Light-emitting diodes (LEDs), which will be increasingly used in lighting technology, will also allow for distribution of broadband optical wireless signals. Visible-light communication (VLC) using white LEDs offers several advantages over the RF-based wireless systems, i.e., license-free spectrum, low power consumption, and higher privacy. Mostly, optical wireless can provide much higher data rates. In this paper, we demonstrate a VLC system based on a white LED for indoor broadband wireless access. After investigating the nonlinear effects of the LED and the power amplifier, a data rate of 1 Gb/s has been achieved at the standard illuminance level, by using an optimized discrete multitone modulation technique and adaptive bit- and power-loading algorithms. The bit-error ratio of the received data was 1.5 10^(-3), which is within the limit of common forward error correction (FEC) coding. These results twice the highest capacity that had been previously obtained.

1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation

CORSINI, Raffaele;COSSU, GIULIO;CIARAMELLA, ERNESTO
2012-01-01

Abstract

Light-emitting diodes (LEDs), which will be increasingly used in lighting technology, will also allow for distribution of broadband optical wireless signals. Visible-light communication (VLC) using white LEDs offers several advantages over the RF-based wireless systems, i.e., license-free spectrum, low power consumption, and higher privacy. Mostly, optical wireless can provide much higher data rates. In this paper, we demonstrate a VLC system based on a white LED for indoor broadband wireless access. After investigating the nonlinear effects of the LED and the power amplifier, a data rate of 1 Gb/s has been achieved at the standard illuminance level, by using an optimized discrete multitone modulation technique and adaptive bit- and power-loading algorithms. The bit-error ratio of the received data was 1.5 10^(-3), which is within the limit of common forward error correction (FEC) coding. These results twice the highest capacity that had been previously obtained.
2012
File in questo prodotto:
File Dimensione Formato  
1Gbs_whiteLED.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 856.55 kB
Formato Adobe PDF
856.55 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/367224
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 430
social impact