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Abstract: This paper presents an experimental demonstration of the photonic segment of a
photonic-electronic multiply accumulate neuron (PEMAN) architecture, employing a silicon
photonic chip with high-speed electro-absorption modulators for matrix-vector multiplications.
The photonic integrated circuit has been evaluated through a noise-sensitive three-layer neural
network (NN) with 1350 trainable parameters targeting heartbeat sound classification for health
monitoring purposes. Its experimental validation revealed F1-scores of 85.9% and 81% at
compute rates of 10 and 20 Gbaud, respectively, exploiting quantization- and noise-aware deep
learning techniques and introducing a novel activation function slope stretching strategy for
mitigating noise impairments. The enhanced noise-resilient properties of this novel training
model are confirmed via simulations for varying noise levels, being in excellent agreement with
the respective experimental data obtained at 10, 20, and 30 Gbaud symbol rates.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Analog computing is emerging as a promising alternative for high-speed and power-efficient
Deep Neural Networks (DNN), particularly in the computationally demanding segment of matrix
multiplications [1]. Optical Neural Networks (ONN) constitute a valuable analog computing
approach for efficient multiplication operations, leveraging the inherent parallelization and speed
of light [2–4]. Moreover, the unique characteristics of ONNs, coupled with the advancing maturity
of photonic integration, enable denser implementations of ONNs on silicon chips, known as
integrated Photonic Neural Networks (PNNs). The integration of PNNs with already established
electronic platforms can offer a hybrid photonic-electronic platform capable of harnessing the
advantages of both analog electronic and optical analog computing paradigms.

So far, PNN demonstrations have showcased excellent performance in terms of computing
speed and power consumption [5–26], leveraging different multiplexing techniques in order to
extend the computational margins of the limited photonic hardware [27]. However, the spatial
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division multiplexed (SDM) schemes [16,17] impose scalability challenges in large network
implementations, since spatial expansion would lead to large circuit layouts with high insertion
losses and challenging electrical routing. Similarly, the implementation of wavelength division
multiplexed (WDM) layouts [13–15], [25] requires a number of optical channels that increases
with network dimensions, facing severe limitations to comply with the large size of NN parameters.
The only architectural framework that has been shown to be capable of supporting hundreds
of trainable parameters relies on the utilization of time division multiplexing (TDM) concepts
[28,29]. TDM leverages the time domain to scale up calculations, implementing the summation
function through integration over time and as such significantly relaxing the demands for speed
and power consumption at the Analog to Digital (ADC) stage. TDM schemes can be also
synergized with additional multiplexing degrees like space and/or wavelength to boost circuit
scalability and computational power, reducing at the same time latency [26,30,31].

Towards this direction, it has been recently introduced and numerically demonstrated a
photonic-electronic multiply-accumulate neuron (PEMAN) architecture that performs TDM
multiplications in the photonic domain and accumulation in the electronic domain via an analog
integrator circuitry and applies a nonlinearity within its low-speed ADC [32]. The PEMAN is
capable of executing all necessary operations of an artificial neuron, trading-off multiplication
speed and energy consumption with accuracy. However, the photonic-electronic circuit is
expected to be subject to various types of noise in case it gets physically deployed, including
shot noise, thermal noise and data conversion quantization noise that limit the bit precision of
the system. The physical constraints of analog photonic NN hardware have to be taken into
account during the training process in order to maintain an effective network performance [23],
an area that has been recently introduced as optics-informed Deep Learning [3]. In this realm,
various methods have been so far proposed to mitigate the noise impact [18,24,33,34]. More
specifically, the demonstration in [18] investigates the effects of non-deterministic noise sources
of photonic hardware that were approximated via Additive Gaussian Noise Sources (AWGN),
including laser Relative Intensity Noise (RIN), Johnson shot-noise and uniform quantization
noise. The mean value and standard deviation of the AWGN were set to match the experimentally
obtained noise characteristics of the photonic circuit. These values were then incorporated
into the training process, resulting in higher classification accuracies of the MNIST dataset,
compared to conventional training methods. On the other hand, the authors in [24,34] proposed
a novel training method that incorporates only the limited frequency response of the deployed
photonic components, without applying any quantization on the NN values. Finally, the authors
in [33], proposed a mixed-precision quantization-aware training scheme that can adjust the bit
resolution among the NN layers in order to reduce the inference execution time. Although
these demonstrations show improvement on the performance of the photonic neural network,
they primarily rely on quantization strategies applied only during the training phase, neglecting
the application of quantization during the inference process which may further enhance the
performance.

