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ABSTRACT: Mounting evidence indicates that climate tipping Multiple climate tipping points metrics
points can have large, potentially irreversible, impacts on the earth  GHG concentration .~ e
v ) . . . scenarios climate tipping points Impact of crossing tipping points
system and human societies. Yet, climate change metrics applied in & .
current sustainability assessment methods generally do not = S s
consider these tipping points, with the use of arbitrarily determined 2 ]} £
o o

time horizons and assumptions that the climate impact of a + = il +

g o g 9 o 9.9 . 2 | | LM | ©
product or service is independent of emission timing. Here, we N ‘NTHER:
propose a new method for calculating climate tipping character- F ©

ization factors for greenhouse gases (carbon dioxide, methane, and 135 7 91113 2000 2050 2100
nitrous oxide) at midpoint. It covers 13 projected tipping points,

incorporates the effect that the crossing of a given tipping point has on accelerating the crossing of other tipping points, and
addresses uncertainties in the temperature thresholds that trigger the tipping points. To demonstrate the added value of the new
metric, we apply it to emissions stemming from end-of-life of plastic polymers and compare them with commonly used metrics. This
highlights the need to consider climate tipping in sustainability assessment of products and services.

B INTRODUCTION (where midpoint refers to the location of the indicator in the
cause-effect chain linking emission inventories with final

There are several elements of the earth system that could pass
damage caused to environment or human health). For another

a tipping point within this century and trigger large abrupt,

potentially irreversible changes." Examples of tipping elements midpoint indicator, global temperaxture change, the global
include Arctic summer sea ice, the Atlantic thermohaline temperature change potential (GTP)" is used and the resulting
circulation, and the El Nifio-southern oscilation.” The crossing impact scores indicate the potential contribution of a product
of these elements may be one of the most dangerous or service to global average temperature increase of the
consequences of human-induced climate change.” From the atmosphere at a future point in time, typically at 100 years.
economic perspective only, Cai et al. showed an eight time Both GWP and GTP are recommended emission metrics by
increase in monetary costs per 1 tonne of carbon dioxide the IPCC® and have been suggested as complementary CFs for
emltted when compared to the costs without considering the quantification of climate change impacts of products and
tipping.* These findings stress the need for consideration of services by the LCA community.” However, none of them
climate tipping elements when developing metrics of climate considers climate tipping mechanisms in the earth system.”'’
impact for improved environmental sustainability assessment It is challenging to capture the dependence of the impact of
of products and services. emissions on the emission timing in relation to the time of the
Life cycle assessment (LCA) is a tool that is often used to tipping points. As tipping points represent critical levels of
address the environmental sustainability of products and warming that should not be crossed, tipping-orientated GHG
systems.” In LCA, the climate change impacts of a product emission metrics cannot simply measure radiative forcing (or

or service are tradltlonally quantified using global warming
potentials (GWP)® as characterization factors (CF), represent-
ing the impact per unit of emission. Amounts of individual
greenhouse gases (GHG) that can be attributed to a specific
product or service are first summed up and then multiplied by
a GHG-specific GWP; the resulting indicator scores added.
The sum represents the climate change impact score (also
referred to as carbon footprint)” and expresses the potential
contribution of a product or service to change radiative forcing
(not the actual warming) over a defined time horizon, typically
over 100 years. The procedure for calculating impact scores is
the same for all other midpoint indicators of climate change

temperature) change over a fixed time horizon for a pulse
emission emitted at an arbitrary time. Instead, they should
quantify how much that change can contribute to crossing the
tipping points and should assess that for multiple pulse
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emissions, i.e., emitted at different times. To do this, an
approach based on quantification of the carrying capacity of
the atmosphere to absorb the emission without crossing the
tipping point is necessary.'' In this perspective, the effects of
an emission will depend on how much carrying capacity is
depleted by the emission and, thus, on the proximity to tipping
points. This is at odds with current impact assessment practice
where carrying capacities and dependency of impacts on
emission timing are not embedded in the CF."'"'?

The metric developed by Jorgensen et al,"’ the climate
tipping potential (CTP), introduced both aspects while
accounting for the Arctic summer sea-ice loss as tipping
element. Here, the impact of 1 kg GHG emitted at a given year
was expressed as the fraction of carrying (or remaining)
capacity, i.e., the time-integrated increase in atmospheric CO,-
equivalent concentration that can still occur before Arctic
summer sea-ice loss, depleted by the time-integrated change in
CO,-equivalent concentration caused by the emission.
However, their metric only considers this one tipping point
and thereby neglects several aspects that are required for a
robust metric of climate tipping. First, it must consider
emissions occurring after the tipping of a given element of the
earth system as contributors to crossing other, subsequent
tipping points.B Second, potential consequences of crossing a
given tipping point on the acceleration tipping of other
elements must be accounted for."* For instance, the reduction
of sea ice albedo in the Arctic amplifies warming making the
subsequent tipping point (e.g, Greenland ice sheet melting)
occur faster than it would without tipping of the Arctic sea ice.
Third, when taking multiple tipping points into account,
sequence and timing of occurrence of individual climate
tipping points depend on uncertain factors, like temperature
thresholds triggering the tipping points,”'> and these
uncertainties must be accounted for.

In this paper, we develop new climate tipping character-
ization factors (CF) for three major anthropogenic GHGs
(carbon dioxide (CO,), methane (CH,), and nitrous oxide
(N,0)), which meet these requirements. We first select
relevant tipping elements, present the conceptual framework,
and develop a method for computing multiple climate tipping
points potentials (MCTPs) at midpoint. We apply the new
MCTPs to end-oflife GHG emission inventories for plastic
polymers made from different feedstock and spanning a wide
range of temporal evolutions of GHG emissions in their end-
of-life. We also present practical implications of using the new
CFs in LCA, where information about temporal evolution of
GHG emissions might not be available or relevant. We argue
that the new CFs are a useful supplement to (but not a
substitute for) the currently used GWP and GTP CFs
recommended by the IPCC.

