The fundamentals of the near-field interaction between a subwavelength metallic tip and a photonic-crystal nanocavity are investigated experimentally and theoretically. It is shown experimentally that the cavity resonance is tuned without any degradation by the presence of the tip and that the reported near-field interaction is strongly related to the field distribution within the nanostructure. Then, in light of a perturbation theory, we show that this interaction is selectively related to the electric field or magnetic field distribution within the cavity, depending on the tip properties. © 2007 The American Physical Society.

Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity

VELHA, PHILIPPE;
2007-01-01

Abstract

The fundamentals of the near-field interaction between a subwavelength metallic tip and a photonic-crystal nanocavity are investigated experimentally and theoretically. It is shown experimentally that the cavity resonance is tuned without any degradation by the presence of the tip and that the reported near-field interaction is strongly related to the field distribution within the nanostructure. Then, in light of a perturbation theory, we show that this interaction is selectively related to the electric field or magnetic field distribution within the cavity, depending on the tip properties. © 2007 The American Physical Society.
2007
File in questo prodotto:
File Dimensione Formato  
00384580.pdf

solo utenti autorizzati

Descrizione: paper
Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Licenza non conosciuta
Dimensione 727.02 kB
Formato Adobe PDF
727.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/514520
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
social impact