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Abstract—This paper investigates the performance of downlink
(DL) pilot-based training to estimate the effective channel in user-
centric cell-free massive multiple-input multiple-output (MIMO)
networks. An algorithm for DL pilot assignment is proposed
based on the level of interference between each user equipment
(UE). It is proposed a refinement method for access point
(AP) selection that controls the maximum AP cluster size of
UEs. The strategy aims to control the maximum number of
APs serving each UE to reduce the disparities among the AP
cluster sizes. DL pilot-based training is compared with the blind,
perfect and statistical channel state information (CSI) methods,
assuming different precoding techniques, AP selection schemes,
and the presence of pilot contamination. Our results demonstrate
the following: (i) the proposed DL pilot assignment algorithm
outperforms the baseline solutions; (ii) the proposed AP selection
refinement method can improve the energy efficiency up to
86.6% without compromising the spectral efficiency; and (iii) DL
pilot-based estimation reduces the normalized mean-square error
significantly compared with blind and statistical CSI methods.

Index Terms—AP selection refinement, cell-free massive
MIMO networks, DL pilot-based estimation, DL pilot assign-
ment, effective channel estimation, user-centric approach.

I. INTRODUCTION

Cell-free (CF) massive multiple-input multiple-output
(MIMO) networks consist of a large number of access points
(APs) spread out in the coverage area, cooperating to serve the
user equipments (UEs). Due to their distributed nature, these
systems can provide increased macro-diversity and a more
uniform spectral efficiency (SE) than the cell-based systems.
The canonical version of CF considers that all APs serve all
UEs. However, such a system demands enormous resource
requirements (e.g., fronthaul signaling and processing) from
the network, making it unscalable. [1], [2]. In this regard,
the user-centric (UC) approach has emerged as an alternative
to solve these drawbacks. By performing AP selection and
limiting the number of UEs that each AP can serve, one can
achieve scalability when the network resources (i.e., signal
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processing, signaling on fronthaul/backhaul, and total power)
are independent of the number of UEs. However, strategies
to control the size of AP clusters are still missing in the
literature. The number of APs serving each UE can be very
small or very large depending on the UE’s position. In case of
large AP clusters, the APs may become overloaded, impacting
negatively the energy efficiency (EE) [3].

Another critical aspect of CF systems is that channel hard-
ening may be less pronounced than in cellular systems due
to the geographical distribution of the APs, with each one
being equipped with a few antennas. The channel hardening
phenomenon makes random channels behave almost deter-
ministically when the number of antennas is large, enabling
downlink (DL) data decoding based on statistical channel
state information (CSI) of the effective channel [1], [2]. The
low degree of hardening in CF systems may lead to the
need for UEs to perform a more reliable channel estimation
method. One of the main alternatives is the DL pilot-based
estimation of the effective channel. This approach can be made
more efficient by beamforming the DL pilots based on the
uplink (UL) channel estimates at the APs, making the number
of resource samples used on orthogonal pilot sequences a
function of the number of UEs [4], [5]. However, a drawback
of DL pilot-based estimation is that it has to use additional
resource samples in training pilots, requiring small number of
pilot sequences and, consequently, their reuse among the UEs.

This paper investigates the performance of the DL pilot-
based estimation approach in UC CF massive MIMO net-
works, proposing novel algorithms for DL pilot assignment
and cluster control for AP selection refinement. To the best
of the authors’ knowledge, such analysis has not been carried
out in the literature yet. The analyzes are made considering
different centralized and distributed precoding techniques.
Numerical results are provided in terms of normalized mean
square error (NMSE), SE, EE, and computational complexity
(CC). The impact of different system configurations is investi-
gated by varying some key parameters, such as coherence in-
terval and pilot sequence length. Insightful discussions on the
trade-off between estimation accuracy and overhead, and the
performance of different estimation techniques are provided.978-1-6654-3540-6/22/$31.00 © 2022 IEEE



The results show that the proposed DL pilot assignment can
reduce the NMSE by 85%, while cluster control can improve
the EE by 86.6%.