B METHODS

Selection of Climate Tipping Elements. We carried out
a literature review to identify a broad list of potential tipping
elements without considering potential differences in the
formal definition of tipping point given by different authors
(Table S1 in Supporting Information). From this broad list, 13
tipping points were selected for inclusion in the study based on
a set of criteria that (1) define the tipping mechanism, (2)
consider changes in atmospheric GHGs concentration as the
potential triggers, and (3) consider modeling of the tipping
points feasible when tipping thresholds can be expressed as
global mean temperature. The selection criteria are presented
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in the Supporting Information. The selected tipping points are
Arctic summer sea ice loss (AS), Greenland ice sheet melt
(GI), West Antarctic ice sheet collapse (AI), Amazon
rainforest dieback (AF), Boreal forest dieback (BF), El Nifio-
Southern Oscillation change in amplitude (EN), Permafrost
loss (P), Arctic winter sea ice loss (AW), Atlantic thermohaline
circulation shutoff (TC), North Atlantic subpolar gyre
convection collapse (SG), Sahara/Sahel and West African
monsoon shift (AM), Alpine glaciers loss (AG), and Coral
reefs deterioration (CR) (Table S2).

Conceptual Framework. The method for calculating the
climate tipping potential (CTP) for the Arctic summer sea-ice
loss as tipping element proposed by Jorgensen et al.'” was
taken as a starting point. Their method is further developed to
consider: (1) other selected tipping elements, (2) uncertainties
of tipping points occurrence, and (3) the effect of crossing a
tipping point on accelerating tipping of all subsequent tipping
points. The new CFs are therefore referred to as multiple
climate tipping points potentials (MCTP). Their main features
are presented below.

First, the impact of a GHG emission represents time-
integrated radiative forcing of 1 kg emission of a greenhouse
gas i and is expressed as atmospheric CO,-equivalent
concentration (in ppm of CO,e-yrkg'). The integration is
from the emission year to the year of tipping (rather than over
a fixed time horizon like in the GWP).

Second, this impact is always given in relation to the
remaining capacity of the atmosphere to absorb that impact
without triggering the tipping point, also expressed in ppm of
CO,eyrkg ™' (rather than comparing impacts to that of a
reference gas like CO, as in GWP). The resulting MCTP CFs
therefore represent the fraction of remaining capacity taken up
by the unit emission (which is expressed in parts per trillion of
remaining capacity, ppt,.-kg,™'). MCTPs are dynamic because
both the impact and the remaining capacity to absorb the
impact without triggering the tipping point depend on
emission time.

Third, remaining capacities depend on background anthro-
pogenic GHG emissions, as they ultimately determine when
the tipping point is triggered, and furthermore, the impact of a
GHG emission attributed to a product or service can be
considered as part of this background. Although GHG
emissions from an individual product system will never be
large enough to cause a tipping, a large number of products
that are produced, used, and disposed of in our society and
their attributed (often very small) quantities of GHG
emissions have a real potential to cause the tipping. Thus,
application of MCTP CFs to single product systems that are
modeled in LCA gives a meaningful estimate of the product’s
contribution to passing critical tipping points. This is in line
with the attributional approach to LCA, which aims to
represent a product system in isolation to quantify the impact
that the product is “responsible for”.' However, considering
the effects from crossing a given tipping point on the reduction
of the remaining carrying capacity for all subsequent tipping
points could be seen as a marginal contribution that adds
impact to the background pressure. This is more in line with
the consequential approach to LCA, which aims to assess the
environmental consequences of using a product or providing a
service.

Finally, the aforementioned considerations imply that
MCTP CFs are not applicable to assessments of large scale
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Figure 1. Conceptual illustration of MCTP calculation for a unit (1 kg) emission of GHG i that is part of anthropogenic background GHG
emissions, in different years with either one (a) or two (b and c) tipping points. The horizontal time axis is divided in discrete time intervals of 1-
year, as indicated with capital letters, and vertical bars represent annual CO,-equivalents concentration increases. T,pon indicates the emission
year; Typoing1 and Typpino o indicate the year of tipping of the first and second tipping point, respectively. Emissions occurring before the first tipping
point (at T.pission < Ttipping,l) will contribute to crossing both tipping points (at Tiipping1 and Tﬁppingz). Emissions occurring after the first tipping
point but before the second tipping point (atTtiPPm&1 < Tomission < Ttipping,z) will contribute to crossing the second tipping only. Crossing the first
tipping point speeds up the occurrence of the second tipping point, in practice, reducing the carrying capacity of emissions at Typing1 < Temission <
Tyipping2 for the second tipping point. Note that the effect of crossing the first tipping is irrelevant for part a because this case considers only one
tipping point (as presented in Jorgensen et al."*) and is not considered in calculation of remaining carrying capacity for an emission occurring
before the first tipping point.

