
Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159

A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Research paper

A hardware accelerator to support deep learning processor units in real-time
image processing
Edoardo Cittadini ∗, Mauro Marinoni, Giorgio Buttazzo
Scuola Superiore Sant’Anna, Pisa, Italy

A R T I C L E I N F O

Keywords:
Hardware acceleration
Object detection
Deep neural networks
Real-time processing
Image pre-processing acceleration
Deep processing unit

A B S T R A C T

Deep neural networks are becoming crucial in many cyber–physical systems involving complex perceptual
tasks. For those embedded systems requiring real-time interactions with dynamic environments, as autonomous
robots and drones, it is of paramount importance that such algorithms are efficiently executed onboard on
properly designed hardware accelerators to meet the required performance specifications. In particular, some
neural network architectures for object detection and tracking, as You Only Look Once (YOLO), include heavy
computational stages that need to be executed before and after the model inference. Such stages are typically
not incorporated in traditional accelerators and are executed on general-purpose processors, thus introducing
a bottleneck in the overall processing pipeline. To overcome such a problem, this paper presents a general-
purpose accelerator on a field-programmable gate array (FPGA) able to run pre-processing and post-processing
operations typically required by vision tasks. The proposed solution has been tested in combination with a
YOLO object detector accelerated on an Advanced Micro Devices (AMD) Xilinx Kria KR260 board mounting
an UltraScale+ multiprocessor system-on-chip, achieving a significant improvement in terms of both timing
performance and power consumption, and enabling onboard visual processing into drones. The proposed
solution is able to boost the traditional object detection process by a factor of 4.4, allowing the execution
of the full processing pipeline at 60 frames per second (fps), versus 13.6 fps reachable without the proposed
accelerator. As a result, this work enables the use of high-speed cameras for developing more reactive systems
that can respond to incoming events with lower latency.
1. Introduction

The tremendous evolution of artificial intelligence (AI), in particu-
lar machine learning and deep neural networks, is playing a crucial
role in modern Cyber-Physical Systems (CPS), like drones (Ahmed
et al., 2022; Xing et al., 2023), rovers (Jones et al., 2023; Cantero
et al., 2022), and edge nodes for the Internet of Things (IoT) (Rosero-
Montalvo et al., 2024; Wulfert et al., 2024). Such AI technologies,
particularly those developed for vision tasks, such as object detection
and tracking, are becoming fundamental for the development of intel-
ligent systems, ranging from autonomous vehicles to smart factories.
Since these systems are becoming ubiquitous, optimizing their imple-
mentation to satisfy the increasing performance requirements of CPS
and IoT applications is crucial for their fruitful adoption.

The need for efficient AI processing has stimulated the develop-
ment of dedicated hardware solutions that meet the stringent require-
ments of low latency, high throughput, time predictability, and energy
efficiency. Among these solutions, Field-Programmable Gate Arrays

∗ Correspondence to: Via Cettigne 30, Cagliari, 09129, Italy
E-mail addresses: edoardo.cittadini@santannapisa.it (E. Cittadini), mauro.marinoni@santannapisa.it (M. Marinoni), giorgio.buttazzo@santannapisa.it

(G. Buttazzo).

(FPGAs) provide parallelism, adaptability, and low power consump-
tion, making them an ideal candidate for accelerating AI workloads.
Also, they underwent substantial improvements in software support
for a seamless design and integration. For example, AMD Xilinx pro-
posed Vitis-AI (AMD Xilinx, 2023d), a comprehensive development
stack to design and deploy AI-based applications in their heteroge-
neous platforms, also exploiting the Deep Learning Processor Unit
(DPU) (AMD Xilinx, 2023b), which is a programmable engine dedicated
to Convolutional Neural Networks (CNN).

Despite the growing adoption of the DPUs in FPGA-based platforms,
they are primarily used to accelerate the CNN model itself, leaving the
pre-processing and post-processing phases to the CPUs, thus creating
a critical bottleneck in the processing pipeline. This partitioning of
the processing pipeline between the FPGA and the CPUs produces a
suboptimal solution, which overloads the processors with additional
computational activities that increase the interference on computa-
tional resources, such as the shared cache, the memory controller,
https://doi.org/10.1016/j.engappai.2025.110159
Received 16 April 2024; Received in revised form 10 October 2024; Accepted 23 J
vailable online 4 February 2025
952-1976/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
anuary 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
https://orcid.org/0000-0003-1714-8960
mailto:edoardo.cittadini@santannapisa.it
mailto:mauro.marinoni@santannapisa.it
mailto:giorgio.buttazzo@santannapisa.it
https://doi.org/10.1016/j.engappai.2025.110159
https://doi.org/10.1016/j.engappai.2025.110159
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2025.110159&domain=pdf
http://creativecommons.org/licenses/by/4.0/

E. Cittadini et al.

s
F

n
w
p

a
Y
o
c

X

s
p
F
X
Y
o
e
a
d
f
o
l

w

a

A
l

a
t

f

p
n
m
l
l
t
b

p
i
r

h
X
I

b
p

Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159
and the bus. As a consequence, the execution times of the processing
pipeline become longer and highly variable, reducing the performance
of the overall cyber–physical system, which become less predictable
and less controllable.

1.1. Paper contributions

To address the aforementioned issues, this paper presents the Image
Processing Unit (IPU), which is a flexible hardware accelerator imple-
mented on FPGA to speedup typical pre-processing and post-processing
operations required in vision tasks. The neural network inference is
supposed to be performed by a dedicated neural co-processor, as the
Xilinx DPU. The proposed IPU can be integrated with a wide range of
accelerated neural networks, like those provided by AMD Xilinx in its
Model Zoo (AMD Xilinx, 2023c), but can also be combined with custom
olutions. Using the IPU requires the deployment of a single IP on the
PGA that has to be configured at runtime.

The main motivation behind the development of the IPU was the
eed to process the images taken from a camera at the same rate at
hich they are captured. In most cases, this rate is around 30 frames
er second (fps), corresponding to a period of 33.3 ms.

While the inference of most deep neural networks accelerated on
 DPU can normally be performed within this period (5.5 ms for the
OLOX-Nano, 8.9 ms for the YOLOv3), there are other pre-processing
perations (e.g., image resizing and normalization) and post-processing
omputations (e.g., bounding box coordinate decoding) that are typi-

cally not implemented in the accelerated models available in the AMD
ilinx Model Zoo (AMD Xilinx, 2023c).

If such computations are executed by software on the processing
ystem of the platform, they introduce a bottleneck in the overall
ipeline that leads to exceed the 33.3 ms bound by a significant extent.
or instance, extensive experiments carried out in this work on an AMD
ilinx Kria KR260 UltraScale+ platform, shown that accelerating a
OLOX network by a DPU and executing all the pre-and post-processing
perations on the Cortex-A53 quad-core processor requires an average
xecution time of 73 ms. Vice versa, when accelerating the same oper-
tions on the proposed IPU, the average time for executing the overall
etection pipeline reduces to 13.6 ms, which allows increasing the
rame rate of the camera up to 60 fps, thus enabling the development
f more reactive systems that can respond to incoming events with a
ower latency.

1.2. Paper structure

The rest of the paper is organized as follows: Section 2 discusses the
related work; Section 3 introduces object detection strategies; Section 4
presents the architecture of the proposed IPU accelerator; Section 5
reports some experimental results aimed at showing the advantages of
the proposed approach; and Section 6 states the conclusions and future

ork.

2. State of the art

Hardware acceleration on embedded systems went through remark-
able advancements driven by the growing demand for machine learning
nd deep learning capabilities in resource-constrained environments.

It plays a crucial role in enhancing the performance of embedded
platforms and nowadays there are several mature solutions, as Graphics
Processing Units (GPUs), Tensor Processing Units (TPUs), and Field Pro-
grammable Gate Arrays (FPGAs), which can be used for this purpose.
Historically, GPUs were the first effective devices able to support the
execution of machine learning by exploiting their parallel nature. As an
example, AlexNet (Krizhevsky, 2014) was one of the first deep neural
networks accelerated by GPUs during both training and inference.

However, GPUs present a number of issues when used in embedded
systems. One of the major problems is their relatively high energy
 o

2
consumption, which is particularly relevant in battery-powered devices,
like flying drones or small autonomous robots. This is caused by the
high number of processing engines and because these devices were
not originally developed for DNN inference tasks, so their structure
is not optimized for that specific computation. Recent research has
highlighted the growing importance of power-efficient systems for em-
bedded devices using hardware accelerators, particularly in resource-
constrained environments such as IoT and edge devices. Studies com-
paring FPGA-based systems with other accelerators, such as GPUs and
TPUs, have shown that while GPUs offer significant computational
power, their energy consumption remains a major concern in em-
bedded and battery-powered systems. Conversely, TPUs and FPGAs
have demonstrated more favorable energy efficiency, especially for
tasks requiring high parallelism and real-time performance (Smith and
Lee, 2024; Rodriguez and Martinez, 2024; Jones and Nguyen, 2024).

nother trend to improve the energy consumption is to design machine
earning models to optimize efficiency, as reported in the study of Zhou

et al. (2020a). For instance, lightweight models, like the MobileNet
family (Howard et al., 2017; Sandler et al., 2018; Howard et al., 2019;
Zhou et al., 2020b), SqueezeNet (Iandola et al., 2016), EfficentNet (Tan
and Le, 2020), and ShuffleNet (Zhang et al., 2018) rely on special layers
imed at reducing the number of operations and memory requirements
o make them suitable for executing on resource constraint devices.

Another problem of GPUs is their high response time variability,
caused by the concurrent accesses to shared devices existing on such
architectures, as buses, memory controllers, and high-level caches,
which create significant interference on the computations, introducing
long and variable delays in application tasks (Buttazzo, 2022). For
instance, Cavicchioli et al. (2017) observed significant and variable
delays when using GPU acceleration on heterogeneous embedded plat-
orms due to the contention occurring on shared memory, especially

for memory-intensive GPU tasks.
Finally, GPUs are closed systems that schedule tasks in a non-

reemptive fashion. This means that, if the system includes multiple
eural networks with different complexity and periodicity require-
ents, those with shorter periods will be more likely to experience

onger delays and higher response time variability. To solve this prob-
em, Capodieci et al. (2018), in collaboration with NVIDIA, proposed
o modify the GPU internal scheduler with a preemptive scheduler
ased on Earliest Deadline First (EDF) (Liu and Layland, 1973), also

providing bandwidth isolation by means of a Constant Bandwidth
Server (CBS) (Abeni and Buttazzo, 2004). Unfortunately, however, this
solution is not yet available on commercial NVIDIA GPU platforms.

Another approach to accelerate neural models is to use tensor
processing units (TPUs) (Google, 2023), which are application specific
integrated circuits (ASICs) specifically designed to accelerate opera-
tions, like convolutions and vector multiplications, which are common
to deep neural networks. A detailed analysis of TPU performance for
different neural network models was presented by Seshadri et al. (2022)
and Asyraaf Jainuddin et al. (2020).

A third way to accelerate machine learning models is by exploiting
rogrammable logic circuits in FPGA devices. These devices offer an
nteresting trade-off between energy efficiency and flexibility with
espect to GPUs (Qasaimeh et al., 2019), and lower construction and

development costs with respect to ASICs. Additionally, the improve-
ments made to software development tools, like high-level synthesis
(HLS) compilers (Nane et al., 2016; Ye et al., 2022) and frameworks like
ls4ml (Fahim et al., 2021), Catapult (Siemens, 2023), Vitis HLS (AMD
ilinx, 2023e) from AMD, and Quartus prime HLS (Altera, 2023) from

ntel, allowed a wide range of developers to deploy their solutions into
FPGA-based platforms. Another high-level software interface for FPGA
programming is the OpenCL standard (Stone et al., 2010).

To implement a neural network on FPGA, two approaches can
e adopted: (i) encoding the entire network (including the model
arameters) into the programmable logic and executing it on the FPGA;
r (ii) executing tensor operations on a general-purpose co-processor

E. Cittadini et al.

i

r

i

c
m
n

t

m

c

a
p

w

n
a

p
a
T

o
i
t
i
f
r

t
i
p

s

e

d
o
m

a
p
(
w

1
a
h
c
w

Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159
implemented as a softcore on the FPGA. Both approaches have pros
and cons.

Using hardware description languages or high-level synthesis tools,
t is possible to encode entire neural networks in programmable logic,

achieving very performant task-oriented accelerators (Gunay et al.,
2022; Pestana et al., 2021; Ma et al., 2018). This approach, however,
equires a much larger amount of FPGA resources, which become the

major bottleneck when implementing large deep neural models. This
solution is also less flexible, since a slight change in the model param-
eters requires reprogramming the accelerator. Furthermore, this type
of approach requires input and output data to have specific encoding,
which often requires the execution of operations that can significantly
mpact run-time performance.

The solution relying on a softcore co-processor is less performant
ompared with network-specific accelerators, but far more flexible and
ore resource efficient, since it can perform the inference of multiple
eural networks, whose parameters can be stored in RAM. To use this

approach, neural networks need to be previously adapted using quan-
ization methods (Gholami et al., 2022) and parameter pruning (Cheng

et al., 2023) to make them compatible with the FPGA hardware.
There are several implementations of co-processors for accelerating

generic CNNs, like the ones reported by Gholami et al. (2022). The
ost significant example of a general-purpose co-processor on FPGA

is the AMD Xilinx Deep-learning Processor Unit (DPU) (AMD Xilinx,
2023b), but there are other custom implementations described in the
literature (Liu et al., 2017; Chakradhar et al., 2010).

A significant limitation of the solutions based on general-purpose
o-processors is that only layers common to standard CNNs are ac-

celerated, leaving other operations to the CPU. For instance, all the
pre-processing activities, as input rescaling, color depth quantization,
nd normalization are left to the application, as well as other post-
rocessing tasks, such as the softmax layer and the bounding box con-

struction needed in object detection networks. Some of these processing
activities are computationally expensive and can become a bottleneck

hen implementing a full perception task in an embedded system.
Additionally, several hardware accelerators are not open-source tech-
ologies, and consequently they cannot be modified to accommodate
pplication-specific requirements.

To fill this gap, this work advances the state of the art by proposing
a special-purpose accelerator able to perform image pre-processing
and post-processing tasks that are typical in object detection, including
the softmax activation function used for classification. The proposed
unit can be paired with a CNN co-processor to accelerate a complete
ipeline of a vision task or can be paired with a network-specific
ccelerator to offload some operations and save space on the FPGA.
he proposed device was developed to provide an extension of the set

of operations that can be accelerated, without focusing on a specific
neural network or application, but providing an interface suitable for
detection and classification networks.

3. Background

3.1. Convolutional neural networks in object detection

Convolutional neural networks (CNNs) drastically changed the field
f computer vision, particularly in tasks such as object detection and
mage classification. CNNs are specialized neural networks designed
o recognize visual patterns directly from an image. They consist of
nterconnected sequential layers, including convolutional layers for
eature extraction, pooling layers for downsampling and dimensional
eduction, and fully connected layers for classification and regression

tasks. The success of CNNs in object detection lies in their ability
o automatically learn relevant patterns and shapes from images and
ntegrate them into higher level features. This feature extraction ca-
ability is crucial for object detection, where the network needs to
3
identify objects by their distinguishing features regardless of their po-
sition, scale, or orientation. Object detection requires solving two main
ubtasks: object localization, which involves identifying the precise

position of objects through bounding box coordinates, and classifi-
cation, where the detected objects are categorized into predefined
classes or categories. CNNs significantly contributed to advance object
detection techniques through various architectures specifically tailored
for this task. Traditional methods relied on handcrafted features and
sliding window techniques, which were computationally expensive and
lacked robustness. Modern architectures, such as Faster R-CNN (Ren
et al., 2017), SSD (Ma et al., 2018), and YOLO (Redmon and Farhadi,
2018; Ge et al., 2021), have significantly improved detection accuracy,
efficiency, and speed. Such CNN-based object detectors often leverage
pre-trained networks, as VGG (Liu and Deng, 2015), ResNet (He et al.,
2015), MobileNet (Howard et al., 2019), or Darknet (Redmon and
Farhadi, 2018), as feature extractors, allowing the detection models
to learn rich representations from large-scale image datasets. More
recently, the development of anchor-based and anchor-free detection
architectures has further improved the performance of object detection
in image processing.

3.2. Anchor-based and anchor-free object detection

Object detection involves two main approaches: anchor-based and
anchor-free methodologies. Anchor-based detectors, such as Faster R-
CNN (Ren et al., 2017), rely on predefined box shapes (anchors) to
predict object bounding boxes. Such anchors act as reference points
across the image, aiding object localization based on predefined scales
and aspect ratios. Vice versa, anchor-free detectors, like YOLOX (Ge
t al., 2021) and FCOS (Tian et al., 2019), remove the use of anchors di-

rectly predicting bounding box coordinates and objectness scores from
key points. This method is simpler, more flexible and often achieves
competitive performance with reduced computational complexity. For
these reasons, most modern real-time embedded applications adopt
anchor-free detection models to contain computational complexity and
meet real-time constraints, while also reducing the overall energy
consumption.

3.3. YOLOX

This section describes the YOLOX neural network used in the object
etection pipeline. YOLOX is a new efficient and accurate version
f the YOLO neural network family. In particular, the YOLOX nano
odel provided by AMD Xilinx was used for all the experiments. Its

architecture is illustrated in Fig. 1.
YOLOX is an evolution of the YOLOv3 architecture (Redmon and

Farhadi, 2018), where the anchor-based detection mechanism is re-
placed with an anchor-free mechanism, which is more general and can
easily be extended to key-points and 3D object detection, while the
nchor-based approach is limited to bounding box prediction. The first
art of the YOLOX architecture is a DarnkNet-53 convolutional network
backbone), while the second part is based on a Feature Pyramid Net-
ork (FPN) (Lin et al., 2017) (pyramid neck), which extracts features

at different resolutions. Unlike the previous YOLO models, from version
 to version 5, the prediction of classes (Class), objectness (OBJ),
nd bounding boxes (BBox) is performed by decoupled heads. This
elps improve the detection accuracy by reducing conflicts between
lassification and regression tasks. The YOLOX model used in this paper
as trained on the COCO dataset (Lin et al., 2014), containing over

330,000 annotated images divided into 80 object categories. The neural
network requires input images of size 416 × 416 × 3 (where 3 is
the number of color channels) and produces three output volumes of
shapes 52×52, 26×26, and 13 × 13, and depth 85. Overall, the network
produces an output of 301,665 elements to be post-processed. Fig. 2
shows the organization of each output volume.

E. Cittadini et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159
Fig. 1. Architecture of the YOLOX neural network.
Fig. 2. Organization of an output volume in the YOLOX network.

Each element of an output volume, highlighted by a red square in
Fig. 2, is called a grid cell and is responsible to predict one bounding
box. The bounding box coordinates, represented in green, are not
directly provided by the decoupled heads, but they are expressed using
four values: 𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ. The box center coordinates (𝐶𝑥, 𝐶𝑦), its width
𝐵𝑤, and its height 𝐵ℎ can then be derived by post-processing through
Eqs. (1)–(4), where 𝑆 is the stride and 𝐷𝑥, 𝐷𝑦 denotes the displacement
of the grid cell in the image:

𝐶𝑥 = 𝑆 ∗ (𝐷𝑥 + 𝑡𝑥) (1)
𝐶𝑦 = 𝑆 ∗ (𝐷𝑦 + 𝑡𝑦) (2)

𝐵𝑤 = 𝑆 ∗ 𝑒𝑡𝑤 (3)
𝐵ℎ = 𝑆 ∗ 𝑒𝑡ℎ (4)

The objectness score, represented in orange, is a score in the range
(0,1) that indicates the validity of the bounding box prediction for
the given grid cell. It is obtained by applying the sigmoid function to
the value produced by the corresponding output neuron. The validity
of the box prediction is tested using a threshold value, which is a
hyperparameter of the model. A common threshold value is 0.5. The
class probability scores, represented in yellow, are obtained, like the
objectness, by applying the sigmoid function to every element. Then,
the class of the object inside the box is the one with the highest
score.

To accelerate the YOLOX, the network inference is processed by the
AMD Xilinx DPU, while all the post-processing computations required
to decode the outputs produced by the network are accelerated via the
proposed IPU, because the required operations are not included in the
DPU instruction set. The proposed configuration allows for a complete
acceleration of the object detection pipeline, improving both inference
time and throughput.
4
4. System architecture

The processing pipeline for the inference of a generic single-stage
neural network for object detection can be divided into three main
phases, as shown in Fig. 3.

In the pre-processing phase, the input frame is elaborated to match
the input specifications of the convolutional network used for feature
extraction. Often, this phase consists of resizing the image and normal-
izing the pixel values. The second phase is the core of the algorithm
performing the inference, where all the network layers are evaluated
to produce the output. The computations involved in this phase are
usually accelerated, due to the large amount of parallel multiply and
accumulate operations that can efficiently be executed on a dedicated
hardware.

In the last post-processing phase, the output of the neural network
is further elaborated, typically using CPUs, to produce the final result.
In particular, in single-stage detection networks, the input image is
divided into smaller regions (grids), where each region can detect an
objects whose coordinates are relative to the grid. As a result, the
confidence scores produced by the network, for each grid and for each
object category, are encoded into an output volume, which must be
elaborated by several complex math operations to obtain meaningful
data. Furthermore, each object may be detected in different grids and
with different confidence score. In this case, a Non-Maximum Suppres-
sion algorithm (Hosang et al., 2017) is used to prune the redundant
boxes and select the one with the highest confidence score.

Unfortunately, such pre-processing and post-processing phases are
computationally intensive operations that, if executed on CPUs, may
vanish the advantages of accelerating the model inference. This issue is
even more crucial when the target computing platform is an embedded
board or an IoT device with a power-oriented processing system.

Cittadini et al. (2023) reported a set of experiments on an AMD
Xilinx ZCU104 UltraScale+ MPSoC development board that clearly
highlight the negative impact of the pre-processing and post-processing
phases in object detection tasks. The maximum execution time reported
for the two non-accelerated phases resulted to be almost four times
larger than the time required for accelerating the CNN inference.

The solution presented in this paper allows removing such a perfor-
mance gap by accelerating the whole processing pipeline illustrated in
Fig. 3 on the FPGA of a heterogeneous platform. To contain the number
of read and write operations, the proposed solution uses a chain of
pointers on shared memory locations that significantly reduces commu-
nication delays and latency. Fig. 4 shows the memory mapping of data
in DDR memory and the interactions between different components.

4.1. Image processing unit

The solution proposed in this paper is implemented as an Image
Processing Unit (IPU) acting as a specific hardware accelerator used
to speedup both the pre-processing operations (such as image resizing

E. Cittadini et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159
Fig. 3. Processing pipeline of a neural network for object detection.
Fig. 4. Proposed acceleration flow.
and normalization) and post-processing algorithms (such as bounding
box decoding and Softmax), which are typically not carried out by the
accelerated networks available in the AMD Xilinx Model Zoo (AMD
Xilinx, 2023c). The purpose of such a design choice is to reduce
the workload on the processing system by offloading the pre- and
post-processing operations to the IPU, thus achieving a more balanced
utilization of resources, reaching higher frame rates as well as more
predictable response times suitable for real-time vision applications.

The proposed IPU consists of three units:

• A pre-processing unit to accelerate the pre-processing activities
typically required in image processing tasks (implemented in
HLS);

• A post-processing unit to accelerate the activities typically re-
quired in object detection tasks (implemented in HLS);

• A control unit to coordinate and configure the previous units by
interacting with the Programmable System through an AXI slave
port (implemented in HDL).

A block diagram of the IPU is illustrated Fig. 5. Note that, to
improve efficiency, all IPU units operate on shared memory buffers to
avoid expensive memory copies.

Each accelerated function is triggered by the software application
by writing a specific register in the control unit. The completion of the
accelerated task can be notified either by polling or by interrupt.

4.1.1. Pre-processing unit
The pre-processing unit implements a large subset of the OpenCV1

library. In particular, the core is capable of taking an RGB or grayscale
image and resizing it to an arbitrary dimension. Although the OpenCV
resize function allows choosing among different scaling algorithms,
the bilinear interpolator was implemented, being the best compromise
between speed and quality. The image shape presented to the neural
model must be the same as the one used during training. To provide

1 OpenCV library: https://opencv.org/.
5
Fig. 5. Architecture of the image processing unit.

higher flexibility, the interpolator was designed to provide two scaling
methods: one that preserves the aspect ratio and one that stretches the
original image. The user can also specify a padding value to match
the input specifications through a dedicated register of the control
unit. When specified, pad filling and image resizing are simultaneously
executed in hardware.

To achieve a flexible pixel quantization, a dedicated input scale
factor can be specified to reduce the range of the pixel values. Such
a scale factor value is model-specific and must be provided by the user
in a dedicated register. Its default value is 1, meaning no input scaling.

4.1.2. Post-processing unit
The post-processing unit accelerates the final processing phase of

single-stage detectors. In particular, the unit accelerates the compu-
tation of the four bounding box coordinates, the objectness, and the
scores for each class. Such operations require the implementation of the
sigmoid and exponential functions inside the post-processing unit. This
unit can be configured by the application using a set of registers in the

https://opencv.org/

E. Cittadini et al.

s
t
p

o

r

i
v
h

s

u
w

t
u
b
i
s

p
s
t
l

u
i
r
a
d
r
a
p

(
L
t
m
i
l
c
m
L

c

m
i
p
a

Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159
control unit. Such a device converts integers to floating point values
using a dedicated register in the control unit that stores the output
scale.

This unit also implements the softmax layer to normalize the clas-
ification scores. It is worth noting that, for applications using mul-
iple neural networks, accelerating the softmax function on the post-
rocessing unity allows for a higher degree of parallelism that could

not otherwise be exploited using the softmax implemented in the DPU.
In fact, the DPU cannot accelerate convolutional layers in parallel with
the softmax execution. Thus, moving the latter on a different hardware
allows parallelizing the two operations and increasing the throughput
f the system.

For object detection tasks, the computation is more complex and
equires specifying the following parameters in the corresponding reg-

isters:

1. Image size, specifying the side of a square image;
2. Stride for the output volume, used, paired with the image size,

to obtain the dimension of a grid cell;
3. Pointer to the input memory buffer;
4. Pointer to the memory location where the result will be written;

5. Number of classes to be detected by the model.

It is worth noting that for classification tasks the output of the CNN
is a single array, whereas for object detection tasks, the accelerator
must be invoked multiple times and each output volume must have a
reserved memory region to write the computation result matching the
dimension of the volume specified in the registers. Allocating such a
memory, however, is not in charge of the IPU, but is handled by the
device driver, which is described in Section 4.2.

The very last processing stage for a detection task, the Non Max-
mum Suppression, is still executed on the processors because it in-
olves array sorting, which would achieve a negligible benefit from a
ardware acceleration.

4.1.3. Control unit
The control unit provides a set of general registers, which can be

et by the application to configure the other two units, and two control
registers for setting the operational mode (polling or interrupt) for each
device. Overall, it provides the following registers:

1. Mode register 1: it specifies the operational mode (polling or
interrupt) for the pre-processing unit;

2. Mode register 2: it specifies the operational mode (polling or
interrupt) for the post-processing unit;

3. Input width register: it specifies the width of the input image;
4. Input height register: it specifies the height of the input image;
5. Output width register: it specifies the width of the output image;

6. Output height register: it specifies the height of the output
image;

7. Padding register: it specifies the padding value;
8. Input scale register: it specifies the input scale factor;
9. Input address register: it is a pair of 32-bit registers used to

obtain a 64-bit value representing the pointer to the input buffer
in memory;

10. Output address register: it is a pair of 32-bit registers used to
obtain a 64-bit value representing the pointer to the location
where the result will be written in memory.

4.2. Software support

This section provides an overview of the possible software solutions
sed to support the IPU in different embedded platforms. From a soft-
are perspective, embedded systems can be divided into three groups:
6
(i) platforms directly running the bare metal application, (ii) platforms
hat use a real-time operating system (RTOS), and (iii) platforms that
se a complex operating system, like Linux. Among high-end FPGA-
ased heterogeneous platforms, accelerators are integrated as devices
n Linux, and their functions are accessed as services via drivers and
ystem calls.

A common problem of accelerators used in systems employing
artificial intelligence is that they typically work with large amounts
of data that must be contiguous in RAM to allow the use of read and
write bursts, which improve the overall system performance. The pre-
processing and post-processing units of the proposed device access the
data through two 64-bit registers (represented using a pair of 32-bit
registers). The content of these registers represents an address that,
aired with an offset value, identifies a memory location to fetch or
tore the data. Note that, if only a single 32-bit register were used, then
he mapping of accelerators and peripherals would be limited to the
owest 4 GB of RAM.

One problem when interfacing with memory-mapped devices is the
se of the cache. In fact, cache coherency must be avoided, since
t can lead to inconsistent data reads or writes producing undefined
esults. Memory-mapped peripherals are not aware of memory hier-
rchy, hence, if some data are cached in the address range of the
evice and the device reads them before a cache write back, it will
ead inconsistent data. However, invalidating the data cache for every
cceleration request can have a significant impact on the overall system
erformance.

To support the use of the IPU across various embedded settings
i.e., bare-metal applications, RTOS-supported systems, or higher-level
inux-based applications) the IPU driver has been designed with mul-
iple levels of hardware abstraction. Specifically, for RTOS and bare-
etal environments, the driver can directly access memory using phys-

cal addresses, effectively avoiding caching issues. This is achieved by
everaging dedicated CPU instructions to bypass the cache for spe-
ific ranges of memory addresses, particularly for the memory seg-
ents where the accelerators are mapped. When integrating the IPU in

inux, the driver structure becomes more complex. Fig. 6 illustrates a
block diagram describing the interactions between the operating system
omponents, the user application, and the physical hardware device.

Unlike the previous cases, Linux does not allow complete access
to all the platform resources from user space, hence reserving the

emory that the accelerators need for the I/O buffers requires the
mplementation of a kernel module. Because of virtual memory and
aging, the RAM, from the application perspective, is no longer a flat
nd homogeneous address space and it is handled by the operating

system through the memory management unit (MMU). Also, Linux uses
a privileged system that isolates the kernel space from the user space,
which requires additional operations to provide an interface to access
the kernel memory space and a direct interface for the user space
applications using the acceleration device. The Contiguous Memory
Allocator (CMA), reported in Fig. 6, is a Linux kernel component that
handles the allocation and mapping of contiguous memory buffers re-
quired by device drivers and memory mapped peripherals. The memory
area on which it operates must be known at boot time, so it requires
rebuilding the kernel, specifying the amount of memory that must be
reserved. When the user application calls the configure service, the
device driver first sets the registers to specify the size of the input and
output image, then it allocates the contiguous memory buffer using the
CMA, and finally maps both buffers and registers in the user space.
Mapping buffers directly to the user space is crucial to significantly
improve performance. In fact, the solution of passing data from user
to kernel space and vice versa requires multiple buffers copies, which
is highly inefficient because it requires twice the memory and scales
poorly, as the data transfer times increase due to the copy operation.
It also increases the memory traffic, which causes a higher interference
on the system.

E. Cittadini et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159
Fig. 6. Architecture of the Linux kernel module.
5. Experiments

This section presents a set of experiments aimed at showing the
advantages of the proposed Image Processing Unit (IPU) in reducing
the overall computation times of the complete detection pipeline, using
an AMD Xilinx Kria KR260 UltraScale+ MPSoC as a reference plat-
form. First, we report a set of measurements carried out to show the
performance improvement obtained by the accelerated pre-processing
and post-processing units with respect to the corresponding software
routines. Then, we present the results obtained on a fully accelerated
pipeline performing an object-detection task with the YOLOX (Ge et al.,
2021) single-stage anchor-free detector to highlight the advantages of
the proposed approach in a real application scenario. Note that no
evaluation is reported on the accuracy of the neural model, since the
proposed solution uses a pretrained and accelerated network avail-
able in the AMD Xilinx Model Zoo (AMD Xilinx, 2023c) without any
modification.

It is worth noting that the IPU is not influenced by the complexity of
the neural network models themselves. Instead, it focuses on accelerat-
ing the pre- and post-processing tasks; hence, the only factors that affect
its computation times are (i) the dimensions of the raw image generated
by the camera that becomes the input of the pre-processing unit, (ii) the
size of the rescaled image produced by the pre-processing unit, (iii) the
number of classes involved in the post-processing computation, and (iv)
the number of output levels to be processed after the CNN accelerator
to obtain the coordinates of the bounding boxes. In all the experiments,
the input frames were acquired using a Logitech C920 USB camera
that can be configured to grab images with a variable resolution from
320 × 240 to 1280 × 720.

5.1. Hardware setup

The experimental setup used to carry out the performance tests on
an AMD Xilinx UltraScale+ MPSoC is shown in Fig. 7. The board is
an AMD Xilinx Kria KR260 and the CNN inference was accelerated
by an AMD Xilinx DPU (AMD Xilinx, 2023b) (DPUCZDX8G version
4.1.), through the Vitis-AI (AMD Xilinx, 2023d) software stack version
2.5. The DPU was instantiated as a single-core version. The image
pre-processing and post-processing tasks were accelerated by the IPU,
instantiated with the most flexible configuration. The optional softmax
core was excluded from the DPU, since it has been implemented in the
IPU post-processing unit to allow for a higher degree of parallelism in
the presence of multiple neural networks. In fact, when a DPU core is
processing the softmax, it cannot accelerate other CNN operations. On
the contrary, moving the softmax computation from the DPU to the IPU
7
allows parallelizing the softmax of a CNN and the inference of another
model on the two acceleration devices.

Both the DPU and the IPU have an AXI slave connection with
the Programmable System (PS), used for device configuration. Such
connections use a low-performance port, referred to as 𝑆𝑐 𝑜𝑛𝑓 𝑖𝑔 in Fig. 7,
because configuration operations do not require high-bandwidth chan-
nels. The same also applies for the master instructions port (𝑀𝑖𝑛𝑠𝑡𝑟) of
the DPU. Vice versa, the two master data ports of the DPU (𝑀𝑑 𝑎𝑡𝑎) and
the four master ports of the IPU (𝑀𝑟𝑝𝑟𝑒, 𝑀𝑟𝑝𝑜𝑠𝑡, 𝑀𝑤𝑝𝑟𝑒, and 𝑀𝑤𝑝𝑜𝑠𝑡) are
high-performance ports to ensure the maximum possible throughput.

This setup has been used to test each hardware acceleration unit
(pre-processing, inference, and post-processing) and the fully-
accelerated processing pipeline for object detection tasks. Table 1
reports, for each accelerated unit, the utilization of the different FPGA
resources, expressed both as the total number of resources and relative
percentage. It is worth observing that, since the resource utilization
changes depending on the number of iterations, the results reported
in Table 1 are obtained by setting the maximum number of iterations
required to process the data. This is done by setting the loop trip-
count parameter in the HLS tool to the maximum value required by
the application, thus obtaining the maximum resource utilization of the
devices.

Managing the DPU requires the Linux operating system because the
driver is only distributed inside the Petalinux software tool and is not
released as open-source code. Hence, the Vitis-AI (AMD Xilinx, 2023d)
framework is compiled for Linux. The setup adopted for the IPU allows
processing input images up to 1280 × 720 pixels, producing output
images up to 640 × 480 pixels.

The DPU DSP clock has been set to 630 MHz, close to the maximum
frequency specified in the product guide (AMD Xilinx, 2023a), whereas
the implemented IPU instance can support a clock frequency up to 245
MHz, derived by the Vitis HLS analyzer.

For the reported experiments, the interrupt-based approach was
used by the IPU units to notify the processor of a job termination. In
particular, the ARM v8 is notified by an interrupt generated by each ac-
celerator (the IPU units or the DPU) every time a hardware-accelerated
portion of the inference pipeline is completed.

Note that, since time measurements in Linux can be altered by task
preemption, context switches, and kernel activities, all computation
times of the accelerated tasks were measured through a performance
counter IP , also implemented on the FPGA. Such a device is connected
to 1 MHz clock to measure time with 1 ms resolution, starting with the
corresponding start bit in the control register of the control unit, and
stopping with the interrupt arrival at job termination. The aim of this
device, which is only present in the experimental setup, is to provide

E. Cittadini et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159
Fig. 7. Overview of the experimental platform.
Table 1
Total number of FPGA resources (and relative percentage) used to instantiate each device on a Kria KR260 UltraScale+ board
to implement the full hardware accelerated object detection pipeline.
Device LUT FF BRAM DSP

Pre-processing unit 15 428 (13.17%) 13 165 (5.62%) 26.5 (18.4%) 55 (4.41%)
DPU 51 639 (44.09%) 99 714 (42.57%) 105 (72.9%) 710 (56.89%)
Post-processing unit 11 951 (10.20%) 13 147 (5.61%) 1 (0.7%) 56 (4.49%)
accurate measures for acceleration times regardless of the platform in
which the IPU is operating. Computation times of the corresponding
software application were measured using the high precision timer
available in the ARM v8 through the Linux API. In order to reduce
interference on the monitored task the program was executed under
the SCHED_FIFO scheduling policy with a priority level set to 99, which
corresponds to the highest value in Linux.

5.2. Pre-processing unit

This subsection reports the results of an experiment aimed at show-
ing the execution times of the IPU pre-processing unit with respect to
its software counterpart. The image pre-processing task performs the
sequence of operations described in Section 4.1 on the images captured
by the camera to match the DPU input requirements.

Table 2 reports the minimum, average, and maximum execution
times of the pre-processing task executed both in software and ac-
celerated by the IPU. These measurements have been obtained over
10,000 frames acquired from the camera, for each considered input–
output resolution. In particular, with respect to the software execution,
the IPU achieved a speedup ranging from 4× to 32× on the average
execution time, depending on the input–output resolution. Note that,
while the execution times of the hardware task are strictly related to
the input and output resolutions, the times resulting from the software
task are not monotonically related to the image sizes, probably due to
the optimizations performed by the compiler as a function of the array
sizes.

Fig. 8 illustrates the two execution times distributions obtained with
an input image resolution of 640 × 480 pixels and an output size of
416 × 416. The distributions achieved with the other resolutions are
8
reported in Appendix. In order to better appreciate the distribution
of the tasks in Fig. 8, a few outliers have been left out from the
plots.

As clear from the graphs, the proposed solution not only reduces the
execution time of the task, but also reduces its variability over multiple
executions, making the application more predictable. Table 3 reports
the standard deviations on the execution times of the pre-processing
task executed in software and accelerated by the IPU for different
input/output image resolutions. Notice that the standard deviation
reduces from a maximum of 120 ms (in software) to a maximum of
11 ms (with the IPU).

5.3. Post-processing unit

As done for the pre-processing task, this subsection compares the
performance of the post-processing task when accelerated by the IPU,
with respect to the corresponding software implementation. Since the
shapes of the YOLOX output volumes are defined in the model and do
not depend on the input image size, the timing performance of this
task has been tested by varying the number of output classes. In this
experiment, the number of classes has been varied from 10 to 80, which
is the full number of classes in the COCO dataset (Lin et al., 2014), with
a step of 10.

The obtained results are reported in Table 4, from which it can be
seen that the IPU allows achieving a speedup factor on the average
execution times that ranges from 4.5× to 7.2×.

Fig. 9 illustrates the two execution times distributions obtained with
80 classes. The distributions achieved with the other number of classes
are reported in Appendix. To better appreciate the distribution of the
tasks in Fig. 9, a few outliers have been left out from the plots.

E. Cittadini et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159
Table 2
Execution times obtained on the pre-processing task executed in software and accelerated by the IPU for different input/output image resolutions.
Input resolution Output resolution Software task Hardware accelerated task

Min (ms) Avg (ms) Max (ms) Min (μs) Avg (μs) Max (μs)
1280 × 720 416 × 416 9.637 9.733 11.167 1049.701 1049.975 1199.630
1280 × 720 250 × 250 3.596 3.724 7.846 1023.290 1023.539 1166.149
640 × 480 416 × 416 6.502 6.733 10.068 377.497 378.902 528.216
640 × 480 250 × 250 4.211 4.256 5.100 363.017 364.370 508.686
320 × 240 416 × 416 5.166 5.266 6.942 180.398 180.736 521.945
320 × 240 250 × 250 3.309 3.362 4.144 105.699 105.864 179.278
Fig. 8. Image pre-processing execution times distributions for the software (a) and hardware solution (b), with input images of 640 × 480 pixels and output images of 416 × 416.
Fig. 9. Post-processing execution times distributions for the software (a) and hardware solution (b), with the number of classes defined in COCO (i.e., 80).
Table 3

Standard deviations on the execution times of the pre-processing task executed in
software and accelerated by the IPU for different input/output image resolutions.

Input Output Software task Hardware task
resolution resolution Standard deviation (μs) Standard deviation (μs)
1280 × 720 416 × 416 69.004 2.104
1280 × 720 250 × 250 103.137 1.553
640 × 480 416 × 416 121.006 11.032
640 × 480 250 × 250 30.383 10.355
320 × 240 416 × 416 77.578 4.695
320 × 240 250 × 250 42.279 1.336
9
As clear from the graphs, the IPU not only reduces the execu-
tion time of the task, but also reduces its variability over multiple
executions, making the application more predictable.

Table 5 reports the standard deviations on the execution times of
the post-processing task executed in software and accelerated by the
IPU for different number of classes. Notice that the standard deviation
reduces from a maximum of 81.8 ms (in software) to a maximum of
15.6 ms (with the IPU), depending on the number of classes.

E. Cittadini et al.

s

t
o
s

1

a

s
s
p
s
1
b
e
f
t
p
i

n
a
t
s

F

a
W
b
n
a
i
d
p
t
U

d
s

Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159
Table 4
Comparison of the execution times for the post-processing phase between the classical
software solution and the proposed hardware acceleration for different values of
detected classes.

Number Software task Hardware accelerated task

of classes Min (ms) Avg (ms) Max (ms) Min (ms) Avg (ms) Max (ms)

10 7.428 7.452 8.902 1.638 1.641 1.748
20 14.628 14.642 16.668 2.724 2.728 2.856
30 21.871 21.894 23.627 3.805 3.809 6.854
40 29.069 29.089 32.957 4.872 4.878 6.359
50 36.308 36.331 38.058 5.948 5.954 6.211
60 43.532 43.558 45.268 6.033 6.038 6.386
70 50.762 50.796 54.806 8.114 8.121 9.012
80 57.992 58.022 62.045 9.179 9.185 9.555

Table 5
Standard deviations on the execution times of the post-processing task executed in
oftware and accelerated by the IPU for different number of classes.
Number Software task Hardware task
of classes Standard deviation (μs) Standard deviation (μs)
10 25.819 2.387
20 41.894 2.522
30 35.021 3.747
40 49.848 15.636
50 51.177 5.813
60 51.788 7.711
70 70.872 12.768
80 81.801 7.679

Table 6
Execution times of the complete YOLOX detection pipeline for the two considered
implementations: SW-based, where only the YOLOX is accelerated by the DPU, and
IPU-based, where also the pre-processing and post-processing tasks are accelerated by
the IPU.

Min (ms) Avg (ms) Max (ms)

SW-based 73.285 73.371 82.264
IPU-based 16.575 16.683 19.755

5.4. End-to-end pipeline

To evaluate the performance gain introduced by the IPU on the
overall vision application, this experiment compares the fully accel-
erated pipeline (where the YOLOX model is accelerated by the DPU
and the pre-processing and post-processing tasks are accelerated by
the IPU) against the typical case in which only the network model is
accelerated by the DPU and the other tasks are executed in software.
The last system implementation comes from the fact that the YOLOX
model is optimized by the Vitis-AI compiler for the AMD Xilinx DPU,
producing a binary output which does not allow us to replicate the same
computation flow via software.

In this setting, the system takes images from a camera, and since the
YOLOX model takes input images with a resolution of 416 × 416 pixels,
he camera resolution was set to 640 × 480 pixels, which is the closest
ne among those available from the camera. The output volumes are
ized to detect all the 80 classes available in the COCO dataset.

The obtained results are summarized in Table 6, which reports the
minimum, maximum, and average execution times of both solutions,
achieved over 10,000 repetitions. It is worth noting that the proposed
IPU allows processing the input stream with an average rate of 59.94
fps, against an average rate of 13.63 fps without the IPU.

The execution time distributions of the two implementations are
illustrated in Fig. 10. As clear from the graphs, the IPU is beneficial
not only for reducing the execution time of the vision task, but also
its variability. In particular, the standard deviations resulted to be of
72.537 ms for the software-based solution and only 41.847 ms for the

IPU-based solution.
10
5.5. Power consumption

A last set of experiments was carried out to evaluate the power
consumption of the pre-processing and post-processing tasks executed
by the IPU with respect to the corresponding software implementations.
In particular, Table 7 reports the average power consumption of the
platform in a fixed interval of time equal to 800 s, in which the pre-
processing and post-processing tasks were executed via software or
ccelerated by the IPU.

In a first experiment, in order to have the same number of mea-
urements in the same time interval, both tasks were activated with the
ame period (𝑇𝑆 𝑊 = 𝑇𝐼 𝑃 𝑈) equal to 80 ms, equivalent to the minimum
eriod that can be reached by the software implementation. In this
etting, both tasks perform the same number of cycles (𝑁𝑆 𝑊 = 𝑁𝐼 𝑃 𝑈 =
0,000) in 800 s. The obtained results show that the process accelerated
y the IPU is slightly more power-demanding with respect to the one
xecuted in software. In fact, the average power consumption measured
or the software task (𝑃𝑆 𝑊) resulted in 12.116 W, while the one related
o the IPU (𝑃𝐼 𝑃 𝑈) resulted in 12.292 W, with a little increment in
ower consumption (𝛥𝑃 = 0.176 W), corresponding to 1.452 percent
ncrement with respect to the software case.

In a second experiment, each task was reactivated to process a
ew image as soon as the previous computation was completed and
 newly acquired frame was available from the camera. In this case,
he software task was able to run with a period 𝑇𝑆 𝑊 = 73.9 ms, slightly
horter than before, executing for 𝑁𝑆 𝑊 = 10,814 cycles in the overall

test interval, whereas the hardware task was able to run with a period
𝑇𝐼 𝑃 𝑈 = 16.75 ms for 𝑁𝐼 𝑃 𝑈 = 47,761 cycles in the same interval,
corresponding to a speedup of 4.42×. In this setting, the software task
consumed an average power 𝑃𝑆 𝑊 = 12.326 W, while the one using
the IPU consumed 𝑃𝐼 𝑃 𝑈 = 12.523 W, with a little increment in power
consumption equal to 𝛥𝑃 = 0.197 W, corresponding to 1.598 percent
increment with respect to the software case.

6. Conclusions

This paper presented an Image Processing Unit (IPU) for the hard-
ware acceleration of typical pre-processing and post-processing func-
tions that must be performed when using deep neural networks in
vision tasks, as image classification, scene segmentation, object detec-
tion, and tracking. The proposed accelerator has been implemented on
PGA as a general programmable special-purpose accelerator that can

work in conjunction with other accelerators normally used to speedup
the inference of convolution neural networks.

The problem addressed in this work specifically focuses on the bot-
tlenecks created by pre-processing and post-processing functions, which
re often neglected in common FPGA accelerated neural networks.
hen these functions are implemented in software and are executed

y CPUs, the execution time of the overall vision pipeline increases sig-
ificantly, vanishing the advantage of having an accelerated inference
nd limiting the achievable frame rates substantially. The proposed IPU
s able to remove such bottlenecks by fully offloading these tasks to
edicated special-purpose accelerators. To show the advantages of the
roposed solution, a set of experiments have been carried out testing
he IPU in combination with the AMD Xilinx Deep Learning Processor
nit (DPU) (AMD Xilinx, 2023b) for accelerating the full processing

pipeline of a YOLOX object detector. The results of the experiments
clearly showed that the proposed accelerator is crucial to achieve a real-
time performance in embedded systems and IoT devices that integrate
eep learning components and have to perform perception tasks within
tringent timing constraints.

In particular, extensive tests performed on an AMD Xilinx Ul-
traScale+ MPSoC executing the latest version of the YOLOX single-
stage anchor-free detector showed that the use of the IPU allowed
increasing the frame rate of the object detection pipeline from about

E. Cittadini et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159
Fig. 10. YOLOX end-to-end execution times distributions for the software (a) and hardware solution (b).
Table 7
Average power consumption of the platform in the end-to-end pipeline executed via software and accelerated by the IPU. In
both cases, the YOLOX is accelerated by the DPU.
𝑇𝑆 𝑊 (ms) 𝑇𝐼 𝑃 𝑈 (ms) 𝑁𝑆 𝑊 𝑁𝐼 𝑃 𝑈 𝑆 𝑝𝑒𝑒𝑑 𝑢𝑝 𝑃𝑆 𝑊 (W) 𝑃𝐼 𝑃 𝑈 (W) 𝛥𝑃 (W) 100 ∗ 𝛥𝑃∕𝑃𝑆 𝑊
80 80 10,000 10,000 1 12.116 12.292 0.176 1.452%
73.9 16.75 10,814 47,761 4.42 12.326 12.523 0.197 1.598%
13 fps (achieved with the standard solution provided by AMD Xil-
inx in which only the YOLOX is accelerated by the DPU) up to
60 fps (achieved by exploiting the IPU to also accelerate the pre-
processing and post-processing tasks). More specifically, compared
to the software-based implementation, the IPU pre-processing unit
achieved a speedup factor ranging from 9.3× (with the highest camera
resolution and the largest pre-processed image size) to 32× (with the
lowest camera resolution and the smallest pre-processed image size).
Concerning the post-processing unit, it reached a speedup between
4.5× (achieved with 80 output classes) and 7.2× (achieved with 10
output classes). These improvements also led to a reduced variability of
the execution times, which is essential for achieving more predictable
response times in real-time applications. For instance, the proposed
solution has been successfully tested on a quadcopter (Cittadini et al.,
2023) to perform a real-time tracking of multiple moving targets
onboard.

Another advantage of the IPU is to offload the CPUs from such heavy
auxiliary computations, leaving them available for other application
activities that can be performed in parallel with the vision tasks.

Concerning power consumption, the experiments reported in Sec-
tion 5.5 showed that the IPU is able to provide the aforementioned
performance boost consuming only 1.5% more power with respect to
the corresponding software implementation, which is crucial for exe-
cuting deep learning models onboard in small cyber–physical systems
or IoT devices.

As a future work, we plan to extend the IPU to support the post-
processing functions of other deep learning models, such as those
used for image segmentation, which requires the assignment of the
class labels at a pixel level, and natural language processing, requiring
the efficient computation of similarity scores, intensively used also
in tasks like object tracking. Finally, we would also like to optimize
the IPU architecture to further reduce power consumption without
compromising performance, further extending the operational lifetime
of battery-powered cyber–physical systems.
11
CRediT authorship contribution statement

Edoardo Cittadini: Writing – original draft, Validation, Software,
Investigation, Conceptualization. Mauro Marinoni: Writing – review
& editing, Supervision. Giorgio Buttazzo: Writing – review & editing,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was partially supported by the Department of Excellence
of Robotics and AI of the Sant’Anna School of Advanced Studies and
by the Italian Ministry of University and Research (MUR) under the
VIRMA project funded by the EU PNRR plan with DM-737/2021.

Appendix. Extra results

This section presents some extra results to better highlight the per-
formance of the proposed hardware acceleration under different condi-
tions. In particular, the graphs reported from Figs. A.11 to A.16 extend
the results presented in Fig. 8 by showing the execution times distribu-
tions of the software and hardware tasks for the different combinations
of input and output image resolutions listed in Table 2.

Similarly, the graphs reported from Figs. A.17 to A.24 extend the
results presented in Fig. 9 by showing the post-processing execution
times distributions for the software and hardware tasks over 10,000
runs, for the different number of output classes reported in Table 4.

E. Cittadini et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159
Fig. A.11. Pre-processing execution times distributions, measured over 10,000 runs, of the software task and hardware task, for a 1280 × 720 input image and a 640 × 480
output image.
Fig. A.12. Pre-processing execution times distributions, measured over 10,000 runs, of the software task and hardware task, for a 1280 × 720 input image and a 250 × 250
output image.
Fig. A.13. Pre-processing execution times distributions, measured over 10,000 runs, of the software task and hardware task, for a 640 × 480 input image and a 416 × 416 output
image.
Fig. A.14. Pre-processing execution times distributions, measured over 10,000 runs, of the software task and hardware task, for a 640 × 480 input image and a 250 × 250 output
image.
12

E. Cittadini et al.

Fig. A.15. Pre-processing execution times distributions, measured over 10,000 runs, of the software task and hardware task, for a 320 × 240 input image and a 416 × 416 output
image.

Fig. A.16. Pre-processing execution times distributions, measured over 10,000 runs, of the software task and hardware task, for a 320 × 240 input image and a 250 × 250 output
image.

Fig. A.17. Post-processing execution times distributions, measured over 10,000 runs, of the software task (left column) and hardware task (right column), for 10 output classes.

Fig. A.18. Post-processing execution times distributions, measured over 10,000 runs, of the software task (left column) and hardware task (right column), for 20 output classes.

Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159

13

E. Cittadini et al.

Fig. A.19. Post-processing execution times distributions, measured over 10,000 runs, of the software task (left column) and hardware task (right column), for 30 output classes.

Fig. A.20. Post-processing execution times distributions, measured over 10,000 runs, of the software task (left column) and hardware task (right column), for 40 output classes.

Fig. A.21. Post-processing execution times distributions, measured over 10,000 runs, of the software task (left column) and hardware task (right column), for 50 output classes.

Fig. A.22. Post-processing execution times distributions, measured over 10,000 runs, of the software task (left column) and hardware task (right column), for 60 output classes.

Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159

14

E. Cittadini et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159
Fig. A.23. Post-processing execution times distributions, measured over 10,000 runs, of the software task (left column) and hardware task (right column), for 70 output classes.
Fig. A.24. Post-processing execution times distributions, measured over 10,000 runs, of the software task (left column) and hardware task (right column), for 80 output classes.
Data availability

The data that has been used is confidential.

References

Abeni, Luca, Buttazzo, Giorgio, 2004. Resource reservation in dynamic real-time
systems. Real-Time Syst. 27 (2), 123–167.

Ahmed, M., Mohanta, J., Sanyal, A., 2022. Inspection and identification of trans-
mission line insulator breakdown based on deep learning using aerial images.
Electr. Power Syst. Res. URL https://www.sciencedirect.com/science/article/pii/
S0378779622004084.

Altera, Intel, 2023. HLS compiler for quartus prime design software. (Accessed
20 September 2023). URL https://www.intel.com/content/www/us/en/software/
programmable/quartus-prime/hls-compiler.html.

AMD Xilinx, 2023a. DPUCZDX8G for zynq UltraScale+ MPSoCs product guide (PG338).
(Accessed 20 September 2023). URL https://docs.xilinx.com/r/en-US/pg338-dpu/
Configuring-Clock-Wizard.

AMD Xilinx, 2023b. DPU - deep learning processing unit for convolutional neural
network. (Accessed 20 September 2023). URL https://www.xilinx.com/products/
intellectual-property/dpu.html.

AMD Xilinx, 2023c. Model zoo. (Accessed 20 September 2023). URL https://github.
com/Xilinx/Vitis-AI/tree/master/model_zoo/model-list.

AMD Xilinx, 2023d. Vitis-AI. (Accessed 20 September 2023). URL https://www.xilinx.
com/products/design-tools/vitis/vitis-ai.html.

AMD Xilinx, 2023e. Vitis HLS. (Accessed 20 September 2023). URL https://www.xilinx.
com/products/design-tools/vitis/vitis-hls.html.

Asyraaf Jainuddin, Ahmad Ammar, Hou, Yew Cheong, Baharuddin, Mohd Zafri,
Yussof, Salman, 2020. Performance analysis of deep neural networks for object
classification with edge TPU. In: 2020 8th International Conference on Information
Technology and Multimedia. ICIMU, pp. 323–328. http://dx.doi.org/10.1109/
ICIMU49871.2020.9243367.

Buttazzo, Giorgio C., 2022. Can we trust AI-powered real-time embedded systems? In:
Bertogna, M., Terraneo, F., Reghenzani, F. (Eds.), Third Workshop on Next
Generation Real-Time Embedded Systems, June 22, 2022, Budapest, Hungary. In:
OASIcs, vol. 98, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 1:1–1:14.
15
Cantero, D., Esnaola-Gonzalez, I., Miguel-Alonso, J., Jauregi, E., 2022. Benchmarking
object detection deep learning models in embedded devices. Sensors 22 (11), 4205.
http://dx.doi.org/10.3390/s22114205.

Capodieci, N., Cavicchioli, R., Bertogna, M., Paramakuru, A., 2018. Deadline-based
scheduling for GPU with preemption support. In: Proc. of the 39th IEEE Real-Time
Systems Symposium. RTSS 2018, Nashville, Tennessee, USA.

Cavicchioli, R., Capodieci, N., Bertogna, M., 2017. Memory interference characterization
between CPU cores and integrated GPUs in mixed-criticality platforms. In: Proc. of
the 22nd IEEE International Conference on Emerging Technologies and Factory
Automation. ETFA 2017, Limassol, Cyprus.

Chakradhar, Srimat, Sankaradas, Murugan, Jakkula, Venkata, Cadambi, Srihari, 2010.
A dynamically configurable coprocessor for convolutional neural networks. In: Pro-
ceedings of the 37th Annual International Symposium on Computer Architecture.
ISCA ’10, pp. 247–257. http://dx.doi.org/10.1145/1815961.1815993.

Cheng, Hongrong, Zhang, Miao, Shi, Javen Qinfeng, 2023. A survey on deep neural
network pruning-taxonomy, comparison, analysis, and recommendations. http://dx.
doi.org/10.48550/arXiv.2308.06767, arXiv:2308.06767.

Cittadini, E., Marinoni, M., Biondi, A., Cicero, G., Buttazzo, G., 2023. Supporting
AI-powered real-time cyber-physical systems on heterogeneous platforms via hyper-
visor technology. Real-Time Syst. http://dx.doi.org/10.1007/s11241-023-09402-
4.

Fahim, Farah, Hawks, Benjamin, Herwig, Christian, Hirschauer, James, Jindari-
ani, Sergo, Tran, Nhan, Carloni, Luca P., Di Guglielmo, Giuseppe, Harris, Philip,
Krupa, Jeffrey, Rankin, Dylan, Valentin, Manuel Blanco, Hester, Josiah, Luo, Yingyi,
Mamish, John, Orgrenci-Memik, Seda, Aarrestad, Thea, Javed, Hamza, Lon-
car, Vladimir, Pierini, Maurizio, Pol, Adrian Alan, Summers, Sioni, Duarte, Javier,
Hauck, Scott, Hsu, Shih-Chieh, Ngadiuba, Jennifer, Liu, Mia, Hoang, Duc,
Kreinar, Edward, Wu, Zhenbin, 2021. Hls4ml: An open-source codesign workflow
to empower scientific low-power machine learning devices. arXiv:2103.05579. URL
https://api.semanticscholar.org/CorpusID:232168344.

Ge, Zheng, Liu, Songtao, Wang, Feng, Li, Zeming, Sun, Jian, 2021. YOLOX: Exceeding
YOLO series in 2021. arXiv:2107.08430.

Gholami, Amir, Kim, Sehoon, Dong, Zhen, Yao, Zhewei, Mahoney, Michael W.,
Keutzer, Kurt, 2022. A survey of quantization methods for efficient neural net-
work inference. In: Thiruvathukal, George K., Lu, Yung-Hsiang, Kim, Jaeyoun,
Chen, Yiran, Chen, Bo (Eds.), Low-Power Computer Vision: Improve the Efficiency
of Artificial Intelligence, first ed. Chapman and Hall/CRC, http://dx.doi.org/10.
1201/9781003162810.

http://refhub.elsevier.com/S0952-1976(25)00159-9/sb1
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb1
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb1
https://www.sciencedirect.com/science/article/pii/S0378779622004084
https://www.sciencedirect.com/science/article/pii/S0378779622004084
https://www.sciencedirect.com/science/article/pii/S0378779622004084
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://docs.xilinx.com/r/en-US/pg338-dpu/Configuring-Clock-Wizard
https://docs.xilinx.com/r/en-US/pg338-dpu/Configuring-Clock-Wizard
https://docs.xilinx.com/r/en-US/pg338-dpu/Configuring-Clock-Wizard
https://www.xilinx.com/products/intellectual-property/dpu.html
https://www.xilinx.com/products/intellectual-property/dpu.html
https://www.xilinx.com/products/intellectual-property/dpu.html
https://github.com/Xilinx/Vitis-AI/tree/master/model_zoo/model-list
https://github.com/Xilinx/Vitis-AI/tree/master/model_zoo/model-list
https://github.com/Xilinx/Vitis-AI/tree/master/model_zoo/model-list
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
http://dx.doi.org/10.1109/ICIMU49871.2020.9243367
http://dx.doi.org/10.1109/ICIMU49871.2020.9243367
http://dx.doi.org/10.1109/ICIMU49871.2020.9243367
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb10
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb10
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb10
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb10
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb10
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb10
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb10
http://dx.doi.org/10.3390/s22114205
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb12
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb12
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb12
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb12
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb12
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb13
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb13
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb13
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb13
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb13
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb13
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb13
http://dx.doi.org/10.1145/1815961.1815993
http://dx.doi.org/10.48550/arXiv.2308.06767
http://dx.doi.org/10.48550/arXiv.2308.06767
http://dx.doi.org/10.48550/arXiv.2308.06767
http://arxiv.org/abs/2308.06767
http://dx.doi.org/10.1007/s11241-023-09402-4
http://dx.doi.org/10.1007/s11241-023-09402-4
http://dx.doi.org/10.1007/s11241-023-09402-4
http://arxiv.org/abs/2103.05579
https://api.semanticscholar.org/CorpusID:232168344
http://arxiv.org/abs/2107.08430
http://dx.doi.org/10.1201/9781003162810
http://dx.doi.org/10.1201/9781003162810
http://dx.doi.org/10.1201/9781003162810

E. Cittadini et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110159
Google, Coral, 2023. Edge TPU. (Accessed 20 September 2023). URL https://coral.ai/
docs/edgetpu/faq/#what-is-the-edge-tpu.

Gunay, Bestami, et al., 2022. LPYOLO: Low precision YOLO for face detection on
FPGA. In: 8th World Congress on Electrical Engineering and Computer Systems
and Science. EECSS 2022, Prague.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. CVPR.

Hosang, Jan, Benenson, Rodrigo, Schiele, Bernt, 2017. Learning non-maximum sup-
pression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. CVPR.

Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L., Tan, M., Chu, G., Vasudevan, V.,
Zhu, Y., Pang, R., Adam, H., Le, Q., 2019. Searching for MobileNetV3. In: 2019
IEEE/CVF International Conference on Computer Vision. ICCV, pp. 1314–1324.
http://dx.doi.org/10.1109/ICCV.2019.00140.

Howard, Andrew G., Zhu, Menglong, Chen, Bo, Kalenichenko, Dmitry, Wang, Weijun,
Weyand, Tobias, Andreetto, Marco, Adam, Hartwig, 2017. MobileNets: Efficient
convolutional neural networks for mobile vision applications. arXiv:1704.04861.
URL https://arxiv.org/abs/1704.04861.

Iandola, Forrest N., Han, Song, Moskewicz, Matthew W., Ashraf, Khalid,
Dally, William J., Keutzer, Kurt, 2016. SqueezeNet: AlexNet-level accuracy
with 50x fewer parameters and <0.5MB model size. http://dx.doi.org/10.48550/
arXiv.1602.07360, arXiv:1602.07360. URL https://arxiv.org/abs/1602.07360.

Jones, T., Neogi, N., Krishnakumar, K., 2023. Deep learning and vision-based obstacle
detection and classification for autonomous off-road navigation. IEEE Trans. Robot.
Autom. 29, 45–60.

Jones, E., Nguyen, L., 2024. Comparative study on power efficiency of GPUs, TPUs,
and FPGAs for AI inference in embedded systems. IEEE Trans. Sustain. Comput. 10
(2), 102–115. http://dx.doi.org/10.1109/TSC.2024.3355447.

Krizhevsky, Alex, 2014. One weird trick for parallelizing convolutional neural networks.
arXiv:1404.5997. URL http://arxiv.org/abs/1404.5997.

Lin, T., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature
pyramid networks for object detection. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition. CVPR, pp. 936–944. http://dx.doi.org/10.1109/
CVPR.2017.106.

Lin, Tsung-Yi, Maire, Michael, Belongie, Serge J., Bourdev, Lubomir D., Gir-
shick, Ross B., Hays, James, Perona, Pietro, Ramanan, Deva, Dollár, Piotr,
Zitnick, C. Lawrence, 2014. Microsoft COCO: Common objects in context. In:
Computer Vision – ECCV 2014. pp. 740–755.

Liu, S., Deng, W., 2015. Very deep convolutional neural network based image
classification using small training sample size. In: 2015 3rd IAPR Asian Conference
on Pattern Recognition. ACPR.

Liu, Zhiqiang, Dou, Yong, Jiang, Jingfei, Wang, Qiang, Chow, Paul, 2017. An FPGA-
based processor for training convolutional neural networks. In: 2017 International
Conference on Field Programmable Technology. ICFPT, pp. 207–210. http://dx.doi.
org/10.1109/FPT.2017.8280142.

Liu, C., Layland, J., 1973. Scheduling algorithms for multiprogramming in a hard
real-time environment. J. ACM 20 (1), 40–61.

Ma, Yufei, Zheng, Tu, Cao, Yu, Vrudhula, Sarma, Seo, Jae-sun, 2018. Algorithm-
hardware co-design of single shot detector for fast object detection on FPGAs. In:
2018 IEEE/ACM International Conference on Computer-Aided Design. ICCAD, pp.
1–8. http://dx.doi.org/10.1145/3240765.3240775.

Nane, Razvan, Sima, Vlad-Mihai, Pilato, Christian, Choi, Jongsok, Fort, Blair, Ca-
nis, Andrew, Chen, Yu Ting, Hsiao, Hsuan, Brown, Stephen, Ferrandi, Fabrizio,
Anderson, Jason, Bertels, Koen, 2016. A survey and evaluation of FPGA high-
level synthesis tools. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 35 (10),
1591–1604. http://dx.doi.org/10.1109/TCAD.2015.2513673.

Pestana, D., Miranda, P.R., Lopes, J.D., Duarte, R.P., Véstias, M.P., Neto, H.C.,
Sousa, J.T. De, 2021. A full featured configurable accelerator for object detection
with YOLO. IEEE Access http://dx.doi.org/10.1109/ACCESS.2021.3081818.
16
Qasaimeh, Murad, Denolf, Kristof, Lo, Jack, Vissers, Kees, Zambreno, Joseph,
Jones, Phillip H., 2019. Comparing energy efficiency of CPU, GPU and FPGA
implementations for vision kernels. In: 2019 IEEE International Conference on
Embedded Software and Systems. ICESS, pp. 1–8. http://dx.doi.org/10.1109/ICESS.
2019.8782524.

Redmon, Joseph, Farhadi, Ali, 2018. YOLOv3: An incremental improvement. arXiv:
1804.02767.

Ren, S., He, K., Girshick, R., Sun, J., 2017. Faster R-CNN: Towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell..

Rodriguez, M., Martinez, L., 2024. FPGA-based high-performance embedded systems for
adaptive edge computing in cyber-physical systems: The ARTICo3 framework. MDPI
Electron. 13 (4), 9418–9439. http://dx.doi.org/10.1109/ACCESS.2024.3352266.

Rosero-Montalvo, P.D., Tozun, P., Hernandez, W., 2024. Optimized CNN architec-
tures benchmarking in hardware-constrained edge devices in IoT environments.
IEEE Internet Things J. 11, 20357–20366. http://dx.doi.org/10.1109/JIOT.2024.
3369607.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L., 2018. MobileNetV2:
Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. CVPR, pp. 4510–4520. http://dx.doi.
org/10.1109/CVPR.2018.00474.

Seshadri, Kiran, Akin, Berkin, Laudon, James, Narayanaswami, Ravi, Yazdan-
bakhsh, Amir, 2022. An evaluation of edge TPU accelerators for convolu-
tional neural networks. In: 2022 IEEE International Symposium on Workload
Characterization. IISWC, pp. 79–91. http://dx.doi.org/10.1109/IISWC55918.2022.
00017.

Siemens, 2023. Catapult high-level verification solutions. (Accessed 20 September
2023). URL https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
hls-verification/.

Smith, J., Lee, A., 2024. High-level power estimation techniques in embedded systems
hardware: An approach for efficient power management. J. Low Power Electron.
Appl. 12 (1), 23–45. http://dx.doi.org/10.3390/jlpea12010023.

Stone, John E., Gohara, David, Shi, Guochun, 2010. OpenCL: A parallel programming
standard for heterogeneous computing systems. Comput. Sci. Eng. 12 (3), 66–73.
http://dx.doi.org/10.1109/MCSE.2010.69.

Tan, Mingxing, Le, Quoc V., 2020. EfficientNet: Rethinking model scaling for con-
volutional neural networks. http://dx.doi.org/10.48550/arXiv.1905.11946, arXiv:
1905.11946. URL https://arxiv.org/abs/1905.11946.

Tian, Z., Shen, C., Chen, H., He, T., 2019. FCOS: Fully convolutional one-stage object
detection. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. ICCV.

Wulfert, L., Kühnel, J., Gembaczka, P., 2024. AIfES: A next-generation edge AI
framework. IEEE Trans. Pattern Anal. Mach. Intell. 46, 4519–4533. http://dx.doi.
org/10.1109/TPAMI.2024.3355495.

Xing, J., Cioffi, G., Hidalgo-Carrió, J., Scaramuzza, D., 2023. Autonomous power
line inspection with drones via perception-aware MPC. arXiv:2304.00959. URL
https://arxiv.org/abs/2304.00959.

Ye, H., Hao, C., Cheng, J., Jeong, H., Huang, J., Neuendorffer, S., Chen, D.,
2022. ScaleHLS: A new scalable high-level synthesis framework on multi-level
intermediate representation. In: 2022 IEEE International Symposium on High-
Performance Computer Architecture. HPCA, pp. 741–755. http://dx.doi.org/10.
1109/HPCA53966.2022.00060.

Zhang, Xiangyu, Zhou, Xinyu, Lin, Mengxiao, Sun, Jian, 2018. ShuffleNet: An extremely
efficient convolutional neural network for mobile devices. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. CVPR, pp. 6848–6856.
http://dx.doi.org/10.1109/CVPR.2018.00716.

Zhou, Yan, Chen, Shaochang, Wang, Yiming, Huan, Wenming, 2020a. Review of re-
search on lightweight convolutional neural networks. In: 2020 IEEE 5th Information
Technology and Mechatronics Engineering Conference. ITOEC, pp. 1713–1720.
http://dx.doi.org/10.1109/ITOEC49072.2020.9141847.

Zhou, Daquan, Hou, Qibin, Chen, Yunpeng, Feng, Jiashi, Yan, Shuicheng, 2020b.
Rethinking bottleneck structure for efficient mobile network design. In: Computer
Vision – ECCV 2020. pp. 680–697.

https://coral.ai/docs/edgetpu/faq/#what-is-the-edge-tpu
https://coral.ai/docs/edgetpu/faq/#what-is-the-edge-tpu
https://coral.ai/docs/edgetpu/faq/#what-is-the-edge-tpu
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb21
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb21
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb21
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb21
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb21
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb22
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb22
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb22
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb23
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb23
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb23
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb23
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb23
http://dx.doi.org/10.1109/ICCV.2019.00140
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
http://dx.doi.org/10.48550/arXiv.1602.07360
http://dx.doi.org/10.48550/arXiv.1602.07360
http://dx.doi.org/10.48550/arXiv.1602.07360
http://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1602.07360
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb27
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb27
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb27
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb27
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb27
http://dx.doi.org/10.1109/TSC.2024.3355447
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1404.5997
http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/CVPR.2017.106
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb31
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb31
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb31
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb31
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb31
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb31
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb31
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb32
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb32
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb32
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb32
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb32
http://dx.doi.org/10.1109/FPT.2017.8280142
http://dx.doi.org/10.1109/FPT.2017.8280142
http://dx.doi.org/10.1109/FPT.2017.8280142
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb34
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb34
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb34
http://dx.doi.org/10.1145/3240765.3240775
http://dx.doi.org/10.1109/TCAD.2015.2513673
http://dx.doi.org/10.1109/ACCESS.2021.3081818
http://dx.doi.org/10.1109/ICESS.2019.8782524
http://dx.doi.org/10.1109/ICESS.2019.8782524
http://dx.doi.org/10.1109/ICESS.2019.8782524
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb40
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb40
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb40
http://dx.doi.org/10.1109/ACCESS.2024.3352266
http://dx.doi.org/10.1109/JIOT.2024.3369607
http://dx.doi.org/10.1109/JIOT.2024.3369607
http://dx.doi.org/10.1109/JIOT.2024.3369607
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.1109/IISWC55918.2022.00017
http://dx.doi.org/10.1109/IISWC55918.2022.00017
http://dx.doi.org/10.1109/IISWC55918.2022.00017
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls-verification/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls-verification/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls-verification/
http://dx.doi.org/10.3390/jlpea12010023
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.48550/arXiv.1905.11946
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb49
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb49
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb49
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb49
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb49
http://dx.doi.org/10.1109/TPAMI.2024.3355495
http://dx.doi.org/10.1109/TPAMI.2024.3355495
http://dx.doi.org/10.1109/TPAMI.2024.3355495
http://arxiv.org/abs/2304.00959
https://arxiv.org/abs/2304.00959
http://dx.doi.org/10.1109/HPCA53966.2022.00060
http://dx.doi.org/10.1109/HPCA53966.2022.00060
http://dx.doi.org/10.1109/HPCA53966.2022.00060
http://dx.doi.org/10.1109/CVPR.2018.00716
http://dx.doi.org/10.1109/ITOEC49072.2020.9141847
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb55
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb55
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb55
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb55
http://refhub.elsevier.com/S0952-1976(25)00159-9/sb55

	A hardware accelerator to support deep learning processor units in real-time image processing
	Introduction
	Paper contributions
	Paper structure

	State of the art
	Background
	Convolutional Neural Networks in Object Detection
	Anchor-based and anchor-free object detection
	YOLOX

	System architecture
	Image Processing Unit
	Pre-processing Unit
	Post-processing Unit
	Control Unit

	Software support

	Experiments
	Hardware setup
	Pre-processing unit
	Post-processing unit
	End-to-end pipeline
	Power consumption

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Extra Results
	Appendix . Data availability
	References