II. SYSTEM MODEL

It is assumed a time-division duplex (TDD) CF massive
MIMO system with M APs, equipped with N antennas each,
and K single-antenna UEs, where L = MN > K. The TDD
frame length is equal to the coherence interval. Hence, the
channel is assumed to be static within a frame and but it
varies independently for each frame. The channel between the
AP m and UE k (and vice-versa), hmk ∈ CN×1, undergoes
independent correlated Rayleigh fading, being defined as

hmk ∼ NC (0,Rmk) , (1)

where Rmk ∈ CN×N represents the covariance matrix model-
ing the large-scale fading behavior, considering spatial channel
correlation, path loss, and shadowing.

The UL channels are estimated by correlating a received UL
pilot signal with a corresponding known pilot sequence and
performing minimum mean square error (MMSE) estimation.
For each coherence interval of length τc (in symbols), all UEs
simultaneously send UL pilot sequences of length τup samples.
The pilot sequences are assumed to be pair-wisely orthogonal,
and different UEs can be assigned to the same pilot sequence,
i.e., they are reused when K > τup.

In the DL, it is performed an AP selection scheme to
determine the subset Mk ⊂ {1, . . . ,M} of APs serving
UE k, which can also be represented by the diagonal matrix
Dmk ∈ NN×N , i.e.,

Dmk =

{
IN m ∈Mk

0N m /∈Mk.
(2)

Then, each AP serves the UEs by implementing power control
and precoding based on the UL estimates. Each AP only
serves a limited number of UEs to address scalability aspects
[1], [2]. Thus, it follows that |Dm| ≤ τp, where Dm is a
subset containing the UEs served by the AP m. Let qk(n)
be the n-th symbol intended for UE k. It is assumed that
E
{

q(n)q(n)H
}

= IK , where q(n) , [q1(n), · · · , qK(n)]
T .

The data signal sent by AP m can be written as

xm(n) =

K∑
k=1

Dmkwmkqk(n), (3)

where the term wmk ∈ CN×1 represents the precoding vector,
such that E

{
‖wmk‖2

}
= ρ̄mk = ρmk/σ

2
dl, with ρmk being

the transmit power that AP m assigns to the UE k and σ2
dl

is the noise power. UE k receives a linear combination of the
signals transmitted by the APs, i.e.,

yd,k(n) =

M∑
m=1

hmkxm(n) + nd,k(n)

= αkkqk(n)︸ ︷︷ ︸
desired signal

+

K∑
k′ 6=k

αkk′qk′(n)︸ ︷︷ ︸
inter-user interference

+nd,k(n)︸ ︷︷ ︸
noise

, (4)

where

αkk′ =

M∑
m=1

hH
mkDmk′wmk′ , k′ = 1, · · · ,K. (5)

The noise at the receiver follows a complex Gaussian dis-
tribution with zero mean and unit variance, i.e., nd,k(n) ∼
CN (0, 1), αkk is the effective channel for UE k, and
αkk′ , k

′ 6= k is the effective interfering channel. In order to
coherently detect the transmitted data symbol qk, UE k should
have sufficient knowledge of the effective channel αkk, which
can be acquired by estimation or statistical CSI [4]–[7].

III. AP SELECTION REFINEMENT METHOD

This paper proposes a strategy to control the maximum AP
cluster size of the UEs, by restricting the cardinality (|Mk|) of
the AP clusters to a limit called Cmax, ∀k ∈ {1, · · · ,K}. The
latter represents the maximum number of APs that each UE
can connect. Let Ac denote the number of connections that the
M APs (each serving at most τup UEs) can provide to the net-
work. Cmax can be calculated as Cmax = max (1, αAc/K),
where Ac = τupM , and 0 < α ≤ 1 is a refinement parameter
that modifies the stringency of Cmax.

Therefore, when a UE is connected to an excessive number
of APs (i.e., |Mk| ≥ Cmax ) after performing AP selection,
a central processing unit (CPU) is activated to drop the UE’s
connection with the APs having the weakest channel gains so
that |Mk| = Cmax. To this end, the CPU performs a sort oper-
ation in ascending order to identify the APs with the weakest
channel gain to the UE k, with β̄m1 ≤ β̄m2 ≤ · · · ≤ β̄mk,
where β̄mk denotes the sorted version of βmk = tr{Rmk}/N ,
∀m ∈Mk. Then, it calculates Ek = |Mk|−Cmax, where Ek
is the number of excessive APs in the AP cluster of the UE k.
Let Ek denote the subset containing indexes of the first Ek APs
presenting the lowest values in β̄mk. Thus, the CPU imposes
that Dmk = 0N , ∀m ∈ Ek. This policy aims to reduce the
disparity among the cluster sizes of UEs by using the single
refinement parameter α.

IV. DL PILOT-BASED CHANNEL ESTIMATION AND PILOT
ASSIGNMENT

When using DL pilot-based estimation scheme, the APs
send DL pilots to the UEs by precoding them based on the
UL channel estimates [4], [6]. The AP m ∈ Mk′ precodes
the DL pilot sequences ψzk′ ∈ Cτdp×1, where τdp is the DL
pilot length, such that the received DL pilot at the UE k can
be written as

ydp,k =
√
τdp

K∑
k′=1

αkk′ψzk′ + ndp,k, (6)

where ndp,k is the noise vector whose elements are inde-
pendent and identically distributed (i.i.d.) CN (0, 1) random
variables (RVs). It is assumed that the DL pilot sequences are
pair-wisely orthonormal, i.e.,

ψH
z1ψz2 =

{
1, if z1 = z2

0, if z1 6= z2,
(7)



and are also reused among the UEs when K > τdp. Accord-
ingly, UE k correlates the received signal with a known pilot
sequence ψzk in order to estimate its effective channel αkk,
such that

ŷdp,k = ψH
zk
ydp,k =

√
τdpαkk+

√
τdp

K∑
k′ 6=k

αkk′ψ
H
zk
ψzk′ +np,k,

(8)
where np,k = ψH

zk′ndp,k. Then, the UE k performs the linear
MMSE estimation of its channel αkk, which is given by

α̂kk = E {αkk}+
Cov {αkk, ŷdp,k}
Cov {ŷdp,k, ŷdp,k}

(ŷdp,k − E {ŷdp,k}) .
(9)

The second term in (8) contains the pilot contamination
effect generated by the pilot-sharing UEs. Algorithm 1 presents
a DL pilot assignment method that minimizes the pilot con-
tamination interference, where the index of the pilot assigned
to the UE k is denoted as zk ∈ {1, . . . , τdp}. In this one,
the first τdp UEs are assigned to orthogonal sequences. The
remaining UEs are assigned to the pilot that causes the lowest
pilot contamination, given by the average power of the DL
pilot contamination term E{|αki|2}. This method is similar to
the UL pilot assignment proposed by [2], with the difference
being the pilot contamination term.

Algorithm 1: DL pilot assignment that aims to mini-
mize pilot contamination

Input: DL pilot length τdp.
1 for k = 1, . . . , τdp do
2 zk ← k
3 end
4 for k = τdp + 1, . . . ,K do
5 ζ ← arg min

z∈{1,...,τdp}

∑k−1
i=1,zi=z

E{|αki|2}

6 zk ← ζ
7 end

Output: Pilot assignment indexes z1, . . . , zK

V. NORMALIZED MEAN SQUARE ERROR, SPECTRAL AND
ENERGY EFFICIENCY

The performance of the DL pilot-based estimation method
can be computed by the NMSE between the channel estimate
α̂kk and the effective channel αkk, i.e.,

NMSEk =
E
{
|αkk − α̂kk|2

}
E
{
|αkk|2

} . (10)