systems, e.g., at country level, which have the potential to Figure 1 provides a conceptual illustration of the framework:
substantially influence background emission levels. starting from one tipping element (in practice, CTP of
2802 https://dx.doi.org/10.1021/acs.est.0c02928
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Jorgensen et al."®) (Figure la) through adding a second
tipping point (Figure 1b) to considering effects from crossing
the first tipping point on accelerating tipping of the second
tipping point (Figure 1lc). The figure is conceptual as (1)
increase in atmospheric CO,-equivalent concentration due to
background anthropogenic emissions is assumed linear, (2) the
impact of the emission (part of anthropogenic background
emissions) is simplified using triangles, (3) the remaining
capacity is also simplified using triangle-like shapes, and (4)
the effect of crossing the first tipping point is assumed to be
equally distributed over the years which follow. Yet, the figure
allows us to illustrate the framework. Background production
and consumption activities increase atmospheric CO,-equiv-
alent concentration so that the first tipping point is triggered in
2030. An emission before this tipping point, e.g, in 2025,
contributes to the crossing of this tipping point as it consumes
part of the carrying capacity that remains until the tipping
point is triggered (Figure la). This is the principle of the
original CTP-framework of Jorgensen et al.'’ Extension of
their framework by considering another tipping element, here
triggered in 2043, implies that an emission in 2025 now
contributes to crossing of both tipping points as it also
consumes part of the carrying capacity that remains until the
second tipping point is triggered (Figure 1b). Finally, for an
emission occurring after the first tipping point but before the
second one, e.g., in 2035, one additional factor must be
considered. Namely, crossing of the first tipping point in 2030
speeds up tipping of the second tipping point (from 2043 to
2040) because of the effect from the tipping of the first tipping
point itself which adds to the background (Figure 1c). This
accelerated tipping of the second tipping point reduces the
remaining capacity for those emissions which occur after the
first tipping point.

The same mechanisms apply if more tipping points are
considered. Mathematical description of these mechanisms is
detailed later.

Consideration of Time as a Variable. The MCTP
framework requires that the time variable is used with different
attributes. Specifically, we distinguish time interval (i.e., time
step) where time is discrete as opposed to point in time where
time is continuous. The interval is used when time indicates a
portion (an interval) of time defined within two specific points
in time. It is indicated with capital T. For instance, the
emission year T ion = 2021 indicates an emission occurred
any time between first January, 00:00 and 31st December,
23:59 of the year 2021. Intervals of 1 year were considered the
most realistic level of resolution for time-differentiated
inventories of emissions and thus for the calculation of
MCTPs. Points in time were used when integration over time
was necessary. Time in those cases is a continuous variable and
is indicated with lowercase t. We also distinguish between
absolute time as opposed to relative time. Time is generally
absolute in our framework because MCTPs depend on the
specific years in which tipping points are triggered (e.g., 2021,
2022, etc.). By contrast, whenever the dependent variable does
not depend on the proximity to tipping point, then relative
time is used (e.g, year 1, year 2, etc.). A summary of the
symbols used to refer to the time variable, their meaning, and
where they are used in the paper is presented in Table S7 in
Supporting Information.

Calculation of Multiple Climate Tipping Points
Potentials (MCTP). With a consideration of m tipping points,
the multiple climate tipping points potential, MCTP, in [ppt,-
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kg, ™'] (parts per trillion of remaining capacity taken up by a
unit emission) of gas i emitted at year Ty ion is defined as the
sum of the ratios between the impact of the emission (that is
part of anthropogenic background emissions) and the
corresponding remaining capacity for each of the m tipping

points occurring after the emission year

MCTPt( Temission) = i emission, i:i(TEmission)
j=1 CAP;( ’I;mission) ( 1 )

where j indicates the jth tipping point occurring after the
emission year (in order of occurrence) and can take any value
from 1 to m, which is the total number of exceeded tipping
points; Iumigsion;; is the impact of the emission (part of
anthropogenic background emissions) of gas i with respect
to the jth tipping point, CAP; is the remaining capacity up to
the jth tipping point, and the emission year T, 0n can be any
year from 2021 (or the year when emissions are expected to
start taking place) up to the year of the last tipping point.
Defined in this way, the MCTP represents the total fraction of
remaining capacity taken up by the unit emission and is
expressed in parts per trillion of remaining capacity (ppt.
kg ™"). The Lemission,,j [ppm of CO,e-yrkg '] (where COse is
the CO,-equivalent concentration) of gas i with respect to the
jth tipping point is here defined as the absolute climate tipping
potential (ACTP) of gas i in [W-m -yrkg, '] divided by the
radiativeBeﬂiciency (RE) of 1 ppm of CO, [W-m >ppm of
CO,™]

D RE(T_,)-AT
_ k=1

mission)

(o y AT
REcq,

emission/

I

emission, i,j

REco,
(2)

where the ACTP is equal to the radiative forcing of gas i (RF;)
integrated over time between the emission and the tipping.
This integral is written using Riemann sum notation. In this
notation, # is the number of time steps (dimensionless). Given
that lim,_, (1AT) = (Typpingj — Temission)s the 7 is equal to the
difference between the year of tipping Typing; (i€, the year
when the jth tipping point is exceeded) and the year of
emission, Ty divided by the length of the time step, AT
(eq 3). The AT is always equal to 1 year.

— Tcipping,j ~ “emission

AT (3)

Note that time is relative in the RF function because
radiative forcing increase depends on the time that has elapsed
from the emission, independently of the emission year.
However, the ACTP and the resulting impact of the emission
are emission-year specific because year of tipping is given. The
RF; is calculated as the product of the radiative efficiency of gas
i (A;) (which represents radiative forcing per unit mass
increase in atmospheric abundance of gas i) and the impulse
response function (IRF), which for most non-CO, GHGs is
represented with a single exponential decay and for CO, with a
sum of exponentials.” However, unlike in the GWP approach,
where radiative forcing of gas i is divided by the radiative
forcing of the reference gas (CO,), the radiative forcing of gas i
is divided here by the radiative efficiency of CO,, the REq,.

This makes the unit of the impact of the emission consistent

with the unit of remaining capacity (both given in ppm of

https://dx.doi.org/10.1021/acs.est.0c02928
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CO,e-yr). Details of calculations of the impact are presented in
Supporting Information.

