The aim of this paper is to study and predict the effect of a number of critical parameters on the performance of virtual machines (VMs). These parameters include allocation percentages, real-time scheduling decisions and co-placement of VMs when these are deployed concurrently on the same physical node, as dictated by the server consolidation trend and the recent advances in the Cloud computing systems. Different combinations of VM workload types are investigated in relation to the aforementioned factors in order to find the optimal allocation strategies. What is more, different levels of memory sharing are applied, based on the coupling of VMs to cores on a multi-core architecture. For all the aforementioned cases, the effect on the score of specific benchmarks running inside the VMs is measured. Finally, a black box method based on genetically optimized artificial neural networks is inserted in order to investigate the degradation prediction ability a priori of the execution and is compared to the linear regression method.
The effects of scheduling, workload type and consolidation scenarios on virtual machine performance and their prediction through optimized artificial neural networks
CUCINOTTA, TOMMASO;
2011-01-01
Abstract
The aim of this paper is to study and predict the effect of a number of critical parameters on the performance of virtual machines (VMs). These parameters include allocation percentages, real-time scheduling decisions and co-placement of VMs when these are deployed concurrently on the same physical node, as dictated by the server consolidation trend and the recent advances in the Cloud computing systems. Different combinations of VM workload types are investigated in relation to the aforementioned factors in order to find the optimal allocation strategies. What is more, different levels of memory sharing are applied, based on the coupling of VMs to cores on a multi-core architecture. For all the aforementioned cases, the effect on the score of specific benchmarks running inside the VMs is measured. Finally, a black box method based on genetically optimized artificial neural networks is inserted in order to investigate the degradation prediction ability a priori of the execution and is compared to the linear regression method.File | Dimensione | Formato | |
---|---|---|---|
Elsevier-JSS-2011-Neural.pdf
accesso aperto
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
4.63 MB
Formato
Adobe PDF
|
4.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.