The approximate agents’ wealth and price invariant densities of a repeated prediction market model is derived using the Fokker–Planck equation of the associated continuous-time jump process. We show that the approximation obtained from the evolution of log-wealth difference can be reliably exploited to compute all the quantities of interest in all the acceptable parameter space. When the risk aversion of the trader is high enough, we are able to derive an explicit closed-form solution for the price distribution which is asymptotically correct.

Wealth and price distribution by diffusive approximation in a repeated prediction market

BOTTAZZI, Giulio;GIACHINI, Daniele
2017-01-01

Abstract

The approximate agents’ wealth and price invariant densities of a repeated prediction market model is derived using the Fokker–Planck equation of the associated continuous-time jump process. We show that the approximation obtained from the evolution of log-wealth difference can be reliably exploited to compute all the quantities of interest in all the acceptable parameter space. When the risk aversion of the trader is high enough, we are able to derive an explicit closed-form solution for the price distribution which is asymptotically correct.
2017
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378437116309967-main.pdf

accesso aperto

Descrizione: Versione finale
Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Licenza non conosciuta
Dimensione 841.21 kB
Formato Adobe PDF
841.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/514484
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
social impact