The CAP; [ppm of CO,e-yr] represents the increase in
atmospheric CO,-equivalent concentration that can still take
place before reaching the concentration level (in ppm of
CO,e) that will trigger the tipping. It is emission-year specific
as it depends on CO,-equivalent concentration from back-
ground anthropogenic emissions. The remaining capacity is
reduced when the emission year approaches the year of tipping
due to the effect of crossing any preceding tipping points, Cy,
(expressed in terms of CO,-equivalent concentration increase).
This effect reduces the CO,-equivalent concentration increase
that can still occur before reaching the year of tipping of
subsequent tipping points thus accelerating their tipping.
Equation 4 shows the calculation of the remaining capacity
using Riemann sum notation for 1-year time steps

CAP}(Témission) = C(’I;ipping,j)'(Ttipping,j - Temission)
— DUIC(Giy) + Co(T_)I-AT
k=1 (4)
where C(Tﬁpping,j) is the atmospheric CO,-equivalent concen-

tration at the year of tipping Typpings C(T) is the CO,-
equivalent concentration from background emissions at time
T, and Cy,(T) is the change in CO,-equivalent concentration
at time T caused by all the tipping points that occurred before
Temission (all terms expressed in ppm of CO,e). The Cy,(T) is
obtained from radiative forcing (RF) change induced by
passing each specific tipping event (see Section S1.3.1 of
Supporting Information). Time is absolute in eq 4 because
both anthropogenic background emissions and effect of the
tipping depend on the specific year. To avoid the capacity to
become infinitely small and thus returning high peaks in
MCTP, a cutoff of 6 [ppm of CO,e-yr] was applied by taking
the annual variability of atmospheric CO, concentration as a
proxy for the uncertainties in measuring the atmospheric
capacity (see Supporting Information).

Our representation of MCTP as a CF is somewhat different
from the one that is typically used in LCIA. CFs typically
represent either marginal or average “impact due to a unit
emission”.'”'” The GWPs are derived in a marginal way,'®
and this is also the way the ACTP underlying I.miion;; iR
numerator of eq 1 is calculated (as in the GWPs, it is derived
through radiative forcing per unit mass increase in atmospheric
abundance of a given gas; see eq 2 and S1). Yet, the resulting
impact I yigsions;; 18 related to the remaining carrying capacity,
which depends on the background level, which in turn follows
RCP pathway projections that are not influenced by the system
being assessed in the LCA. This suggests that the resulting
MCTP CFs are more in line with the average approach to
calculating characterization factors (which could be supported
for this type of impact owin% to assumption of additivity of
impacts of GHG emissions™). Consideration of carrying
capacity in the CF is not usual but has been discussed and
tested previously.”"** Bjorn A.”* showed how carrying capacity
can be integrated into characterization factors for terrestrial
acidification.

The framework presented above was used to compute the
MCTP of the three main anthropogenic GHGs, CO,, CH,,
and N,O, considering the selected tipping elements, in 10000
Monte Carlo simulations. Each simulation represents a
possible sample scenario of triggered tipping points (ie.,
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different timing and order of occurrence) based on the
propagation of current uncertainties in tipping occurrence. An
average (geometric mean) MCTP was then calculated. We
observe that iterations fail whenever tipping points are
triggered in close proximity to each other (either in the
same year or in consecutive years) as no remaining capacity
can be calculated. This is taken into account by adjusting the
number of total iteration runs so that failed iterations are
excluded while the total number of runs is ~10000.
Implications of this model limitation on the MCTP will be
discussed.

Choice of Atmospheric GHG Concentration Develop-
ment Pathway. Both the determination of the years of
tipping and the evolution of the remaining capacity over time
depend on the development of atmospheric GHG concen-
trations, expressed in CO,-equivalents. Here, the Representa-
tive Concentration Pathways (RCPs) and their extensions up
to year 2500 are used.””*> The medium stabilization pathway
RCP6 (total radiative forcing stabilized at 6 Wm-~? after 2100)
is chosen as baseline, assuming that even though current
emission trajectories are closer to RCP8.5 projections,26
ongoing mitigation efforts will prevent a continuous increase
and will more likely lead to a peak-and-stabilization pathway as
projected in RCP6. The MCTPs were also calculated for
RCP8.5 (rising radiative forcing to 8.5 Wm-~? after 2100) and
RCP4.5 (stabilization at 4.5 Wm-~2 after 2100), selected as
potentially worst- and best-case (realistic) pathways, respec-
tively. The low emission scenario RCP2.6 is excluded as the
massive miti%ation efforts required are considered mostly
unfeasible.”>*” The choice of RCP pathway influences which
tipping points are triggered in each simulation as it depends on
whether the threshold temperature of a specific tipping
element is reached under the RCP pathway.

Determination of Tipping Time. Accurate predictions of
the climate conditions triggering a tipping point and the time
of occurrence are uncertain.” On the basis of available
estimates of potential thresholds levels (Table S1), we assigned
one possible range of temperature thresholds to each selected
tipping element (Table S2). Uncertainties in the actual
temperature threshold level were accounted for by assigning
a triangular probability distribution function to the range of
potential threshold levels; T(a,b,c), where a and b are the lower
and upper limits of the range, respectively, and the most likely
value c is assumed to be the central value of the assigned range.
Triangular distribution was chosen because actual distributions
were unknown and could not be generated with the limited
data available.

