Background The local environment plays a major role in the spatial distribution of plant populations. Natural plant populations have an extremely poor displacing capacity, so their continued survival in a given environment depends on how well they adapt to local pedoclimatic conditions. Genomic tools can be used to identify adaptive traits at a DNA level and to further our understanding of evolutionary processes. Here we report the use of genotyping-by-sequencing on local groups of the sequenced monocot model speciesBrachypodium distachyon. Exploiting population genetics, landscape genomics and genome wide association studies, we evaluate B. distachyonrole as a natural probe for dentifying genomic loci involved in environmental adaptation. Results Brachypodium distachyonindividuals were sampled in nine locations with different ecologies and characterized with 16,697 SNPs. Variations in sequencing depth showed consistent patterns at 8,072 genomic bins, which were significantly enriched in transposable elements. We investigated the structuration and diversity of this collection, and exploited climatic data to identify loci with adaptive significance through i) two different approaches for genome wide association analyses considering climatic variation, ii) an outlier loci approach, and iii) a canonical correlation analysis on differentially sequenced bins. A linkage disequilibrium-corrected Bonferroni method was applied to filter associations. The two association methods jointly identified a set of 15 genes significantly related to environmental adaptation. The outlier loci approach revealed that 5.7% of the loci analysed were under selection. The canonical correlation analysis showed that the distribution of some differentially sequenced regions was associated to environmental variation. Conclusions We show that the multi-faceted approach used here targeted different components of B. distachyon adaptive variation, and may lead to the discovery of genes related to environmental adaptation in natural populations. Its application to a model species with a fully sequenced genome is a modular strategy that enables the stratification of biological material and thus improves our knowledge of the functional loci determining adaptation in near-crop species. When coupled with population genetics and measures of genomic structuration, methods coming from genome wide association studies may lead to the exploitation of model species as natural probes to identify loci related to environmental adaptation.

Targeting environmental adaptation in the monocot model Brachypodium distachyon: a multi-faceted approach

DELL'ACQUA, MATTEO;ZUCCOLO, ANDREA;PE', MARIO ENRICO
2014-01-01

Abstract

Background The local environment plays a major role in the spatial distribution of plant populations. Natural plant populations have an extremely poor displacing capacity, so their continued survival in a given environment depends on how well they adapt to local pedoclimatic conditions. Genomic tools can be used to identify adaptive traits at a DNA level and to further our understanding of evolutionary processes. Here we report the use of genotyping-by-sequencing on local groups of the sequenced monocot model speciesBrachypodium distachyon. Exploiting population genetics, landscape genomics and genome wide association studies, we evaluate B. distachyonrole as a natural probe for dentifying genomic loci involved in environmental adaptation. Results Brachypodium distachyonindividuals were sampled in nine locations with different ecologies and characterized with 16,697 SNPs. Variations in sequencing depth showed consistent patterns at 8,072 genomic bins, which were significantly enriched in transposable elements. We investigated the structuration and diversity of this collection, and exploited climatic data to identify loci with adaptive significance through i) two different approaches for genome wide association analyses considering climatic variation, ii) an outlier loci approach, and iii) a canonical correlation analysis on differentially sequenced bins. A linkage disequilibrium-corrected Bonferroni method was applied to filter associations. The two association methods jointly identified a set of 15 genes significantly related to environmental adaptation. The outlier loci approach revealed that 5.7% of the loci analysed were under selection. The canonical correlation analysis showed that the distribution of some differentially sequenced regions was associated to environmental variation. Conclusions We show that the multi-faceted approach used here targeted different components of B. distachyon adaptive variation, and may lead to the discovery of genes related to environmental adaptation in natural populations. Its application to a model species with a fully sequenced genome is a modular strategy that enables the stratification of biological material and thus improves our knowledge of the functional loci determining adaptation in near-crop species. When coupled with population genetics and measures of genomic structuration, methods coming from genome wide association studies may lead to the exploitation of model species as natural probes to identify loci related to environmental adaptation.
2014
File in questo prodotto:
File Dimensione Formato  
Dell'Acqua et al 2014.pdf

non disponibili

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/475776
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
social impact