The achievable DL SE for UE k based on the use-and-then-
forget (UatF) lower bound can be computed as [4], [7]

SEk =
τd
τc

log2 (1 + SINRk) , (11)

with

SINRk =

∣∣∣E{αkk

α̂kk

}∣∣∣2
Var
{
αkk

α̂kk

}
+

K∑
k′ 6=k

E
{∣∣∣αkk′

α̂kk

∣∣∣2}+ E
{

1
|α̂kk|2

} ,
(12)

where α̂kk is the estimate of the effective channel αkk and
SINRk is the signal-to-interference-plus-noise ratio (SINR) of
UE k. To account for channel estimation overhead, the SE
is multiplied by a pre-log factor τd/τc = (τc − τp)/τc =
1 − τp/τc, i.e., the fraction of samples used for DL data
transmission, where τp is the total number of samples used
for UL and DL pilot estimation.

The total EE in bit/Joule is defined as the ratio between the
total throughput Rt = B

∑K
k=1 SEk in bit/s, where B is the

bandwidth in Hz, and the total power consumed by all APs
in Watts, including the consumption of amplifiers, circuits and
backhaul links connecting them to the CPU [3], i.e.,

EEt =
Rt

M∑
m=1

{
σ2
dl

γm
E
{
‖xm‖2

}
+NPtc,m + Pbh,m

} , (13)

where 0 < γm ≤ 1 denotes the efficiency of the power
amplifier, and Ptc,m is the power required of each antenna
of the AP m to run internal components, such as converters
and filters. Additionally, Pbh,m is the power that the backhaul
link connecting the CPU and AP m consumes, given by
Pbh,m = P0,m+Pbt,mB

∑
k∈Dm

SEk, where P0,m is a fixed
power consumption of each backhaul and Pbt,m is the traffic-
dependent power in Watt per bit/s.

VI. NUMERICAL RESULTS

In order to evaluate the network performance of the pro-
posed solutions, Monte-Carlo simulations are run. The sim-
ulation scenario consists of M = 100 APs, each equipped
with N = 4 antennas, and K = 20 UEs covering a 1 km2

rectangular area. It is assumed that the UEs are uniformly
distributed into the coverage area and that the APs are placed
following a hard core point process (HCPP). The propagation
model adopted for the simulations is the 3GPP Urban Mi-
cro (UMi) path-loss model in which the line-of-sight (LOS)
condition uses the probability functions defined in 3GPP TR
38.901 [8]. The correlation matrices Rmk are computed using
the UMi path-loss model and the local scattering spatial
correlation model presented in [2]. The simulations parameters
are presented in Table I. The parameters for EE are set
as γm = 0.4, Ptc,m = 0.2 W, P0,m = 0.825 W, and
Pbt,m = 0.25 W/(Gbit/s) [3].

It is considered two types of network implementations:
(i) distributed configuration, where each AP performs the
channel estimation, precoding and power allocation locally,
and (ii) centralized configuration, where these tasks are per-
formed by the CPU [1]. For the distributed implementa-
tion, the power coefficients at AP m are set as ρmk =
ρd
√
βmk/

∑
k′∈Dm

√
βmk′ , where ρd is the maximum DL

transmit power. For the centralized one, it is used the scalable



fractional power control [2]. In order to compute the precoding
vectors, it is employed the partial MMSE (P-MMSE) and
partial regularized zero-forcing (P-RZF) for the centralized
implementation. For the distributed, it is utilized the local
partial MMSE (LP-MMSE) and maximum ratio (MR). These
techniques were chosen due to their scalability features [1].

TABLE I: Parameters and models used in the simulations.

