In this work, we have numerically integrated in space and time the effective-mass nonlinear Schrödinger equation for an electron wave packet in a double barrier heterostructure. Considering both polarized and unpolarized magnetic phases, we have studied the tunneling escape process from the two-dimensional electron gas. Due to the nonlinear effective-mass equation, it is found that the charge trapped dynamically in the quantum well produces a reaction field, which modifies the tunneling escape process in the quantum well. At different electronic sheet densities, we have shown the possibility of having magnetic phase-dependent tunneling rates. © 2001 Elsevier Science Ltd.

Tunneling escape process from a spin-polarized two-dimensional electron system

OTON NIETO, CLAUDIO JOSE;
2001-01-01

Abstract

In this work, we have numerically integrated in space and time the effective-mass nonlinear Schrödinger equation for an electron wave packet in a double barrier heterostructure. Considering both polarized and unpolarized magnetic phases, we have studied the tunneling escape process from the two-dimensional electron gas. Due to the nonlinear effective-mass equation, it is found that the charge trapped dynamically in the quantum well produces a reaction field, which modifies the tunneling escape process in the quantum well. At different electronic sheet densities, we have shown the possibility of having magnetic phase-dependent tunneling rates. © 2001 Elsevier Science Ltd.
2001
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/511059
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact