This paper presents a fast approach for marker-less Full-DOF hand tracking, leveraging only depth information from a single depth camera. This system can be useful in many applications, ranging from tele-presence to remote control of robotic actuators or interaction with 3D virtual environment. We applied the proposed technology to enable remote transmission of signs from Tactile Sing Languages (i.e., Sign Languages with Tactile feedbacks), allowing non-invasive remote communication not only among deaf-blind users, but also with deaf, blind and hearing with proficiency in Sign Languages. We show that our approach paves the way to a fluid and natural remote communication for deaf-blind people, up to now impossible. This system is a first prototype for the PARLOMA project, which aims at designing a remote communication system for deaf-blind people.
Real-Time Single Camera Hand Gesture Recognition System for Remote Deaf-Blind Communication
SALGARELLA, Alice Rita;CAMBONI, Domenico;CONTROZZI, Marco;CIPRIANI, Christian;ODDO, Calogero Maria;
2014-01-01
Abstract
This paper presents a fast approach for marker-less Full-DOF hand tracking, leveraging only depth information from a single depth camera. This system can be useful in many applications, ranging from tele-presence to remote control of robotic actuators or interaction with 3D virtual environment. We applied the proposed technology to enable remote transmission of signs from Tactile Sing Languages (i.e., Sign Languages with Tactile feedbacks), allowing non-invasive remote communication not only among deaf-blind users, but also with deaf, blind and hearing with proficiency in Sign Languages. We show that our approach paves the way to a fluid and natural remote communication for deaf-blind people, up to now impossible. This system is a first prototype for the PARLOMA project, which aims at designing a remote communication system for deaf-blind people.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.