This paper outlines the design and the development of a novel robotic hand exoskeleton (HE) conceived for haptic interaction in the context of virtual reality (VR) and teleoperation (TO) applications. The device allows exerting controlled forces on fingertips of the index and thumb of the operator. The new exoskeleton features several design solutions adopted with the aim of optimizing force accuracy and resolution. The use of remote centers of motion mechanisms allows achieving a compact and lightweight design. An improved stiffness of the transmission and reduced requirements for the electromechanical actuators are obtained thanks to a novel principle for integrating speed reduction into torque transmission systems. A custom designed force sensor and integrated electronics are employed to further improve performances. The electromechanical design of the device and the experimental characterization are presented.
Haptic Hand Exoskeleton for Precision Grasp Simulation
FONTANA, Marco;Fabio, S;Marcheschi, S;BERGAMASCO, Massimo
2013-01-01
Abstract
This paper outlines the design and the development of a novel robotic hand exoskeleton (HE) conceived for haptic interaction in the context of virtual reality (VR) and teleoperation (TO) applications. The device allows exerting controlled forces on fingertips of the index and thumb of the operator. The new exoskeleton features several design solutions adopted with the aim of optimizing force accuracy and resolution. The use of remote centers of motion mechanisms allows achieving a compact and lightweight design. An improved stiffness of the transmission and reduced requirements for the electromechanical actuators are obtained thanks to a novel principle for integrating speed reduction into torque transmission systems. A custom designed force sensor and integrated electronics are employed to further improve performances. The electromechanical design of the device and the experimental characterization are presented.File | Dimensione | Formato | |
---|---|---|---|
JMR_1080_Fontana_et_al_final.pdf
accesso aperto
Tipologia:
Documento in Pre-print/Submitted manuscript
Licenza:
Non pubblico
Dimensione
7.9 MB
Formato
Adobe PDF
|
7.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.