The study of nanomaterial translocation across epithelial barriers is often hindered by the low permeability of transwell membranes to nanoparticles. To address this issue ultra-thin poly(L-lactic acid) nanofilms with zero tortuosity micropores were developed for use in nanoparticle passage tests. In this study we demonstrate that microporous polymeric nanofilms allow a significantly higher passage of silver nanoparticles in comparison with commercial membranes normally used in transwell inserts. A reliable procedure for collecting free-standing nanofilms which enables their manipulation and use in lab-on-chip systems is described. We also demonstrate the cytocompatibility of porous nanofilms and their ability to sustain the adhesion and proliferation of Caco-2 cells. Ultra-thin microporous membranes show promise as low-cost nanomaterial screening tools and may be used as matrices for the development of bioengineered systems for mimicking the intestinal epithelium.
Polymeric microporous nanofilms as smart platforms for in vitro assessment of nanoparticle translocation and caco-2 cell culture
RICOTTI, Leonardo;
2016-01-01
Abstract
The study of nanomaterial translocation across epithelial barriers is often hindered by the low permeability of transwell membranes to nanoparticles. To address this issue ultra-thin poly(L-lactic acid) nanofilms with zero tortuosity micropores were developed for use in nanoparticle passage tests. In this study we demonstrate that microporous polymeric nanofilms allow a significantly higher passage of silver nanoparticles in comparison with commercial membranes normally used in transwell inserts. A reliable procedure for collecting free-standing nanofilms which enables their manipulation and use in lab-on-chip systems is described. We also demonstrate the cytocompatibility of porous nanofilms and their ability to sustain the adhesion and proliferation of Caco-2 cells. Ultra-thin microporous membranes show promise as low-cost nanomaterial screening tools and may be used as matrices for the development of bioengineered systems for mimicking the intestinal epithelium.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.