time streaming data. In this paper we provide a motivation for the use of real time streaming analytics in the telco ecosystem. We perform an experimental investigation into the performance of Storm, focusing in particular on the impact of parameter configuration. This investigation reveals that optimal parameter choice is highly non-trivial and we use this as motivation to create a parameter configuration engine. As first steps towards the creation of this engine we provide a deep analysis of the inner workings of Storm and provide a set of models describing data flow cost, central processing unit (CPU) cost, and system management cost. ©2014 Alcatel-Lucent.
Towards the optimization of a parallel streaming engine for telco applications
CUCINOTTA, TOMMASO
2014-01-01
Abstract
Parallel and distributed computing is becoming essential to process in real time the increasingly massive volume of data collected by telecommunications companies. Existing computational paradigms such as MapReduce (and its popular open-source implementation Hadoop) provide a scalable, fault tolerant mechanism for large scale batch computations. However, many applications in the telco ecosystem require a real time, incremental streaming approach to process data in real time and enable proactive care. Storm is a scalable, fault tolerant framework for the analysis of real time streaming data. In this paper we provide a motivation for the use of real time streaming analytics in the telco ecosystem. We perform an experimental investigation into the performance of Storm, focusing in particular on the impact of parameter configuration. This investigation reveals that optimal parameter choice is highly non-trivial and we use this as motivation to create a parameter configuration engine. As first steps towards the creation of this engine we provide a deep analysis of the inner workings of Storm and provide a set of models describing data flow cost, central processing unit (CPU) cost, and system management cost. ©2014 Alcatel-Lucent.File | Dimensione | Formato | |
---|---|---|---|
BLTJ-2014-Storm.pdf
accesso aperto
Tipologia:
Documento in Pre-print/Submitted manuscript
Licenza:
Licenza non conosciuta
Dimensione
332.69 kB
Formato
Adobe PDF
|
332.69 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.