AIM:The increased myocardial production and the elevated plasma concentrations of C-type natriuretic peptide (CNP) in heart failure patients suggest its involvement in pathophysiological cardiac remodeling. The cardiovascular action of CNP seems to be mainly mediated by natriuretic peptide receptor (NPR)-B but the importance of CNP/NPR-B signaling in heart is not yet well characterized. The aim of this study was to assess the cardiac mRNA expression of CNP and NPR-B together with those of BNP and NPR-A in order to evaluate the relative importance of these peptides and of their receptors in cardiovascular system. METHODS: The expression of mRNA coding for CNP, NPR-B, BNP and NPR-A was investigated in myocardial tissue (BALB/c mice, N=5) by use of RT-PCR. NPR-A and NPR-B expression were also evaluated in left ventricle of male adult minipigs without (N=5) and with pacing-induced heart failure (HF, N=5). RESULTS: The proposed method allowed to detect the expression of mRNA coding for CNP and NPR-B in myocardial tissue confirming the presence of these effectors in the heart. These data also indicate that CNP mRNA expression is lower with respect to that of BNP (CNP/GAPDH= 0.117+/-0.035 vs. BNP/GAPDH=0.247+/-0.066) and that NPR-B is the predominant subtype receptor in the heart (Mouse: NPR-A/GAPDH=0.244+/- 0.028; NPR-B/GAPDH=0.657+/-0.022; p=0.0008; Pig: NPR-A/GAPDH=3.06+/-1.75, NPR-B/GAPDH= 14.3+/-3.6, p=0.0028; HF Pig: NPR-A/GAPDH= 4.29+/-0.93, NPR-B/GAPDH=7.9+/-1.1, p=0.0043). CONCLUSION: In the present study, we provided the first evidence of a higher mRNA expression in cardiac tissue of NPR-B with respect to NPR-A indicating that CNP specific receptor (NPR-B) is the predominant biological receptor in mouse and pig myocardial tissue.
NPR-B, the C-type natriuretic peptide specific receptor, is the predominant biological receptor in mouse and pig myocardial tissue.
LIONETTI, Vincenzo;
2010-01-01
Abstract
AIM:The increased myocardial production and the elevated plasma concentrations of C-type natriuretic peptide (CNP) in heart failure patients suggest its involvement in pathophysiological cardiac remodeling. The cardiovascular action of CNP seems to be mainly mediated by natriuretic peptide receptor (NPR)-B but the importance of CNP/NPR-B signaling in heart is not yet well characterized. The aim of this study was to assess the cardiac mRNA expression of CNP and NPR-B together with those of BNP and NPR-A in order to evaluate the relative importance of these peptides and of their receptors in cardiovascular system. METHODS: The expression of mRNA coding for CNP, NPR-B, BNP and NPR-A was investigated in myocardial tissue (BALB/c mice, N=5) by use of RT-PCR. NPR-A and NPR-B expression were also evaluated in left ventricle of male adult minipigs without (N=5) and with pacing-induced heart failure (HF, N=5). RESULTS: The proposed method allowed to detect the expression of mRNA coding for CNP and NPR-B in myocardial tissue confirming the presence of these effectors in the heart. These data also indicate that CNP mRNA expression is lower with respect to that of BNP (CNP/GAPDH= 0.117+/-0.035 vs. BNP/GAPDH=0.247+/-0.066) and that NPR-B is the predominant subtype receptor in the heart (Mouse: NPR-A/GAPDH=0.244+/- 0.028; NPR-B/GAPDH=0.657+/-0.022; p=0.0008; Pig: NPR-A/GAPDH=3.06+/-1.75, NPR-B/GAPDH= 14.3+/-3.6, p=0.0028; HF Pig: NPR-A/GAPDH= 4.29+/-0.93, NPR-B/GAPDH=7.9+/-1.1, p=0.0043). CONCLUSION: In the present study, we provided the first evidence of a higher mRNA expression in cardiac tissue of NPR-B with respect to NPR-A indicating that CNP specific receptor (NPR-B) is the predominant biological receptor in mouse and pig myocardial tissue.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.