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ABSTRACT Forthcoming 6G/NextG networks highlight the need for advanced Artificial Intelligence
(AI)-based security mechanisms to identify malicious activities and adapt to emerging threats. In this
context, the integration of computer vision techniques into the cybersecurity field is promising due to
their potential for sophisticated pattern recognition. In this paper we introduce a computationally efficient
classification scheme acting directly on the raw packets collected at base stations and enforcing real-time
conversion of packets into images. The innovative points of the proposed solution are the lightweight
implementation, aligning well with the demands of future 6G networks, and the operation at network
edge, enabling early threat identification as close as possible to the packet origin. We investigate the
performance of this approach both in terms of F1-score and prediction time using state-of-the-art computer
vision architectures and a customized Convolutional Neural Network (CNN) in an intrusion detection
problem using a 5G dataset. Experimental results show the superiority of the CNN architecture over
complex models. Across multiple packet window sizes N (i.e., 10, 50, 100 packets), the CNN consistently
outperforms the other state-of-the-art computer vision models, achieving very high F1-scores (namely,
0.99593, 0.99860, 0.99895). A scalability analysis highlights a trade-off between CNN scalability and
performance, where larger N values lead to increased prediction time. On the other hand, the other
computer vision models exhibit better scalability, enabling an optimal model selection without trade-offs.

INDEX TERMS DoS, computer vision, artificial intelligence, 6G networks, packet classification,
convolutional neural networks.

I. INTRODUCTION

AS5G network infrastructures are being deployed, with
a more pervasive growth expected in the next few

years [1], both academy and industry are now focusing on
6G/NextG to fulfill the requirements of applications of the
next decade. Indeed, in many scenarios the limitations of 5G
networks are evident in terms of data rate, latency, global
coverage, etc. [2]. Applications such as extended reality,

holographic communications, and digital twin will leverage
the deployment of 6G network infrastructures to fully achieve
their potentials [3].

Among the many benefits, 6G networks will provide
extreme capacity, reliability, and efficiency. To achieve
these challenging performance targets, it is expected that
6G networks deploy intelligent operations in both network
orchestration and management [4]. Hence, along with
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network simplification exploiting Radio Access Network
(RAN)-Core Network (CN) convergence, a key technol-
ogy will be Artificial Intelligence (AI), enabling the
transition from connected things to collective network intel-
ligence [5], [6]. The advent of AI-driven functionalities in
6G will enable the deployment of proactive networks. These
networks can perform operations in an autonomous way,
such as self-management to maintain the desired network
performance level, or self-protection to secure the network
and deal with threats. Hence, 6G security vision has a tight
integration with AI, leading to the paradigm of security
automation [4]. Security design exploiting AI systems will
become pivotal to autonomously detect and mitigate threats
rather than current cryptographic methods [1].

Threat mitigation system, i.e., proactively recognizing and
addressing potential dangers, thereby safeguarding protecting
against unforeseen risks and vulnerabilities, will be the key
element for enabling future networks in critical scenarios,
such as military and banking applications. Additionally,
the massive device connections to 6G networks will also
pose new challenges to Denial of Service (DoS) attack
detection, resulting in traditional DoS mitigation methods
outdated [7], [8]. Subsequently, statistical and AI-based
methods can cope with different types of malicious traffic [9],
identifying, mitigating, and preventing these attacks.
Therefore, many works in recent years have focused on

the possibility to build AI-based systems for defending
wireless networks [10]. However, future networks will be
characterized by heterogeneous devices and traffic, demand-
ing more advanced classifiers. In the rapidly evolving
landscape of network security, the integration of computer
vision techniques for cybersecurity applications represents
an opportunity, with the promise to enable sophisticated
pattern recognition strategies. Indeed, similarities between
DoS and computer vision technique lie in their shared
purpose of complex pattern recognition. In computer vision,
algorithms process visual information to recognize intricate
patterns within images and video. This process involves
many layers of abstraction, where lower layers detect
basic features like edges, while higher layers mix these
features to identify complex objects or scenes. Similarly, in
the context DoS attack detection, network traffic analysis
involves identifying anomalous patterns. This recognition of
patterns aims at distinguishing normal network behavior from
malicious activities. As in computer vision, effective DoS
attack detection often requires the extraction of meaningful
features from the network traffic, followed by classification
or anomaly detection techniques to discern malicious behav-
ior [11]. Hence, algorithms such as image retrieval and object
shape recognition adapted from computer vision techniques
can offer an effective solution to the threat identification
challenge [12].

