Recently a hybrid model based on the finite element method and on a compartmental biophysical representation of peripheral nerve fibers and intraneural electrodes was developed founded on experimental physiological and histological data. The model appeared to be robust when dealing with uncertainties in parameter selection. However, an experimental validation of the findings provided by the model is required to fully characterize the potential of this approach. The recruitment properties of selective nerve stimulation using transverse intrafas- cicular multichannel electrodes (TIME) were investigated in this work in experiments with rats and were compared to model predictions. Animal experiments were performed using the same stimulation protocol as in the computer simulations in order to rigorously validate the model predictions and understand its limitations. Two different selectivity indices were used, and new indices for measuring electrode performance are proposed. The model predictions are in decent agreement with experimental results both in terms of recruitment curves and selectivity values. Results show that these models can be used for extensive studies targeting electrode shape design, active sites shape, and multipolar stimulation paradigms. From a neurophysiological point of view, the topographic organization of the rat sciatic nerve, on which the model was based, has been confirmed.
Experimental validation of a hybrid computationalmodel for selective stimulation using transverseintrafascicular multichannel electrodes
RASPOPOVIC, STANISA;CAPOGROSSO, MARCO;MICERA, Silvestro
In corso di stampa
Abstract
Recently a hybrid model based on the finite element method and on a compartmental biophysical representation of peripheral nerve fibers and intraneural electrodes was developed founded on experimental physiological and histological data. The model appeared to be robust when dealing with uncertainties in parameter selection. However, an experimental validation of the findings provided by the model is required to fully characterize the potential of this approach. The recruitment properties of selective nerve stimulation using transverse intrafas- cicular multichannel electrodes (TIME) were investigated in this work in experiments with rats and were compared to model predictions. Animal experiments were performed using the same stimulation protocol as in the computer simulations in order to rigorously validate the model predictions and understand its limitations. Two different selectivity indices were used, and new indices for measuring electrode performance are proposed. The model predictions are in decent agreement with experimental results both in terms of recruitment curves and selectivity values. Results show that these models can be used for extensive studies targeting electrode shape design, active sites shape, and multipolar stimulation paradigms. From a neurophysiological point of view, the topographic organization of the rat sciatic nerve, on which the model was based, has been confirmed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.