The effect of UV-B shielding on ethylene production in ripening tomato fruits and the contribution of ethylene and UV-B radiation on carotenoid accumulation and profile during ripening were assessed to get more insight about the interplay between these two regulatory factors. To this aim, rin and nor tomato mutants, unable to produce ripening ethylene, and cv Ailsa Craig were cultivated under control or UV-B depleted conditions until full fruit ripening. The significantly decreased ethylene evolution following UV-B depletion, evident only in Ailsa Craig, suggested the requirement of functional rin and nor genes for UVB-mediated ethylene production. Carotenoid content and profile were found to be controlled by both ethylene and UV-B radiation. This latter influenced carotenoid metabolism either in an ethylene-dependent or -independent way, as indicated by UVB-induced changes also in nor and rin carotenoid content and confirmed by correlation plots between ethylene evolution and carotenoid accumulation performed separately for control and UV-B shielded fruits. In conclusion, natural UV-B radiation influences carotenoid metabolism in a rather complex way, involving ethylene-dependent and -independent mechanisms, which seem to act in an antagonistic way.
Solar UV-B Radiation Influences Carotenoid Accumulation of Tomato Fruit through Both Ethylene-Dependent and -independent Mechanisms
SERRA, Giovanni;MENSUALI, Anna;
2009-01-01
Abstract
The effect of UV-B shielding on ethylene production in ripening tomato fruits and the contribution of ethylene and UV-B radiation on carotenoid accumulation and profile during ripening were assessed to get more insight about the interplay between these two regulatory factors. To this aim, rin and nor tomato mutants, unable to produce ripening ethylene, and cv Ailsa Craig were cultivated under control or UV-B depleted conditions until full fruit ripening. The significantly decreased ethylene evolution following UV-B depletion, evident only in Ailsa Craig, suggested the requirement of functional rin and nor genes for UVB-mediated ethylene production. Carotenoid content and profile were found to be controlled by both ethylene and UV-B radiation. This latter influenced carotenoid metabolism either in an ethylene-dependent or -independent way, as indicated by UVB-induced changes also in nor and rin carotenoid content and confirmed by correlation plots between ethylene evolution and carotenoid accumulation performed separately for control and UV-B shielded fruits. In conclusion, natural UV-B radiation influences carotenoid metabolism in a rather complex way, involving ethylene-dependent and -independent mechanisms, which seem to act in an antagonistic way.File | Dimensione | Formato | |
---|---|---|---|
2009 Solar UV-B Radiation Influences.pdf
accesso aperto
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
885.27 kB
Formato
Adobe PDF
|
885.27 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.