By converting network traffic data into matrix repre-
sentations, computer vision techniques can be leveraged
to extract meaningful patterns and features. Each network
flow can be mapped into a pixel grid, where various

attributes like source and destination addresses, ports are
encoded. This transformation allows viewing network traffic
as visual patterns, enabling the application of Convolutional
Neural Networks (CNNs) and other image-based algorithms
for analysis. As discussed in [13], [14], [15], leveraging
the transformation of network traffic to images not only
facilitates efficient and real-time data processing, but also
enables the use of pre-existing image analysis tools, opening
up new possibilities for enhancing network security.
Hence, in this work we firstly describe how packets,

exploiting their temporal relationships, can be transformed
to images ready to be used as inputs to computer
vision algorithms. Then, we study the performance of this
approach exploiting both well-known CNN architectures
and a purpose-built CNN architecture, called afterwards
customized-CNN in an intrusion detection problem, exploit-
ing a 5G dataset. Differently from most implementations
to date, the transformation of network traffic to images
is done directly on raw packets, which can be directly
collected at the base station, enabling a truly real-time system
protection. This features is essential in a system amenable
to future networks, complying with 6G requirements on
latency and alleviating the DoS attack damage, since a threat
can be identified quickly and as close as possible to where
it is generated. Moreover, immediate detection holds great
importance in this scenario due to the projected expenses
associated with service interruptions [16]. Consequently, an
on-site solution at the base station level that can effectively
detects threats in real-time becomes of essential importance
for the future of 6G/NextG wireless networks.

II. RELATED WORKS
Network security has been one of the prime concerns in
5G networks to provide increased user privacy, new trust
and service models and enable the support for Internet of
Things (IoT) and mission-critical applications [17], [18].
Network protection must be strengthened and enhanced
for the safe deployment of different 6G verticals [19]. To
overcome some of the additional security challenges imposed
by novel network architectures, researchers have focused on
novel approaches suitable for 6G networks. Deep Learning
(DL) systems have been showing promising results in threat
mitigation [20] thanks to their capability of extracting high-
level features.
For example, in [21] an Intrusion Detection System (IDS)

is developed based on CNN, capable of performing classi-
fication on statistics extracted from complete traffic flows
of the CIC-IDS 2018 dataset [22]. The proposed solution is
compared with a Recurrent Neural Network (RNN) model,
showing the advantages of the feed-forward model over
its recurrent counterpart. Although the architecture seems
promising, an important limitation hampers its deployment in
future network infrastructures: the training of the AI model
is performed on statistics extracted from traffic flows; this
approach is not suited to work on real-time traffic due to the
need to wait for complete traffic flows at the base station.
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Another work that exploits Deep Neural Networks (DNNs)
for an IDS is proposed in [23]. The authors carried out a
comparative study of IoT IDS with three DL models: DNN,
Long Short-Term Memory (LSTM), and CNN. It is shown
that DL models outperform the other methods applied in
IoT IDS environment. The study only focuses on the CIC-
IDS 2017 dataset [22], which cannot be considered as a
good benchmark for a 5G/6G scenario because the dataset
has not been collected in a real 5G network and thus the
packet characteristics, e.g., packet inter-arrival time, can be
very different with respect to the ones of a mobile network.
Furthermore, the authors use the csv format of the dataset,
i.e., statistics extracted from complete traffic flows, again
hampering the possibility to deploy such systems in a real-
time environment.
Tailored to specific 5G datasets, both works in [24], [25],

deal with traffic classification. The first works on fea-
tures extracted from complete traffic flows, hampering its
exploitation on 5G/6G scenarios. Concerning the latter, a
PCAP-to-Embeddings techniques is proposed, where Long
Short-Term Memory Autoencoders are used for embeddings
generation followed by a Fully-Connected network for
classification purposes.
At the border between computer vision techniques and

