In this paper we experimentally realized bidirectional optical wireless communication (OWC) link using four channel visible LED board exploiting wavelength division multiplexing (WDM) for the downlink and infrared LED for uplink. We achieved greater than 5 Gbit/s data rate at common indoor distance (1.5 to 4 m) for downlink and 1.5 Gbit/s for uplink using commercially available LEDs. We achieved these results after a careful choice of the LED emission wavelengths and the optical filter spectra. Moreover, we investigate the optimal LED working current and the optimal modulation depth. The bit error ratios of all the channels were maintained lower than the FEC limit (3.8·10(-3)).
Gigabit-class optical wireless communication system at indoor distances (1.5 ÷ 4 m)
COSSU, GIULIO;ALI, WAJAHAT;CORSINI, Raffaele;CIARAMELLA, ERNESTO
2015-01-01
Abstract
In this paper we experimentally realized bidirectional optical wireless communication (OWC) link using four channel visible LED board exploiting wavelength division multiplexing (WDM) for the downlink and infrared LED for uplink. We achieved greater than 5 Gbit/s data rate at common indoor distance (1.5 to 4 m) for downlink and 1.5 Gbit/s for uplink using commercially available LEDs. We achieved these results after a careful choice of the LED emission wavelengths and the optical filter spectra. Moreover, we investigate the optimal LED working current and the optimal modulation depth. The bit error ratios of all the channels were maintained lower than the FEC limit (3.8·10(-3)).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.