Iodine is an essential element in the human diet, and iodine deficiency is a significant health problem. No attempts to increase iodine content in plant-derived food (biofortification) have so far been particularly effective. We studied iodine uptake in tomato (Solanum lycopersicum L.) to evaluate whether it is possible to increase the iodine concentration in its fruits. Iodine translocation and storage inside tomato tissues were studied using radioactive iodine. Potassium iodide was also supplied at different concentrations to tomato plants to evaluate the resulting iodide concentration both in the vegetative tissues and the fruits. The results indicate that iodine was taken up better when supplied to the roots using hydroponically grown plants. However, a considerable amount of iodine was also stored after leaf treatment, suggesting that iodine transport through phloem also occurred. We found that tomato plants can tolerate high levels of iodine, stored both in the vegetative tissues and fruits at concentrations that are more than sufficient for the human diet. We conclude that tomato is an excellent crop for iodine-biofortification programs.

Iodine biofortification in tomato

GONZALI, Silvia;PERATA, Pierdomenico
2011-01-01

Abstract

Iodine is an essential element in the human diet, and iodine deficiency is a significant health problem. No attempts to increase iodine content in plant-derived food (biofortification) have so far been particularly effective. We studied iodine uptake in tomato (Solanum lycopersicum L.) to evaluate whether it is possible to increase the iodine concentration in its fruits. Iodine translocation and storage inside tomato tissues were studied using radioactive iodine. Potassium iodide was also supplied at different concentrations to tomato plants to evaluate the resulting iodide concentration both in the vegetative tissues and the fruits. The results indicate that iodine was taken up better when supplied to the roots using hydroponically grown plants. However, a considerable amount of iodine was also stored after leaf treatment, suggesting that iodine transport through phloem also occurred. We found that tomato plants can tolerate high levels of iodine, stored both in the vegetative tissues and fruits at concentrations that are more than sufficient for the human diet. We conclude that tomato is an excellent crop for iodine-biofortification programs.
2011
File in questo prodotto:
File Dimensione Formato  
2011 Iodine biofortification in tomato.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 456.61 kB
Formato Adobe PDF
456.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/325965
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
social impact