Microcavities consisting of two identical tapered mirrors etched into silicon-on-insulator ridge waveguides are investigated for operation at telecommunication wavelengths. They offer very small modal volumes of approximately 0.6 (λ/n)3 and calculated intrinsic Q factors of 400000. We have measured a Q factor of 8900 for a loaded cavity, in agreement with the theoretical value. In contrast to recent works performed on suspended membranes, the buried SiO2 layer is not removed. The cavities possess strong mechanical robustness, thus making them attractive from the viewpoint of integration in large systems. The cavity Q factor is much larger than those previously obtained for similar geometries on a substrate. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide
VELHA, PHILIPPE;
2006-01-01
Abstract
Microcavities consisting of two identical tapered mirrors etched into silicon-on-insulator ridge waveguides are investigated for operation at telecommunication wavelengths. They offer very small modal volumes of approximately 0.6 (λ/n)3 and calculated intrinsic Q factors of 400000. We have measured a Q factor of 8900 for a loaded cavity, in agreement with the theoretical value. In contrast to recent works performed on suspended membranes, the buried SiO2 layer is not removed. The cavities possess strong mechanical robustness, thus making them attractive from the viewpoint of integration in large systems. The cavity Q factor is much larger than those previously obtained for similar geometries on a substrate. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.