In this paper we report for the first time the photonic part of the PEMAN architecture as a silicon
photonic chip and demonstrate its experimental performance in heartbeat sound classification
tasks, exploiting an innovative optics-informed training model for enhancing noise resiliency.
The silicon photonic chip employs high-speed SiGe electro-absorption modulators (EAMs) for
both input and weight signal encoding, executing element-wise multiplications exclusively in the
optical domain and completing the matrix multiplication via summation in the analog electronic
domain. The silicon-integrated PEMAN layout has been experimentally evaluated by executing
the computations required by a noise-sensitive three-layer NN with 1350 parameters trained for
heartbeat sound classification as normal or abnormal. In order to enhance the noise tolerance
of the NN, we propose a novel quantization strategy applied both during training and inference
processes, including i) quantization at the output of the activation function and ii) stretching of
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the slope of the activation function. After applying these strategies, the noise impact of the analog
photonic hardware on the classification accuracy is minimized. Its experimental validation was
carried out at data rates up to 30 Gbaud, revealing F1-scores up to 85.9% at 10 Gbaud and 81% at
20 Gbaud. Its robust performance was verified via simulation analysis for different noise levels,
showing excellent agreement with the respective experimental results and highlighting that the
combined use of the proposed quantization strategy and the activation function slope stretching
allows network performance to degrade much slower with increasing noise levels compared to
the respective digital NN.

2. Photonic electronic neurons with electro-absorption modulators

PEMAN is a neuromorphic analog processor that synergizes the advantages of both photonic
and electronic components to efficiently perform all the necessary operations of an artificial
neuron [32]. Figure 1(a) presents a schematic diagram of the PEMAN architecture, outlining
both the required opto-electronic components and the employed TDM approach for implementing
matrix-vector multiplications necessary to carry out the neuromorphic processing of an N-neuron
layer, with each neuron fed by K inputs. In our proposed TDM approach, both the input vector
and the weight matrix are transformed to serialized time vectors prior to being injected into the
PEMAN accelerator. To this end, the weight matrix with a dimensionality of [N×K] and the
input vector of [K× 1] are serialized to a w(t) and X(t) time vectors, with the latter generated by
repeating the input vector N times. First a high-speed optical modulator imprints the input time
vector X(t) on an incoming optical carrier. The resulting signal is split in two branches, each
comprising an optical modulator responsible for imprinting the weight vector decomposed as a
“positive” and “negative” vector (w+ and w−) so to drive the EAMs in a push-pull configuration.
The output signals constituting the positive and negative products X(t)×w + (t) and X(t)×w−(t),
are subsequently injected into a balanced photodiode that provides at its output the algebraic
summation of the two products (X(t)×w + (t) - X(t)×w−(t)). Finally, an electronic integrated
circuit (EIC), incorporating an analog accumulator module, accumulates the incoming product
values in each time slot, while a non-linear ADC applies the required nonlinearity and converts
the signal to the electrical domain. More details considering the operating principles and the
components of the EIC are described in [32].