DoS traffic detection, authors in [26] propose to exploit
ResNet architecture to detect malicious packets. Results are
obtained on the CICDDoS2019 dataset [27], which, although
being recent, does not resemble 5G/6G traffic characteristics,
such as packet inter-arrival times. Furthermore, the authors
consider only ResNet as a benchmark, not exploiting other
computer vision architectures.
Another interesting work in the context of computer

vision techniques applied to network traffic is [11], in
which the authors discuss a multivariate correlation analysis
technique to accurately represent the network traffic records
and convert them into corresponding images. The detection
system is developed based on Earth Mover’s Distance
(EMD), a widely used dissimilarity measure. EMD considers
cross-bin matching, resulting in a more precise evaluation
of the dissimilarity between distributions compared to other
dissimilarity measures like Minkowski-form distance Lp and
X2 statistics. The experiments are conducted using two old
datasets [28], [29] that do not contain recent DoS threats;
in addition the proposed methodology works by building
normal traffic profiles, hence not being able to distinguish
among different types of attacks. In the same context,
in [14] the authors describe a way to capture network
traffic using pcap files and then convert these into a 2D
image using a visual representation tool, i.e., binvis. For
efficiency, the packets are divided into multiple chunks
before this conversion process. The proposed approach is
limited by the exploitation of binvis tool, that might slow
down when dealing with substantial volumes of data, as in
6G networks [30]. Finally, the work in [15] describes a way
to transform packets into images considering both header and
payload. The authors include features like source/destination

host, source/destination port number, that may hinder the
generalization capabilities of the ML model. Furthermore,
exploiting payload data, as proposed by the authors, at the
5G/6G base stations level is unfeasible due to encrypted
packets.
In contrast to all the aforementioned works, the research

proposed in this paper differs in many aspects. First of
all, we investigate multiple computer vision architectures,
allowing us to explore a broader spectrum of possibilities in
our investigation. Through the exploitation of preprocessing
techniques, we discuss how a real-time transformation
of network packets into images is practically possible.
Furthermore, the utilization of a very recent dataset [24]
collected within a 5G environment and never exploited with
computer vision techniques allows us to set a first benchmark
for future studies.

III. PROPOSED ARCHITECTURE
In this section, we first describe how network packets can
be transformed into images, with a focus on the used
features and the corresponding preprocessing techniques.
Then, we give an insight on how the proposed method can
be implemented in a next generation eNB (gNB), showing
its amenability to future 6G/NextG wireless infrastructure.

A. FROM NETWORK TRAFFIC TO IMAGES
The packet represents the basic unit of data transferred
over a computer network. Each packet contains a part of
the complete message and embeds information that helps
identifying the traffic flow. The latter can be identified by a
5-tuple composed of source and destination IPs, source and
destination ports, and protocol used.
In this work, relying on the concept of network traffic

flow, an encoding scheme to translate packet attributes
into a structured format, i.e., matrices, is proposed. By
structuring the input as packet matrices, we create a spatial
data representation. This representation enables the Neural
Network (NN) to learn the traits of both DoS attacks and
benign traffic by employing convolutional filters that slide
across the input, identifying crucial patterns. Network traffic
classification leveraging CNNs allows us to exploit one of
their main advantages: the ability to identify DoS patterns
irrespective of their temporal occurrence in the data. This
intrinsic quality, i.e., producing consistent outputs despite
the location of patterns in the input, is one of the paramount
features of CNN architectures [31].

Specifically, the approach consists in (i) identifying F
features, e.g., Time-to-live and packet length, that can be
extracted from packets belonging to a given flow, and (ii)
defining a maximum number of packets N for each flow
within the time window T [32]. Hence, the maximum size
of the input matrices will be N × F. To have a real-time
approach, if N packets are not collected within the time
window, the matrix is padded with 0s. This allows the method
to adapt to situations with long packet inter-arrival time.
Finally, each attribute is normalized to the interval [0, 1].
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TABLE 1. Features used to create input images and the corresponding preprocessing techniques.

FIGURE 1. From network packets to images. From each network flow several
matrices can be obtained when N packets are collected. In addition, 0-padding is also
used when N packets do not arrive within the time window.

A summary of the proposed method, capable of trans-
forming packet flows into images, is depicted in Fig. 1.

Concerning the features, those that are deterministic or
similar, and hence can hamper the generalization of the NN
models, have been excluded, such as IP addresses and TCP
ports. A list of the exploited features with the corresponding
preprocessing techniques is reported in Table 1.

B. INTEGRATION IN BASE STATIONS
In this section, we detail how the proposed architecture can
be implemented in a future 6G base station.
In 5G networks, RAN and CN functions are strictly

separated, due to the diverse protocols, interfaces, and
management mechanisms. Consequently, achieving a unified,
simplified network architecture integrating these compo-
nents into a converged network proved challenging for
5G architectures. However, with the advent of evolving
technologies and the transition to 6G networks, there is an
unprecedented opportunity to rethink network architectures.
The shift towards a converged RAN-CN architecture will
enable the creation of a simpler, more efficient network
infrastructure [6].

Hence, in future 6G networks, a new approach will be
exploited providing more flexibility in network deployment,
where the RAN and the CN functions can be converged
in the same platform and optimized together according to
the use-case requirements [6], [33], [34]. With a less strict
separation between RAN and CN, each 6G base station
can be equipped with functionalities coming from both
CN and RAN, ultimately deploying a local CN on top of
each node.
Among the novel Network Functions (NFs), the Network

Data Analytics Function (NWDAF) [35] will assume a more
prominent role within 6G networks, serving as a foundation
for distributed network intelligence. Hence, each future base
station can be equipped to host the NWDAF, offering on-
demand data analytics to other NFs [36].

The NWDAF can be exploited for intelligent threat
mitigation involving user data. It has the potential to
gather User Plane Function (UPF) data emanating from
the User Equipments (UEs) and feed this information into
a DL system for the identification of malicious traffic.
For instance, a threat identification and mitigation system
can be implemented at the NWDAF by identifying and
automatically dropping packets marked as malicious. This
architecture allows the direct identification of potential
threats at the base station level, alleviating the need to
disseminate them throughout the network. This approach
complies with the vision of placing security mechanisms
as close as possible to the potential sources of threats.
Furthermore, real-time detection is pivotal in this context,
given the estimated cost of service disruption [16]. Thus,
a base station-level solution capable of real-time threat
mitigation is of significant importance for future NextG
wireless networks.
The architecture of the proposed system is illustrated

in Fig. 2. For conciseness, we report only the principal
NFs used for this solution, i.e., UPF responsible for data
forwarding, routing, and quality of service (QoS) enforce-
ment, Session Management Function (SMF) involved in the
establishment and management of the UPF and the session
of the UE and NWDAF.
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FIGURE 2. Architecture of the proposed system, reporting the main NFs used. The
NextG base station is deployed along with a local CN. The proposed technique utilizes
NN implemented inside the NWDAF to process packets acquired from the UPF.
Malicious Packets can be identified and dropped directly at the local NWDAF.

In detail, the NWDAF will perform the following tasks:
(i) Data collection: the NWDAF collects all network traffic
flows coming from the UEs connected to the base station.
(ii) Data preprocessing: for each packet, the NWDAF
extracts the features and normalizes them, as described in
Table 1. If N packets are not collected within T seconds,
then it pads the matrix with 0s.
(iii) Classification: Once the matrix is ready, the NWDAF
is responsible for passing the sample to the NN, deployed
along the local CN. The NN architecture can be both user-
defined or rely on well-known computer vision models, as
discussed in the next section.

IV. METHODOLOGY
In this section, we first describe the dataset used for
the experiments, highlighting its amenability to 6G/NextG
wireless networks. Then, we briefly review the state-of-the-
art computer vision architectures that have been exploited.
Finally, the experiments carried out are introduced and results
are presented.

A. NETWORK INTRUSION DETECTION
The accuracy and the efficiency of an Machine Learning
(ML)-based cybersecurity system heavily depends on the
quality of the dataset and how close the behavior of the
data is to the behavior in a real network scenario. One
of the problem in AI-based security research is the lack
of a comprehensive dataset that resembles complex 5G/6G
network behaviors.
The majority of the datasets available online are outdated

for modern networks as they have been compiled before
some critical technological evolutions, e.g., UNSW-NB
15 [37], CTU-13 [38]. Other recent dataset available on the
Web, such as the CIC-DDoS2019 [27], presents limitations
in terms of many redundant records/high class unbalance.
Additionally, as mentioned in Section II, the behavior of
5G/6G networks is far from the testbeds or the simulation
platforms used to create this dataset.
To overcome this problem, authors in [24] recently

proposed 5G-NIDD, a network intrusion detection dataset
generated from a real 5G test network. The dataset is
collected using the 5G Test Network (5GTN) in Oulu,
Finland. 5G-NIDD presents a combination of attack traffic

FIGURE 3. Residual block skipping two layers exploiting skip connections.

and benign traffic under different attack scenarios. Real
mobile devices attached to the 5GTN was used to generate
traffic.
Data is extracted from two base stations, each connected

to an attacker node and several benign 5G UEs. The attack
scenarios include DoS attacks and port scans. Under DoS
attacks, the dataset contains ICMP Flood, UDP Flood, SYN
Flood, HTTP Flood, and Slowrate DoS. Under port scans,
the dataset contains SYN Scan, TCP Connect Scan, and
UDP Scan. The dataset is publicly available in both pcapng
and csv formats. The pcapng format contains full packet
payloads, while the csv files are a collection of statistics
extracted for each traffic flow.
Hence, in this work, we exploit the 5G-NIDD to test the

proposed architectures. A list of the attacks included in the
dataset, with the corresponding description, is reported in
Table 2. In the experiments, the attack type ICMP flood has
not been considered since the number of samples for this
class, once the dataset has been preprocessed into matrices,
was very low. However, 9 classes are still present since
the HTTP flood was performed using two different tools,
Slowloris and Torshammer respectively.

B. NEURAL NETWORK ARCHITECTURES
In this section, we report the computer vision models that
have been tested on matrices of traffic packets. In addition
to state-of-the-art computer vision models, we have also
designed and tested a customized-CNN, specifically aimed
at recognizing threats.
One of the major innovative architecture used in computer

vision is the Residual Network (ResNet) [39]. In order to
solve the problem of the vanishing/exploding gradient, this
architecture introduces the concept of Residual Blocks. As
depicted in Fig. 3, instead of simply learning F(x), the
network fits H(x) = F(x) + x, where x is an input to the
residual block and output from the previous layer.
The key concept of residual blocks relies on skip connec-

tions, as shown in Fig. 3, allowing smoother gradient flow
and ensure that important features are carried until the final
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TABLE 2. Attack types contained in the 5G-NIDD dataset [24] and corresponding description.

layers without adding computational load to the network. In
our experiments, we rely on ResNet50V2, composed of 48
convolutional layers, one max pooling layer, and one average
pooling layer.

Starting from residual connections, MobileNetV2 [40]
exploits an inverted residual structure where the residual
connections are between the bottleneck layers. This model,
well suited to mobile devices, also exploits lightweight
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FIGURE 4. Two types of blocks for MobileNetV2: (a) residual block with stride=1
and (b) downsizing block with stride=2.

depthwise convolutions to filter features as a source of non-
linearity in the intermediate layers. MobileNetV2 presents
two types of blocks, a residual block with stride 1 and
another block for downsizing with stride 2. These blocks are
depicted in Fig. 4.