The CO,-equivalent concentration that stabilizes the climate
at a given temperature threshold and the year of tipping were
obtained by the combination of data on temperature and GHG
concentration equivalents development over time, according to
the chosen RCP pathway. The data are retrieved with the
climate model MAGICC6 (Model for the Assessment of
Greenhouse Gas Induced Climate Change, v.6), which is a
default model to harmonize projections of RCP and Extended
Concentration Pathways (ECP).>>*"

Calculation of Effects from Crossing Climate Tipping
Points (Cy,). Modeling of the possible consequences from
passing a tipping point is constrained by the availability of
quantitative estimates of the total magnitude of such effects,
which are rather scarce in the scientific literature. We
considered available estimates of the potential change in RF
induced by tipping suggested in previous studies (Table S6),
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and to allow for their quantification in relation to the
remaining capacity, we converted these to the increase in
equivalents of GHG concentrations (ppm of CO,e) that would
lead to the same RF change. In some cases, the effect from
tipping could not be modeled due to either lack of data
(Atlantic thermohaline circulation shutoff, North Atlantic
subpolar gyre convection collapse, Sahara/Sahel and West
African monsoon shift, Alpine glaciers) or lack of con-
sequences on the climate from the tipping point (coral reefs)
(see Supporting Information). For Arctic summer and winter
sea-ice loss, the RF change is due to reduced sea-ice albedo
and conversion to annual concentration increase was done
using the radiative efficiency of CO, per 1 ppm. This effect was
assumed to unfold completely from the year after tipping and
to remain constant over the years, as the evolution of radiative
forcing changes after tipping was unknown. For the other six
tipping points, i.e, Greenland ice sheet melt, West Antarctic
ice sheet collapse, El Nifio-Southern Oscillation change in
amplitude, permafrost loss, Amazon rainforest and Boreal
forest dieback, the RF change derives from emissions of carbon
estimated to occur after tipping (Table S6). Here, Cy, was
calculated by adapting the dynamic approach of Levasseur et
al,” originally developed for calculating time-dependent RF
impacts of GHG emissions (that is, dynamic global warming
potentials), to obtain time-dependent (dynamic) yearly
equivalents of GHGs concentration increase due to the carbon
emissions. The total carbon emissions, considered to be either
CO, or methane emissions, depending on the tipping element,
were assumed to be equally distributed over the transition
period of the tipping event (see Table S6 in Supporting
Information), obtaining a constant temporal profile of
emissions. An exception is for El Nifio-Southern Oscillation
change in amplitude for which the release of carbon is
considered basically permanent.” The effect of these emissions
was then calculated considering the residence time of the two
gases in the atmosphere. The result provides the equivalent
increase in GHG concentrations at any time T after tipping,
caused by the emissions released at T and the nondecayed
fraction of emissions that occurred before T since the tipping
year. This approach does not account for the gradual changes
that in reality occur before a critical point is reached (e.g,
albedo changes from melting sea ice at current temperature
levels) and may underestimate the actual effects from tipping.
However, it was the most feasible modeling option considering
model complexity constraints and lack of estimates on the
gradual changes expected before reaching some of the
considered tipping points. Details of these calculations are
presented in Section S1.3.1 of Supporting Information.
lllustrative Application. The CFs proposed here depend
on the year of emission, hence for each GHG, a set of year-
specific MCTPs is provided and this should be used in
combination with a time-differentiated inventory specifying
GHG emissions in each year. The resulting impact score is
calculated by summing the product of the emitted amount of
gas i at year T on With the corresponding MCTP factor at

Temission for each GHG i and each emission year T.picsion
jhpw“&naﬁ
ISyicrp = z M Tomission) MCTBR( Topmission)
i Tosgon=2021
(s)
where ISycrp is the MCTP impact score, Tﬁpping'jlm is the last

possible year when a tipping point can be triggered across
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10000 model runs, ji, is the last triggered tipping point across
10000 model runs, m,( Topission) i the mass of GHG i emitted
at year Temigion and MCTP(Topision) is the corresponding
MCTP for gas i and emission year T,qo,r The double
summation indicates that the product (m;(Temission)
MCTP(T.nission)) is first summed over time, starting from
the first emission of GHG i released by the assessed product
(assumed to be year 2021 in eq S) up to the year when
MCTPs are relevant (T, [), and then summed over each

GHG i.

We apply the MCTPs calculated for the RCP6 scenario to
CO, and CH, emission profiles (over 100 years) from
incineration and landfilling of 1 kg of fossil-based (poly-
caprolactone (PCL), polybutylene succinate (PBS), polystyr-
ene (PS)) and biobased (poly)lactic acid (PLA)) biodegrad-
able polymers. These materials are selected as they degrade
over different timespans when landfilled. Six landfilling
scenarios are considered with four representing a possible
range of degradation rate constants (corresponding to fast,
medium, slow, and very slow first order® degradation kinetics
under anaerobic conditions) and two accounting for delays in
GHG emissions for a material with fast kinetics (20 and 50
years delagr) as found for different fossil- and biobased plastic
types.’ > For each scenario, the assumed carbon content of
the degrading material is 0.5 kg C/kg plastic (stoichiometric
calculation from a hypothetical polymer with 3 carbon atoms)
of which 100% is released as CO, in the incineration scenario,
whereas 71% is emitted as CO, and 29% as methane in the
landfilling scenarios.”> Note that only emissions stemming
from the carbon contained in the plastic are considered. By
multiplying the yearly emitted amount with the corresponding
average MCTPs per unit emission (under RCP6), we used eq
5 to calculate total tipping impacts corresponding to
degradation of 1 kg of plastic. For comparison, we also
compute impact scores using the complementary CFs
GWP20,° GWP100,° GWP100; p, ie., including credits for
temporary carbon storage using the method in the ILCD
Handbook,** dynamic GWP100,””*% and GTP100.>'° While
GWP100 treats emissions over 100 years as a pulse emission in
the first year, dynamic GWP100 expresses the time-dependent
contribution of emissions to radiative forcing change over 100
years, accounting for the actual emission timing. GWP100y; cp
includes credits for temporary carbon storage to account for
the storage due to delayed or incomplete degradation of the
plastic materials over 100 years. In consistency with
recommended practice,’”” all GWP CFs are inclusive of
climate-carbon cycle feedbacks. Methods for calculating impact
scores using all these CFs are summarized in Table S9 in
Supporting Information.

pping,j.