In this work, a SiPho chip, fabricated using IMEC’s SiP 300 mm wafer technology, was
utilized for the experimental evaluation of the PEMAN architecture, with Fig. 1(b) illustrating a
photo of the circuit covering a total area of 2.8 mm2. The figure also highlights the constituent
input (EAM X) and weight encoding (EAM w+ and EAM w-) modulators, comprising 50 µm
long Franz-Keldysh EAMs of 56 GHz bandwidth. Further information regarding the fabrication
details can be found in [35]. The EAMs revealed an insertion loss (IL) of 5 dB at 1560 nm, while
the extinction ratio (ER) ranges up to 7 dB when a static reversed biased voltage of 3 V is applied.

Figure 1(c) depicts the experimental setup used for evaluating the PEMAN architecture.
A continuous-wave (CW) light beam at 1560 nm, corresponding to the optimum operating
wavelength in terms of IL and achieved ER of the constituent EAMs, was coupled into the
chip via a transverse electric (TE)-grating coupler. High-speed RF signals were generated by
a 25 GHz bandwidth Keysight 8195a Arbitrary Waveform Generator (AWG) and subsequently
amplified to 3Vpp using 67 GHz bandwidth RF amplifiers thereby providing amplitude modulated
signals up to 30 Gbaud. All three EAMs were biased at -1.5 V to ensure reverse bias operation,
considering that a 3Vpp RF signal was applied on the devices. The optical signals emerging at
the chip’s output were amplified by Erbium-Doped Fiber Amplifiers (EDFAs) to counteract the
optical losses introduced by the photonic integrated circuit (PIC), prior to being filtered by optical
bandpass filters (OBPF) to eliminate the EDFA’s amplified spontaneous emission (ASE) noise.
However, in the complete PEMAN, with co-designed and co-packaged photonic and electronic
integrated circuits, the EDFA and the OBPF are not needed, that would otherwise hamper the
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Fig. 1. (a) PEMAN architecture along with a schematic explanation of the matrix vector multiplication that is 
performed on different time slots, for both positive and negative weights, on the device. (b) Microscope photo of the 
silicon photonic chip indicating the EAMs of the circuit. (c) Experimental setup for the PEMAN evaluation.

Fig. 1. (a) PEMAN architecture along with a schematic explanation of the matrix vector
multiplication that is performed on different time slots, for both positive and negative weights,
on the device. (b) Microscope photo of the silicon photonic chip indicating the EAMs of the
circuit. (c) Experimental setup for the PEMAN evaluation.

device power efficiency and compactness. The resulting signals were injected into two different
70 GHz bandwidth photodiodes and acquired by two separate digital oscilloscope channels due to
the lack of an on-chip balanced photodiode. Finally, the time synchronization and the algebraic
summation of the two waveforms, along with the accumulation and the non-linear activation
function, were carried out digitally using software routines.

The integrated PEMAN circuit was evaluated over the NN model illustrated in Fig. 2(a). The
NN was trained to classify heartbeat sound samples in normal and abnormal classes, with the
abnormal class correlated with the presence of a heart disease, such as Murmur or Extra-systole
[37,38]. Prior to being injected into the NN, the heartbeat sound signals were first processed in
a feature extraction module, responsible for extracting 52 features from the input time-series.
The NN followed a fully-connected topology and comprised an input, a hidden, and an output
layer with 52, 25 and 2 neurons, respectively. The ReLU activation function with a stretched
slope factor of 4 [39] was utilized at the hidden layer (Layer 1), while the output layer employed
a softmax function, followed by a comparison function that classified the heartbeat sample as
abnormal when the value of the first neuron was higher than or equal to that of the second neuron,
and as normal otherwise. It should be noted that both the input values and the weights of the
neural network were quantized into 4 levels, corresponding to an equivalent bit resolution of 2
bits within the range of [-1,1] and [0,1] for weights and inputs, respectively.