Aiming at increasing computational efficiency, authors
in [41] propose EfficientNet, a more systematic method
for enhancing accuracy and efficiency by scaling
depth/width/resolution of CNN models. This is in contrast
with conventional scaling methods that are based on random
approaches, demanding manual tuning and significant effort.
Specifically, the technique is based on a compound scaling
method, that relies on a constant ratio to perform a balanced
scaling of width, depth, and resolution.
Opposed to the computational efficiency of MobileNet and

EfficientNet, DenseNet [42] connects each layer to every
other layer in a feed-forward fashion, resulting in a high-
demanding architecture in terms of computational resources.
An important milestone in the CNN architectures was the

Inception Net [43]. The main idea behind this architecture is
the Inception layer, a combination of layers with their output
filters concatenated into a single output vector forming the
input for the next layer.
Taking the principles of Inception to extreme, the Xception

architecture is introduced [44]. In Inception, 1 × 1 convolu-
tions compressed the input before applying different filters
to various depth spaces. Xception reverses this process, first
applying filters to depth maps and then compressing the
input with 1 × 1 convolutions across depth, resembling a
depthwise separable convolution.
In addition to these NN models, a customized-CNN has

been specifically developed aiming at an accurate network
packet classification, whose structure is reported in Fig. 5.

The CNN is made of 3 convolutional layers, with 8, 64
and 128 filters respectively. 3 Fully-Connected (FC) layers
have been added, with 512, 128 and 9 units, respectively.
As activation function, ReLU has been adopted for all
layers, except for the last one that employs the SoftMax
to perform classification. A summary of the state-of-the-art
computer vision architectures that have been studied in the
experiments along with the customized-CNN, is reported
in Table 3. We can observe a large increase in parameters

TABLE 3. Architectures studied in the experiments.

of the customized-CNN, mainly due to the exploitation of
FC layers at the end on the convolutional section of the
architecture.
The deployment of these models at the base-station can

surely increase the power and computational resource con-
sumption. However, advancements in hardware acceleration
(like specialized chips or GPUs) [45] and optimization
techniques [46] have significantly improved their efficiency.
These advancements hence can enable quicker inference
times and reduced energy consumption.

C. EXPERIMENTAL SETUP
In this section, the experimental setup is highlighted,
describing how classification experiments have been carried
out.
Once the raw packets have been obtained, a script

to transform pcapng files into suited input matrices is
developed, as highlighted in Section III-A. The source code
is publicly available at [47]. The script allows to define
the maximum number of packets for each matrix, N, thus
enabling experiments for varying matrix length. In the
experiments a maximum number of packets per time window
N = {10, 50, 100} has been considered. Furthermore, for
DenseNet and Inception models an input resizing has been
applied. In particular, for DenseNet inputs have been resized
to 32 × 32, while for Inception the resizing has resulted in
input matrices of 128 × 128. This is due to the fact that
these models do not support small input matrices, resulting
in negative dimensions of feature maps. Specifically, the
resizing has been obtained with the bilinear interpolation of
the input matrices.
Concerning the time window T , it has been kept fixed to

10s for all experiments, due to two reasons: (i) experimen-
tally validated results have shown that 10 seconds is a good
choice [32]; (ii) the proposed architecture must be amenable
to a 5G/6G implementation, thus it must perform real-time
detection, which cannot be achieved with a longer time
window. Additionally, shortening the time window would
result in most of the packet matrices being 0-padded, thus
hampering the classification performance.
Once the input matrices have been created, a normalization

and padding phase has been performed. Data normalization
is performed to scale values to a predefined uniform range.
This prevents larger values from overwhelming smaller ones
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FIGURE 5. Customized CNN developed for the experiments.

during the training process. A Min-Max scaling has been
adopted: the min-max values for each feature have been
searched through the entire dataset, and a rescaling has been
carried out, resulting in all values belonging to the range
[0, 1]. Then, for input matrices with less than N rows a
0-padding strategy is adopted. Furthermore, each flow has
been mapped to a specific label.
Finally, a 80−20% training-test split has been performed,

while keeping the original balance of the dataset. To have a
fair comparison, all the models have been trained using the
same training parameters, i.e., batch size, epochs, optimizer
and learning rate.
Since the training set is not balanced, a class weighting

technique has been adopted. Leveraging this technique, it
is possible to assign higher weights to minority classes,
allowing the model to pay more attention to their patterns
and reducing the bias towards majority classes. The weight
for each class is given by:

wj = #samples

#classes × #samples_j

where wj is the weight for class j, #samples is the total
number of samples in the dataset, #classes is the total number
of unique classes in the dataset, and #samples_j is the total
number of samples belonging to class j.
To evaluate the results of the experiments, we used the

common evaluation metrics, such as the confusion matrix and
the F1-score. Since the test set is kept unbalanced to resemble
as much as possible real world data, accuracy metric can lead
to skewed results and thus it is not considered. Instead, being
the F1-score defined as the harmonic mean, or weighted
average, of precision P and recall R values:

F1-score = 2
1
P + 1

R

P = TP

TP+ FP
; R = TP

TP+ FN

it accounts for instances where precision or recall values are
exceptionally low, resulting in a diminished score even in
the case of imbalanced classes.

TABLE 4. F1-score obtained with different architectures.

V. RESULTS AND DISCUSSION
In this section, the obtained results are reported and
discussed. Results for the different considered N values
are reported in Table 4. In the results, we included the
performance (in terms of F1-score) of the considered
architectures, i.e., both state-of-the-art computer vision
architectures and the customized-CNN, and we compare
the obtained values with the best performing model for
both binary and multi-class experiments of Multi Layer
Perceptron (MLP), obtained by [24] and the technique
introduced in [25].

Since the proposed system must be compliant with
real-time requirements of future wireless networks, in the
experiments we also evaluated the prediction time of the
tested architectures for the entire test set exploiting an 11th
Gen Intel Core i7-11700K @ 3.60GHz. Results are depicted
in Fig. 6.
As reported in Table 4, the best performing model is

the customized-CNN for all the values of N. Notably,
this model slightly outperforms also the models proposed
in [24] and [25] by 0,00878 and 0,01229, respectively. When
increasing N, the F1-score of the model improves. When
compared to both binary and multi-class MAGNETO [48],
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FIGURE 6. Prediction time of the tested architectures.

a work proposing the translation of network traffic into
images while maintaining the retention of semantic data
about the relationships between features, the customized-
CNN achieves a slightly higher F1-score, of 0.00765 and
0.00045 respectively.
Concerning the other tested state-of-the-art computer

vision architectures, only the ResNet and Inception models
reach an F1-score above 90% for N = 10. However,
these architectures do not increase their performance for
increasing N: indeed a drop can be observed for N =
100 for both of them, while for N = 50 ResNet keeps a
similar performance while Inception degrades. The behavior
of Xception architecture is opposite as the CNN architecture:
for increasing N, a decrease in F1-score is noticed. DenseNet
obtains the highest F1-score for N = 50, while both
MobileNet and EfficientNet have their best performing
scenario for N = 10. The reported results have noticeably
different behavior among architectures for varying N; for
instance, we have a decrease in F1-score for increasing N
with ResNet, Inception, and Xception, while for DenseNet
the F1-score increases for N = 50 when compared with
N = 10 and then it decreases for N = 100. These different
behaviors are due to the fact that these architectures differ in
many aspects, e.g., in terms of connections among neurons,
number of parameters. Finally, these results highlight one
important outcome: for the tasks of recognizing threats,
complex models do not work better than simpler models.
Indeed, the customized-CNN, composed of few layers,
outperforms all state-of-the-art computer vision architectures.
A look at the confusion matrix of the best performing

model, i.e., CNN, can give a better insight on the obtained
results. The confusion matrices for N = 10, N = 50,
and N = 100 are reported in Fig. 7, Fig. 8, and Fig. 9
respectively.
We can observe that for N = 10 the customized-CNN

incorrectly classifies as belonging to class 1 (i.e., HTTP
flood) almost 10% samples actually belonging to class 2
(i.e., Slowrate DoS). While for the other classes, only a

FIGURE 7. Confusion matrix for CNN model with N = 10.

FIGURE 8. Confusion matrix for CNN model with N = 50.

small number of misclassifications can be observed. In
particular, the model misclassifies samples belonging to class
6 (i.e., HTTP flood - Torshammer) as samples of class 1
and 2.
If N is increased, instead, as depicted in Fig. 8 and 9,

the issue with class 2 is solved. Indeed, for N = 50, the
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FIGURE 9. Confusion matrix for CNN model with N = 100.

CNN reaches an TP rate of 99.4, while for N = 100 the TP
rate increases to 100%. This confirms that for this model,
increasing the number of samples for each matrix, is helpful
and leads to a better generalization.
However, increasing N leads to an increase in prediction

time, as sketched in Fig. 6. Especially for the customized-
CNN architecture, the prediction time goes from ≈ 4s for
N = 10 to ≈ 46s for N = 100. Indeed, as reported in
Table 3, the customized-CNN has a substantial increase in
the number of parameters when N increases. This highlights
a trade-off between the classification performance and the
speed at which the classification is performed for this model.
Concerning the state-of-the-art computer vision architectures,
a different behavior can be noticed. Indeed, while Inception
has very high prediction time even for N = 10, this
architecture scales well, resulting in an increase of just 10s
between the N = 10 and N = 100 scenarios. This can
be traced back to the almost constant size and number of
parameters for this architecture among different values of N,
as reported in Table 3. Similar considerations can be derived
for the other models: for instance, DenseNet shows an almost
constant prediction time for different values of N, with just
≈ 1s increase. Hence, for these models the prediction time
does not influence the choice of N and the N that leads to
the best performing model can be freely chosen.

VI. CONCLUSION
6G/NextG networks will require intelligent threat mitigation
systems to cope with different types of malicious traffic [9]
and able to adapt to newly discovered threats. Hence, in this
paper, we have explored the innovative approach of trans-
forming network traffic packets into image representations
and leveraging state-of-the-art computer vision architectures
for classification.
In the experiments, an intrusion detection problem has

been investigated with the goal of classifying normal and
malicious behaviors. We have firstly discussed how raw
packets can be converted in a real-time manner to input
matrices ready to be fed into state-of-the-art computer vision
architectures and the customized CNN.

Results have shown that complex models do not perform
better than the developed CNN architecture. Indeed, for all
the considered values of N, i.e., 10, 50, and 100, the CNN
outperforms all the state-of-the-art computer vision tech-
niques, reaching F1-scores of 0.99593, 0.99860, and 0.99895
respectively. Moreover, the scalability of our approach has
been tested. Results indicate a trade-off between the scala-
bility of the CNN and the obtained performance. Indeed, for
increasing N, a non-negligible increase in prediction time is
observed. On the other hand, state-of-the-art computer vision
architectures, even when starting with very high prediction
times, scale much better. This enables the possibility to
choose the best performing model with respect to N without
any trade-off.
The proposed system is just a first step on the application

of computer vision techniques to network traffic analysis.
Indeed, leveraging the exploitation of convolution-based
models, more complex patterns can be discovered in packet
matrices. For instance, a proactive approach, capable of
identifying new types of attacks can be implemented.
Additionally, a distributed learning approach, relying on
federated/split learning techniques, will be considered in
future works to enhance data privacy and model performance.
Finally, hardware acceleration techniques could be studied
to deploy these models on dedicated platforms, i.e., FPGA,
offloading the computational workload from the gNB without
compromising its performance.
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