B RESULTS

Multiple Climate Tipping Potentials. Results of two
successful Monte Carlo simulations show that the number and
type of tipping points actually triggered depends on the
probability that the threshold temperature picked in the
simulation is within the temperature increase projected under
the chosen pathway (Figure 2ab). They also show that
MCTPs are particularly sensitive to the proximity of an
emission year to the year of tipping. The MCTP can increase
by up to a factor of 6 compared to the MCTP for an emission
in year 2021 when emission year approaches the year of
tipping, and it drops consistently after the tipping point is

https://dx.doi.org/10.1021/acs.est.0c02928
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Figure 2. Emission-year specific multiple climate tipping point
potentials (MCTP) per emission of 1 kg CO, under RCP6. (a, b)
MCTPs from two illustrative model simulation runs (solid line).
Vertical dotted lines indicate occurrence of tipping points (Table S8).
Green dashed curves are the same simulations computed without
considering the effect from the tipping (tipping occurrence not shown
in this case). AS = Arctic summer sea ice loss, AM = West African
monsoon shift, SG = North Atlantic subpolar gyre convection
collapse, AT = West Antarctic ice sheet collapse, GI = Greenland ice
sheet melt, AF = Amazon rainforest dieback, P = Permafrost loss, AW
= Arctic winter sea ice loss, TC = Atlantic thermohaline circulation
shutoff. (c) MCTP results for 10000 model simulations (gray dots),
their geometric mean (solid line) and uncertainty ranges (Sth and
95th percentiles of yearly results, red dotted lines).

crossed, causing discontinuities in the MCTP curve. The steep
increases in the MCTP are caused by fast reduction in the
remaining atmospheric capacity assigned to these tipping
points when emission years approach respective years of
tipping (see Figure S3 in Supporting Information). The drop
in the MCTP after crossing a given tipping point is caused by
capacities assigned to the subsequent tipping always being
significantly larger when compared to the remaining capacity
assigned to the preceding tipping event. Accounting for direct
effects from crossing tipping points in these two simulations
reduces the remaining capacity from 10 to 99% (depending on
the emission year) when compared to model results without
considering the effect from the tipping on remaining capacity

up to the next tipping point(s). This accelerates the occurrence
of the subsequent tipping points by 3 to 31 years.

The tendency of MCTP to peak with the proximity to a
tipping point is masked by the large uncertainties around the
year of tipping, which influence the number and sequence of
tipping points and make individual tipping points overlap.
Average (geometric mean) MCTP derived from ~10000
Monte Carlo simulations varies from 0.0074 to 0.020 ppt,. per
1 kg of CO, emission (Figure 2c). In 90% of the iterations,
MCTPs ranged from 0.0034 to 0.033 ppt,. per 1 kg of CO,
emission across all emission years. Yet, there is a relatively high
probability of several tipping points occurring between 2040
and 2060, resulting in a peak of average MCTPs around 2050
with almost a doubling of the MCTP magnitude (average
0.014 ppt,.) in comparison to emissions occurring in 2021
(average 0.0074 ppt,.). Average MCTPs of CH, and N,O
follow the same trends as observed for CO, in Figure 2¢ but
are on average 83 and 273 times higher, respectively, when
compared to CO, (Figure S4). The impact of a unit emission
of CH, is higher than that of CO, in the MCTP approach
when compared to GWP100, because the time integrations in
ACTP are over shorter time periods compared to the 100
years’ time horizon of GWP, and with shorter time horizons,
the impacts of short-lived gases like CH, become larger.

Consideration of direct effects from the tipping increases the
average MCTPs by up to 37% when compared to the average
MCTP computed without considering the effect from the
tipping (with greater increases for emissions occurring later in
time). This corresponds to the last tipping point occurring, on
average, 17 years earlier (Figure SS).

The MCTPs calculated for different RCP pathways follow
different trends (Figure 3). They are larger when assuming a
low background concentration pathway (RCP4.5) and become
progressively smaller for higher concentration paths RCP6 and
8.5. The MCTPs increase until 2035 in all pathways, but then
they fluctuate over the middle in RCP§, increase in RCP4.5,
and follow a downward trend in RCP8.5. The number of
tipping points that can be triggered also varies between RCP
scenarios, depending on whether threshold temperatures are
reached (Table S2). In the high emissions pathway RCPS.S, all
the 13 elements can have their tipping points crossed. In
RCP6, the permafrost loss and Arctic winter sea ice loss are not
triggered, while under RCP4.5, additionally Boreal forest
dieback, El Nino-Southern Oscillation change in amplitude,
and Atlantic thermohaline circulation shutoff are not triggered.
These differences in the number of tipping points determine
the time horizon for which MCTPs are relevant (until 2085,
2115, and 2210 in the RCP4.5, RCP6, and RCP8.5 scenarios,
respectively).

Example of Degradation of Plastic Polymers. We find
that using new MCTPs leads to additional insights when
compared to those gained from using other metrics (Table 1).
Impact scores in the MCTP approach increase with decreasing
degradation rates (scenarios 2—4) because there is higher
probability that a significant portion of emissions is released in
close proximity to tipping points, where MCTPs are the largest
(Figure S6). By contrast, impact scores generally decrease with
decreasing degradation rate in the GWP-based and GTP100
approaches owing to (1) decreasing emissions released within
the 20 (GWP20) and 100 years (GWP100, GTP100) time
horizons, (2) increasing benefits from temporary carbon
storage (GWP100y, cp), and (3) delayed emissions and smaller
values of their matching dynamic GWP100. With MCTP, a 20-
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Figure 3. Emission-year specific multiple climate tipping points potentials (MCTP) of 1 kg of CO, under RCP4.5 (a) and RCP 8.5 (b) scenarios.
MCTPs for 10000 model simulations (gray dots), their geometric mean (solid line), and uncertainty ranges (Sth and 95th percentiles, red dotted
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Table 1. Total Impact Scores for Different End-of-Life Scenarios of Plastic Polymers Calculated Using GWP20, GWP100,
GWP100y; cp, Dynamic GWP100, GTP100, and New MCTPs"