This approach was motivated by the inherent noisy profile of analog photonic accelerators,
that reduces the effective bit resolution of the system, constraining it within a range of 1 to
6 bits [22,32]. Quantized photonic neural networks have been proposed as a system-agnostic
approach in mitigating the signal degradation originating from analog noise, either involving
quantization during only the training phase of the NN [33] or quantization both during the
training and inference phase [36]. The latter method is tailored to the quantization typically
enforced through the constituent digital-to-analog (DAC) and analog-to-digital (ADC) converters
in opto-electronic layouts and, as such, was the method employed in our work. In order to
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Fig. 2. (a) Topology of the heartbeat sound classification neural network. Different cases
describing the effect of noise mitigation on an input value of 0.66 with σ of 0.2, to emulate
the AWGN of the system. (b) Noise distribution (blue curve) and the ReLU function (orange
curve). (c) Noise distribution and quantized ReLU. (d) Noise distribution and quantized
stretched ReLU.

illustrate how quantized photonic neural networks can improve NN performance, Figs. 2(b)-(d)
depict the input/output correlation of an activation function module for three different activation
functions i.e. i) typical ReLU, ii) Quantized ReLU and iii) Quantized Stretched ReLU. The
input is approximated by a gaussian distribution with a mean value of µ= 0.66 for i) and ii), and
µ= 1.32 for iii), corresponding to the targeted input values, and a standard deviation of σ= 0.2,
which emulates the presence of AWGN in the opto-electronic neuron. The output of a single
photonic neuron with the typical ReLU applied is defined as:

y = f
(︃∫

X(t) · w(t) dt + N(µ,σ2)

)︃
, (1)

where X(t) and w(t) represent the input and weight time sequences, respectively, N(µ,σ2) is the
additive noise and f is the ReLU function that defined as:

f (x) =
⎧⎪⎪⎨⎪⎪⎩

0, x ≤ 0

x, x>0
. (2)

Figure 2(b) illustrates that when the ReLU activation function is applied, the additive noise
is identical pre- and post- activation function resulting in incorrect output values. A strategy
for addressing the noise induced discrepancy is the quantization of the values after the ReLU
activation function, denoted as the Quantized ReLU case. The neuron output is then defined as:

y = Q
[︃
f
(︃∫

X(t) · w(t) dt +N(µ,σ2)

)︃]︃
, (3)



Research Article Vol. 32, No. 20 / 23 Sep 2024 / Optics Express 34269

and specifically for the 2-bit resolution case as:

Q(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ 0.16

0.33, 0.16<x ≤ 0.50

0.66, 0.50<x ≤ 0.83

1, x>0.83

. (4)

Figure 2(c) illustrates the noise suppression qualities of the quantized ReLU configuration,
with the output reaching the correct value for an error interval of the input value of approximately
±1σ. To further enhance the noise resilience of the network, a method based on stretching
the quantization intervals can be applied [39], resulting in the Quantized Stretched ReLU
configuration. The neuron output in this case is defined as:

y = Q

⎡⎢⎢⎢⎢⎢⎣
f
(︂∫

X(t) · w(t) dt +N(µ,σ2)
)︂

a

⎤⎥⎥⎥⎥⎥⎦ , (5)

where the parameter a refers to the stretching factor of the ReLU slope. Figure 2(d) illustrates the
input output correlation of the Quantized Stretched ReLU configuration for an input value of
µ= 1.32 with σ= 0.2, when using a stretched interval with a factor a= 4. As can be observed, the
output reaches the correct value for a wider input error interval, illustrated by the area highlighted
in green, that corresponds to approximately to ±3σ of the error distribution, increasing the noise
resilience of the NN. It should be mentioned that even though this approach results in a shifting
of the output values at lower levels, the NN accuracy is not affected as the monotonicity of the
output sequence remains intact. A simulation analysis considering different noise levels in the
neural network inference, for the three aforementioned cases, is presented in the next section.

