In digital control systems, the state is sampled at given sampling instants and the input is kept constant between two consecutive instants. With the optimal sampling problem, we mean the selection of sampling instants and control inputs, such that a given function of the state and input is minimized. In this paper, we formulate the optimal sampling problem and we derive a necessary condition for the optimality of a set of sampling instants in the linear quadratic regulator problem. Since the numerical solution of the optimal sampling problem is very time consuming, we also propose a new quantization-based sampling strategy that is computationally tractable and capable of achieving near-optimal cost. Finally, and probably most interesting of all, we prove that the quantization-based sampling is optimal in first-order systems for a large number of samples. Experiments demonstrate that quantization-based sampling has near-optimal performance even when the system has a higher order. However, it is still an open question whether quantization-based sampling is asymptotically optimal in any case.

The Optimal Sampling Pattern for Linear Control Systems

BINI, Enrico;
2014-01-01

Abstract

In digital control systems, the state is sampled at given sampling instants and the input is kept constant between two consecutive instants. With the optimal sampling problem, we mean the selection of sampling instants and control inputs, such that a given function of the state and input is minimized. In this paper, we formulate the optimal sampling problem and we derive a necessary condition for the optimality of a set of sampling instants in the linear quadratic regulator problem. Since the numerical solution of the optimal sampling problem is very time consuming, we also propose a new quantization-based sampling strategy that is computationally tractable and capable of achieving near-optimal cost. Finally, and probably most interesting of all, we prove that the quantization-based sampling is optimal in first-order systems for a large number of samples. Experiments demonstrate that quantization-based sampling has near-optimal performance even when the system has a higher order. However, it is still an open question whether quantization-based sampling is asymptotically optimal in any case.
2014
File in questo prodotto:
File Dimensione Formato  
optSampling.pdf

non disponibili

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Non pubblico
Dimensione 368.2 kB
Formato Adobe PDF
368.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/406248
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
social impact