Parameter Value

Effective environment height, hE 1.0 m
Shadow fading standard deviation, σSF 4 dB

Antenna height AP, UE, hAP , hUE 11.65 m, 1.65 m
RX noise Figure, NF 8 dB
Coherence interval τc 200 samples

UL and DL pilot length τup = τdp = 10 samples
Carrier Frequency f , Bandwidth 3.5GHz, 100MHz

AP’s total DL power 23 dBm
UE’s total UL power 20 dBm

Angular standard deviations (ASDs) σϕ = σθ = 15◦

Antenna spacing 1/2 wavelength distance

Fig. 1 shows the cumulative distribution function (CDF) of
the NMSE of different DL pilot assignment methods. One can
note that the proposed DL pilot assignment in Algorithm 1,
which is a non-joint method that aims to minimize pilot
contamination, performs better than the other ones, reducing
the NMSE by 85% compared with the joint method in the 50th

percentile. The joint UL and DL strategy assigns orthogonal
DL pilots to those UEs that use the same UL pilots [4].
This implies that non-joint methods can improve NMSE, even
though they do not consider the number of pilot sequences as
a function of the number of UEs. Therefore, providing higher
performance with the advantage of being scalable, differently
from the joint strategies which require τup τdp ≥ K.
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Fig. 1: CDF of the NMSE for different DL pilot assignment
methods using MR precoding.

Fig. 2 shows the impact of AP selection in the DL pilot-
based estimation. In Fig. 2a, one can note that AP selection
techniques are crucial for reducing channel estimation errors
since the NMSE is reduced in all AP clustering schemes com-
pared to canonical CF. More specifically, the NMSE becomes
even smaller in strategies that makes the UE connect to fewer
APs, such as the proposed cluster control and small cells. The

cluster control can reduce the NMSE up to 5 dB for the 95th

percentile compared to the scalable CF strategy. Nonetheless, a
solution like small cells (a single AP serving the UE, simulated
by setting Cmax = 1) can damage the SE as Fig. 2b depicts.
One can note that even though it provides higher levels of EE
in Fig. 2c, it does not provide a uniform coverage. This implies
that the parameter α, employed in the cluster control strategy,
has to be well fitted to avoid decreases in SE. For α = 25%,
the cluster control can provide gains of up 19% to the 95th

percentile of the SE for MR precoding and can improve
the EE up to 86.6% for the P-MMSE. It happens because
the cluster control provides the same SE while reducing the
average number of APs serving each UE (|Mk|) and the
average number of UE served by an AP (|Dm|), as Table
II demonstrates, which also reduces the number of complex
scalars exchanged with the fronthaul/backhaul and CC [1].

TABLE II: Average number of APs per UE (|Mk|) and UEs
per AP (|Dm|). All standard deviations were around zero.

Method mean |Mk| mean |Dm|

Scalable CF 50 10
Scalable CF + cluster control 12 2.4

Fig. 3 evaluates the CDF of the NMSE and SE for MR
and LP-MMSE precoding. The performance of DL pilot-
based estimation is compared with blind estimation, statistical
CSI, and perfect CSI. Blind estimation is a method that
does not require time-frequency resource samples. It uses the
average power of the received DL data signals to estimate
the effective channel and is implemented following the steps
presented in [9]. The conventional statistical CSI method uses
average effective channel E {αkk} as the estimates, and an
achievable DL SE can be computed using the hardening bound
[1], [2]. The perfect CSI curves represent the SE when the
UE has perfect knowledge of the effective channel, achieved
in a genie-aided manner [2]. The estimation overhead is
τp = τup + τdp for DL pilot-based estimation, whereas for
the other estimation methods τp = τup, which is used in
the pre-log factor of the SE. From Fig. 3, one can note that
the DL pilot-based estimation decreases the NMSE compared
with blind and conventional statistical CSI approaches for both
precoding schemes. For instance, DL pilot-based estimation
can reduce the NMSE by 95% and 71% compared with blind
estimation for MR and LP-MMSE, respectively. From the
SE results using MR precoding, it can be seen that blind
and DL pilot-based estimation methods improve the system
performance significantly compared with statistical CSI, up
to 80.7% improvement for the 80% likely UEs. However, for
LP-MMSE, DL pilot estimation degrades the SE due to the
estimation overhead, whereas the improvement is slight for
the blind approach. It is expected that the need to estimate the
effective channel with LP-MMSE would be lower due to the
higher degree of channel hardening.