3. Results and discussion

The performance of the integrated PEMAN neuron during NN inference was assessed for 20
different heartbeat samples, each comprising 52 extracted features, and for three different compute
rates, 10, 20 and 30 Gbaud. In Fig. 3(a) and (b) the experimental and software derived output
of Layer 1 for the first 5 input samples are overlaid, at computing speeds of 10 and 20 Gbaud,
with mean squared error values (MSE) of 0.014 and 0.022, respectively. The divergence between
the experimentally acquired and ideal software traces for all 20 input samples at Layer 1 was
quantified also by calculating an error vector corresponding to their difference and fitting a
zero mean gaussian distribution to the resulting values. The 30 Gbaud signals are not shown
due to the higher discrepancy between the software and experimental waveforms. Figure 3 (c)
illustrates the derived standard deviation values for operating compute rates of 10, 20 and 30
Gbaud, resulting in values of σ10= 0.09, σ20= 0.10 and σ30= 0.17, respectively. The significant
increase in the noise profile at 30 Gbaud is attributed to the limited bandwidth characteristics
of the hardware setup mainly attributed in the electrical part. Figure 3 (d) and (e) illustrate the
software and experimental output values of the 2 neurons of Layer 2 for all 20 different input
samples again at compute rates of 10 and 20 Gbaud, respectively. The experimentally derived
values are indicated by the cross (‘x’) scatter points and the dotted lines, while the software
derived values are denoted with the circle (‘o’) and continuous lines. A close inspection of
the output values for the two compute rates reveals a slight degradation in the matching of the
software and experimentally derived values when moving from 10 to 20 Gbaud. This discrepancy
is reflected in the achieved F1 score values of the neural network, which are 85.9% and 81.0%,
for 10 and 20 Gbaud respectively, while the baseline software F1 score is 94.8%. The confusion
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Fig. 3. Experimental and software traces for the (a) 10 Gbaud and (b) 20 Gbaud NN encompassing the first 5 input 
samples after the application of the stretched ReLU function in layer 1. (c) Bar plot of the noise standard deviation 
values, calculated on the total 20 input samples traces of layer 1 after the activation function, for the different compute 
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samples, for 10 Gbaud and (e) 20 Gbaud.

Fig. 3. Experimental and software traces for the (a) 10 Gbaud and (b) 20 Gbaud NN
encompassing the first 5 input samples after the application of the stretched ReLU function
in layer 1. (c) Bar plot of the noise standard deviation values, calculated on the total 20
input samples traces of layer 1 after the activation function, for the different compute rates.
(d) Experimental and software output traces of the two neurons at layer 2 after softmax,
encompassing all input samples, for 10 Gbaud and (e) 20 Gbaud.

231 94.8%. The confusion matrices for the different compute rates, stemming from the experimental 
232 validation of the NN, are depicted in Figure 4.
233 Finally, we have calculated the energy and footprint efficiency of the device using state of 

234 the art DACs and RF amplifiers, as well as the values reported in [32] for the electrical backend 
235 of PEMAN. The energy efficiency can be broken down into the energy efficiency of the optical 
236 and the electrical components, as follows:

𝑒 = 𝑒𝑒𝑙 + 𝑒𝑜𝑝𝑡 (6)

237 The optical term is defined as:

𝑒𝑜𝑝𝑡 =
𝑃𝐿𝑎𝑠𝑒𝑟 + 𝑃𝐸𝐴𝑀―𝑋 + 2𝑃𝐸𝐴𝑀―𝑤

𝐶𝑅
(6)

238 where 𝑃𝐿𝑎𝑠𝑒𝑟, 𝑃𝐸𝐴𝑀―𝑋 , 𝑃𝐸𝐴𝑀―𝑤  are the power consumption of the laser, the input EAM and 
239 the weight EAM, respectively, following the principles defined in [40], and CR denotes the 
240 compute rate. The electrical energy efficiency can be calculated as:

𝑒𝑒𝑙 =
3𝑃𝐷𝐴𝐶 + 3𝑃𝑅𝐹𝑎𝑚𝑝 + 𝑃𝑇𝐼𝐴+𝐼𝑁𝑇+𝐴𝐷𝐶

𝐶𝑅
(6)