GWP20
(kg CO,eq/kg
plastic)

GWP100
(kg COzeq/kg
plastic)

End-of-life
degradation scenario

GWP100y cp
(kg COseq/kg
plastic)

MCTP,
under RCP6

(ppte/kg
plastic)

Dynamic
GWP100
(kg COeq/kg
plastic)

GTP100
(kg CO,eq/kg
plastic)

1. Incineration® 1.8 1.8

1.8

1.8 1.8

Plastic degradation
rate®
2. Fast®

3. Medium¢

8.3

7.4

0.089

4.6 3.8 0.14

4. Slow®

5. Very slow’

Delayed degradation®

6. After 20 years
(fast rate)

7. After 50 years
(fast rate)

“Incineration of fossil-based plastic where all carbon is emitted as CO, in the first year. bDegradation under anaerobic conditions, resulting in
release of methane. “90% degradation of polycaprolactone (PCL) in 2 years.”" 9909 degradation of polybutylene succinate (PBS) in 31 years.”
90% degradation of polystyrene (PS) in 105 years.” 71% degradation of biobased PLA in 100 years.”* #Potential short (20 years) and long (50
years) lag phase in degradation of PCL based on ref 33. hRanking between scenarios 1—7 is illustrated within each column with different colors.
Red shading indicates the highest impact scores and green the lowest impact scores. The GWP100y; p includes credits for the temporary carbon
storage of delayed or incomplete degradation of the material over 100 years calculated using the ILCD approach.>*

and 50-year lag phase of degradation of the polymers are seen
as worse and second worse scenarios, respectively, because of
proximity of emissions to tipping points, whereas with
GWP100 and GTP100, which are not able to capture
differences in emission timing, impact scores are the same as
without a lag phase (scenario 2). The MCTP results for these
two scenarios are also different from GWP20, which does not
assign any burden to emissions occurring after the 20 year time
horizon. For very slow degradation kinetics, impact scores are
almost independent of the type of metric chosen. This is
because the vast majority of emissions in this slow degradation
scenario occurs beyond the time frames for which MCTP and
their complementary GWPs are considered relevant. Inciner-
ation is seen as the second best option with all other metrics,
because no methane emissions occur and, for MCTP, also
because of small CF values for emissions of CO, in year 2021.

Ranking of these different end-of-life scenarios was not very
sensitive to the RCP pathway for which MCTPs were
computed (Table S10); however, slight variations reflect the
different contribution to tipping that emissions have in the
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three RCPs. In particular, under RCP4.5, the largest
contribution is observed after 2060; therefore, a polymer
with 50 years lag phase, emitting mostly around 2070,
performs worse. In terms of magnitude, impact scores with
RCP4.5 are larger for each end-oflife scenario, as the
corresponding MCTP factors are larger.

B DISCUSSION

Importance of GHGs Development Pathway. We find
that the magnitude of the MCTPs is larger under RCP4.5 and
lower under RCP8.5. This somewhat counterintuitive finding
can be explained by two factors. First, the MCTP is a metric
expressing midpoint impacts and, as such, it does not consider
the severity of the damage on ecosystems or humans caused by
crossing tipping points. These damages are expected to be
larger for the RCP8.5 path when compared to those of the two
other pathways. Thus, the impact expressed by our midpoint
CFs should only be interpreted as the contribution of an
emission that is part of the background to crossing tipping
points and not as the overall damage caused by the emission or

https://dx.doi.org/10.1021/acs.est.0c02928
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the damage caused by the tipping itself. Second, climate
responds differently to the same increase in GHG concen-
trations in the three RCPs: for example, to reach a tipping
threshold of 2 °C under RCP8.5, the GHG concentrations
should rise to about 574 ppm of CO,e, whereas 541 ppm of
CO,e are already sufficient according to RCP4.5 projections
(Figure S1). This is because the slow heat uptake of the oceans
creates a delay in the response of the atmospheric temperature
to an increase in CO, concentration,’® and this delay depends
on the different rate of CO, increase projected in each RCP
pathway. In RCP8.5, CO, concentrations increase rapidly,
generating a larger lag in the climate response compared to
RCP4.5. Therefore, RCP8.5 reaches 2 °C at higher
concentrations, whereas in RCP4.5, the same temperature
corresponds to lower concentration levels. This means that the
contribution of an emission to crossing tipping points is
proportionally larger under RCP4.5 because tipping points are
triggered at lower concentrations when compared to RCP8.5
or RCP6. Consequently, for the same emission year, MCTPs
are larger for RCP4.5 than for the two other pathways.

Differences in the temporal evolution of MCTPs observed
between the RCP pathways are the result of a combination of
several additional factors and it is not possible to determine
one dominant driver. One factor is the different rate of
projected GHGs concentration increase across the RCPs. In
RCP8.5, GHGs concentration increases fast and, due to this,
differences in concentration between consecutive years became
larger over time (remaining capacity depends on the
magnitude of the difference). In addition, tipping points are
triggered at higher concentration levels, as explained above.
This results in numerically larger remaining capacities for
emissions in, e.g., 2080 than emissions in 2040 and explains
why MCTP decreases over time. For RCP4.5, the opposite is
true: MCTP increases over time because of relatively small
differences in GHGs concentration between consecutive years
(especially when the concentration starts to level off) and
because tipping points are triggered at lower concentrations.
Other factors to consider are the simultaneous dependency on
evolution of impacts of the emission (as MCTPs are based on
ratios between impacts of the emission and remaining
capacities), the different number of tipping points that can
be triggered in each RCP pathway, and the possibility, in
RCP8.5, that tipping points occur at very high concentrations
and very late in time (as opposed to no more tipping points
beyond 2100 in RCP4.5).