In Fig. 4, the coherence interval length, τc, is varied to
evaluate the performance in terms of average SE for higher
mobility and dispersion scenarios. One can note that blind
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Fig. 2: CDF of the NMSE, SE and average total EE of DL
pilot-based estimation for different AP selection schemes.

estimation is the best method for τc ≤ 200 samples, while
DL pilot estimation has the best performance for τc ≥ 300
samples. The reason for that is the low pre-log factor value of
the DL pilot estimation for the τc ≤ 200, although it has higher
estimation accuracy. These results indicate that deciding which
method is best for the UC CF scenario may vary depending
on the system parameters.

To analyze the impact of the number of DL pilot sequences
(τdp) in the performance of DL pilot-based method, Fig. 5
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Fig. 3: CDF of the NMSE and SE for different estimation
methods.

shows the average NMSE and SE versus τdp. As expected,
the estimation accuracy improves as τdp increases since there
is less pilot contamination interference. The SE for MR pre-
coding can be maximized by setting τdp = 5, which balances
its estimation overhead and accuracy. On the other hand, the
average SE decreases as the number of DL pilot sequences
increases for the other precoding schemes, becoming best to
set τdp at values as small as one, or performing another channel
estimation method such as the blind one.

The CC of blind and DL pilot-based estimation methods
can also be compared. Assuming that the statistical values are
precomputed, known, and stay the same throughout communi-
cation, there is no need to evaluate its CC for each coherence
interval. This also means that the CC for statistical CSI is zero.
The CC of DL pilot-based estimation is a function of the pilot
length, τdp, as each UE has to correlate its pilot sequence with
the received pilot signal, an operation that requires τdp − 1
additions and τdp multiplications. For blind estimation, each
UE has to compute the average sample power of the received
signal, its CC depends on the number of samples used for DL
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Fig. 5: DL pilot-based estimation average NMSE and SE
versus the DL pilot sequence length.

data transmission and requires τd − 1 additions [9]. Table III
summarizes these values, where it can be noted that their total
CC is the same if τdp = τd/2. As typically τdp < τd/2, it is
expected that the UEs using blind estimation will have higher
CC than DL pilot-based estimation. Furthermore, there is also
the CC of the proposed DL pilot assignment in Algorithm 1,

which is O((K − τdp)τdp) for all UEs K, but the UEs do not
perform this task.

TABLE III: CC for each UE by using different estimation
methods, in every coherence interval.

Method # additions # multiplications Total

DL pilot estimation τdp − 1 τdp 2τdp − 1
Blind estimation τd − 1 0 τd − 1

VII. CONCLUSIONS

This paper investigated the performance of DL pilot-based
estimation in UC CF massive MIMO systems. It is proposed an
algorithm for DL pilot assignment that aims to minimize pilot
contamination. The paper also proposed a refinement method
for AP selection that controls the maximum AP cluster size
of UEs. The results demonstrate that the proposed DL pilot
assignment algorithm can outperform the baseline solutions,
reducing by 85% the NMSE, and has the advantage of being
scalable. The proposed AP selection refinement method can
improve the EE by up to 86.6% without compromising the
SE. The results also demonstrated that for MR precoding,
blind and DL pilot-based estimation methods can improve
the system performance significantly compared to using only
the statistical CSI. DL pilot-based estimation decreases NMSE
and increases the SE of the 80% likely UEs by about 80.7%
compared with statistical CSI. It is demonstrated that when the
pilot overhead is small, DL pilot-based estimation is the best
method since it has higher estimation accuracy. The analyzes
indicate that it is possible to get the best performance with
any one of the three estimation methods depending on the
system parameters. This opens the way for future works to
design self-regulated resource management strategies adapted
for each scenario.
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