241 where 𝑃𝐷𝐴𝐶 is referred to the power consumption of the DAC,  𝑃𝑅𝐹𝑎𝑚𝑝 to the power 
242 consumption of the amplifiers required to drive the EAMs and 𝑃𝑇𝐼𝐴+𝐼𝑁𝑇+𝐴𝐷𝐶 referred to the 
243 power required for the electrical backend of the PEMAN architecture. Considering, the 
244 following values, 𝑃𝐿𝑎𝑠𝑒𝑟 = 10 𝑚𝑊 assuming a wall-plug efficiency of 20%, 𝑃𝐸𝐴𝑀 = 0.6 𝑚𝑊, 
245 𝑃𝐷𝐴𝐶 = 144 𝑚𝑊[41], 𝑃𝑅𝐹𝑎𝑚𝑝 = 61 𝑚𝑊 [42] and 𝑃𝑇𝐼𝐴+𝐼𝑁𝑇+𝐴𝐷𝐶 = 13 𝑚𝑊 [32], the 
246 resulting energy per operation for the different compute rates are 𝑒10 = 64.0 𝑝𝐽/𝑀𝐴𝐶, 𝑒20
247 =  32.0 𝑝𝐽/ 𝑀𝐴𝐶 and 𝑒30 = 21.3 𝑝𝐽/𝑀𝐴𝐶 for 10, 20 and 30 Gbaud, respectively. Regarding 
248 the footprint efficiency of this chip, it is considerably higher because the circuit design has not 
249 been optimized. Based on the tested circuit the three EAMs with RF contacts occupy an area 
250 of 0.122 mm2 while the grating couplers cover an area of 0.015 mm2 considering a pitch of 127 
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matrices for the different compute rates, stemming from the experimental validation of the NN,
are depicted in Fig. 4.

Finally, we have calculated the energy and footprint efficiency of the device using state of the
art DACs and RF amplifiers, as well as the values reported in [32] for the electrical backend of
PEMAN. The energy efficiency can be broken down into the energy efficiency of the optical and
the electrical components, as follows:

e = eel + eopt (6)

The optical term is defined as:

eopt =
PLaser + PEAM−X + 2PEAM−w

CR
(7)
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where PLaser, PEAM−X , PEAM−w are the power consumption of the laser, the input EAM and the
weight EAM, respectively, following the principles defined in [40], and CR denotes the compute
rate. The electrical energy efficiency can be calculated as:

eel =
3PDAC + 3PRFamp + PTIA+INT+ADC

CR
(8)

where PDAC is referred to the power consumption of the DAC, PRFamp to the power consumption
of the amplifiers required to drive the EAMs and PTIA+INT+ADC referred to the power required
for the electrical backend of the PEMAN architecture. Considering, the following values,
PLaser = 10 mW assuming a wall-plug efficiency of 20%, PEAM = 0.6 mW, PDAC = 144 mW [41],
PRFamp = 61 mW [42] and PTIA+INT+ADC = 13 mW [32], the resulting energy per operation for the
different compute rates are e10 = 64.0 pJ/MAC, e20 = 32.0 pJ/ MAC and e30 = 21.3 pJ/MAC
for 10, 20 and 30 Gbaud, respectively. Regarding the footprint efficiency of this chip, it is
considerably higher because the circuit design has not been optimized. Based on the tested
circuit the three EAMs with RF contacts occupy an area of 0.122 mm2 while the grating couplers
cover an area of 0.015 mm2 considering a pitch of 127 µm. The resulting footprint efficiencies,
calculated as in [43], are 66.7, 133.3, and 200 GMACs/mm2 for the computation speeds of 10,
20 and 30 Gbaud, respectively. Considering a practical routing, an optimized cell for this design
would need a height of 300 µm and a width of 500 µm, resulting in an area of 0.15 mm2 that
would result in footprint efficiencies of 37.0, 74.0 and 111.1 GMACs/mm2.