Uncertainties. The major source of uncertainty in the
MCTP CFs is that they do not consider interactions between
the tipping elements.” Similarly, the MCTPs do not consider
situations where tipping points are predicted to occur so close
to each other that the remaining capacity is fully consumed by
the preceding tipping points. Our results show that the
probability that crossing a tipping point causes tipping of
another (for at least one pair of tipping elements), even
without considering other interactions,”’ is equal to 92% for
the RCP6 scenario but is somewhat smaller for RCP4.5 and
RCP8.5 (79 and 53%, respectively). This is consistent with
earlier studies suggesting that the passing of some tipping
points increases the likelihood of other tipping points due to
positive feedbacks from the tipping.*** The implication of this
model limitation is that the time horizon for which MCTPs are
relevant can be shorter. Another implication is that our
MCTPs can be underestimated, particularly those occurring
later where uncertainties about temperatures triggering the
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tipping are larger. The combined effect of more tipping points
triggered at once would indeed reduce the remaining capacity
to the next tipping even further, resulting in higher MCTPs.
This is particularly the case for the RCP6 pathway, where the
chances of one or more tipping points triggered at the same
time is the highest. However, impacts of the emission will
simultaneously decrease, as tipping points approach, and
whether this results in an increase in MCTP will thus depend
on the magnitude of reduction of the impact of the emission in
relation to the reduction in remaining capacity.

Implications for Life Cycle Assessment. We offer a new
method that considers multiple climate tipping points in the
quantification of the potential contribution of products to
climate change impacts. As no other metric considers the
contribution of emissions to deplete the remaining capacity up
to multiple tipping points and the variability of this
contribution based on emission timing, the new method
represents a new life cycle impact category. This new impact
category should be seen as being complementary to, but not a
substitute for, global warming and global temperature change
categories. A ranking of the three well-mixed GHGs (CO,,
CH,, and N,0), in terms of their average MCTP, is
comparable to the ranking of their GWP20s and ranges from
1:51:238 to 1:107:299 (RCP6), depending on emission year,
in comparison to the constant ranking of 1:86:268"° for the
GWP20. This stresses the need to consider short-term climate
impacts, as in both CFs, the radiative forcing is integrated over
shorter time horizons (through the ACTP and AGWP),
resulting in larger impacts assigned to short-lived gases like
methane. Despite this similarity, the added value of the MCTP
is that it captures those emissions and short-term impacts
occurring beyond the 20-year time.

We showed that the use of MCTPs offers new insights when
applied to temporarily differentiated GHG emission invento-
ries. The best performance, from the climate tipping
perspective, is achieved when emissions from the product
occur when their contribution to crossing tipping points is the
lowest rather than when these emissions are just delayed.
Indeed, there is a high probability of several tipping points
occurring from ca. 2040 to 2060, where MCTPs are the largest.
An accounting for the uncertainties in the triggering of tipping
points eventually results in a more robust, but perhaps less
straightforward, assessment of climate tipping impacts from
products. These uncertainties are currently so large that
individual tipping points are not clearly discernible. Never-
theless, such large uncertainties should not prevent the use of
MCTP because we demonstrated that MCTP still allows the
capture of differences in performance of products with
different temporal emission profiles.

We recall that the availability of time differentiated emission
inventories of the assessed products is necessary for a
meaningful use of the set of emission-year-specific MCTPs
provided here (Supporting Information). The main implica-
tions for life cycle inventory (LCI) modelers is the need to
focus on modeling and the reporting of emission inventories in
temporarily disaggregated forms. The main implication for
LCA software developers is the need to develop modules that
can calculate impact scores using temporarily disaggregated
inventories and time-dependent characterization factors. The
same challenges are still relevant for dynamic methods,
including the dynamic GWP approach.”” We expect that
potential take up of climate tipping as an impact category in
LCA will make it attractive to increase the availability of
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temporarily differentiated emission inventories and their
handling in LCA software. Until then, dynamic approaches,
including our MCTP, have to be used offline.

The reader should note, however, that the iterative nature of
LCA allows using our MCTP factors even if a full time-
differentiated inventory is not available for all processes in a
given life cycle. In this case, the ideal would be to identify
processes where time-differentiation of emissions is relevant
and is expected to really matter for the LCA results (such as
end-of-life processes, biomass growth, or deforestation) and
obtain a time-differentiated inventory for these processes only.
This can be done with a sensitivity analysis. The MCTP impact
score for these processes can then be calculated offline using eq
S. The impact score for all the remaining processes not
associated with a time-differentiated inventory, or for those
processes which do not matter for the LCA results (small
contribution to total impact), can be calculated by multiplying
the total amount of CO,, CH,, and N,O emissions from these
processes by the corresponding MCTP factor relative to the
year when their emission is expected to take place. The sum of
the two impact scores returns the final MCTP results.

The new metric is expected to be particularly valuable in the
life cycle assessments of biodegradable plastics, deteriorating
wooden products, or engineered chars used for temporary
carbon storage.””” We recommend the presenting of results
for all three considered RCP scenarios to show if, and how, the
choice of future uncertain emission pathways could influence
conclusions of the study of interest. Our MCTPs are expected
to add less value in the comparative LCA context when
emissions occur all at once, such as the incineration scenario in
our case study, or when there are large differences in the
emitted amount of GHGs (e.g, very slow degradation
scenario). Further, although emissions do not influence the
background emission path, the MCTPs are not directly
applicable in the assessment of large-scale systems, like
economic sectors or countries.” Other midpoint CFs, like
GWP and GTPs, are better suited for this purpose.

The MCTP is proposed as a method for climate change
impacts at the midpoint level; therefore, the interest here is to
cover only climate change impacts at the midpoint level. If
crossing a tipping point leads to loss of species (directly by,
e.g., loss of habitat when ice melts, or indirectly via
temperature increase), then this should be accounted for at
the damage level.
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