Applying classical dynamic voltage scaling (DVS) techniques to real-time systems running on processors with discrete voltage/frequency modes causes a waste of computational resources. In fact, whenever the ideal speed level computed by the DVS algorithm is not available in the system, to guarantee the feasibility of the task set, the processor speed must be set to the nearest level greater than the optimal one, thus underutilizing the system. Whenever the task set allows a certain degree of flexibility in specifying timing constraints, rate adaptation techniques can be adopted to balance performance (which is a function of task rates) versus energy consumption (which is a function of the processor speed). In this paper, we propose a new method that combines discrete DVS management with elastic scheduling to fully exploit the available computational resources. Depending on the application requirements, the algorithm can be set to improve performance or reduce energy consumption, so enhancing the flexibility of the system. A reclaiming mechanism is also used to take advantage of early completions. To make the proposed approach usable in real-world applications, the task model is enhanced to consider some of the real CPU characteristics, such as discrete voltage/frequency levels, switching overhead, task execution times nonlinear with the frequency, and tasks with different power consumption. Implementation issues and experimental results for the proposed algorithm are also discussed.

Elastic DVS Management in Processors with Discrete Voltage/Frequency Modes

MARINONI, Mauro;BUTTAZZO, Giorgio Carlo
2007-01-01

Abstract

Applying classical dynamic voltage scaling (DVS) techniques to real-time systems running on processors with discrete voltage/frequency modes causes a waste of computational resources. In fact, whenever the ideal speed level computed by the DVS algorithm is not available in the system, to guarantee the feasibility of the task set, the processor speed must be set to the nearest level greater than the optimal one, thus underutilizing the system. Whenever the task set allows a certain degree of flexibility in specifying timing constraints, rate adaptation techniques can be adopted to balance performance (which is a function of task rates) versus energy consumption (which is a function of the processor speed). In this paper, we propose a new method that combines discrete DVS management with elastic scheduling to fully exploit the available computational resources. Depending on the application requirements, the algorithm can be set to improve performance or reduce energy consumption, so enhancing the flexibility of the system. A reclaiming mechanism is also used to take advantage of early completions. To make the proposed approach usable in real-world applications, the task model is enhanced to consider some of the real CPU characteristics, such as discrete voltage/frequency levels, switching overhead, task execution times nonlinear with the frequency, and tasks with different power consumption. Implementation issues and experimental results for the proposed algorithm are also discussed.
2007
File in questo prodotto:
File Dimensione Formato  
TII07-Marinoni.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Non pubblico
Dimensione 728.68 kB
Formato Adobe PDF
728.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/303055
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
social impact