Following the experimental evaluation of the integrated PEMAN neuron, a simulation analysis
was carried out in order to examine the performance of the opto-electronic neural network for
different noise profiles and NN configurations. In this analysis, all the noise sources of the
electro-optic hardware, such as thermal noise and shot noise, are embedded in a single additive
stochastic noise component. As such, the system’s noise is modelled as AWGN N(0,σ2), with
zero mean and a standard deviation of σ, expressed as a fraction of the signal power, and added
to the resulted product waveform (X×w) during NN inference. The inference performance of
the NN for different noise profiles was assessed by gradually increasing the system’s noise and
measuring the achieved F1 score. Three different NN configurations were examined, i.e., (a)
“Typical” floating point (FP) NN configuration, where the input and weight values are represented
by floating point values while employing the ReLU activation function, (b) Quantized-NN
configuration where the input and weight values are quantized to 2 bits and the ReLU activation
function is employed, and (c) Stretched ReLU Quantized NN configuration where the input
and weight values are quantized to 2 bits, and a stretched slope ReLU, with a stretching factor
a= 4 is employed. Figure 5 illustrates the achieved F1 scores of all three NN configurations,
when the noise standard deviation σ is swept across the range [0, 0.5]. The simulation results
indicate that the FP NN is the most vulnerable to additive noise, with its performance significantly
deteriorating even from low-noise levels, i.e., with σ= 0.1. The Q-NN exhibits better noise
tolerance, achieving F1 scores >65% for noise values up to σ= 0.1. Finally, the SR-QNN
configuration further enhances the noise tolerance of the network, retaining f1 scores higher than
50% even for significant noise values.

The correlation of the experimentally achieved F1 scores with the experimentally measured
noise profiles at the three targeted compute rates of 10, 20 and 30 Gbaud, are also illustrated in
Fig. 5. As can be observed, they are in good agreement with the simulation results as they lie
within the error window of the blue curve, which corresponds to the experimental configuration.
The noise standard deviation associated with 30 Gbaud is much higher than the other two, but it
could be reduced if the setup were optimized for higher rates.
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Fig. 5. Simulation results with the presence of noise in the products, for an NN configuration with floating point values 
and ReLU activation (green), with quantized values and ReLU activation (orange) and with quantized values and 
stretched slope ReLU activation. The shadowed areas indicate the error window of each curve that obtained after 100 
iterations for each σ value. In the graph the experimental points measured from the product waveforms are also 
presented for 10, 20 and 30 Gbaud NN.

Fig. 5. Simulation results with the presence of noise in the products, for an NN configuration
with floating point values and ReLU activation (green), with quantized values and ReLU
activation (orange) and with quantized values and stretched slope ReLU activation. The
shadowed areas indicate the error window of each curve that obtained after 100 iterations for
each σ value. In the graph the experimental points measured from the product waveforms
are also presented for 10, 20, and 30 Gbaud NN.

4. Conclusions

This paper presents an experimental demonstration of the photonic segment of the PEMAN
architecture, utilizing a silicon photonic chip with high-speed electro-absorption modulators for
matrix-vector multiplications. The evaluation, conducted on the photonic integrated circuit, where
a three-layer NN for health monitoring was implemented, yielded promising results. Specifically,
with a NN layout comprising 1350 trainable parameters, aimed at classifying heartbeat sounds,
the network achieved notable F1-scores of 85.9% and 81% at compute rates of 10 and 20 Gbaud,
respectively, while the performance at 30 Gbaud was degraded due to limited bandwidth of the
hardware setup. Additionally, strategies such as quantization of the input and weight values and
ReLU function slope stretching were implemented to address noise impairments stemming from
the hardware constraints. Simulation analysis underscored the pivotal role of the quantization
strategy in maintaining network performance amidst additive noise during NN inference. These
findings highlight the potential of leveraging photonic architectures for efficient and robust neural
network implementations.
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