
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Response-Time Analysis of Bundled Gang
Tasks Under Partitioned FP Scheduling

Veronica Rispo, Student Member, IEEE, Federico Aromolo, Daniel Casini, Member, IEEE,
and Alessandro Biondi Member, IEEE

Abstract—The study of parallel task models for real-time systems has become fundamental due to the increasing computational
demand of modern applications. Recently, gang scheduling has gained attention for improving performance in tightly synchronized
parallel applications. Nevertheless, existing studies often overestimate computational demand by assuming a constant number of cores
for each task. In contrast, the bundled model accurately represents internal parallelism by means of a string of segments demanding
for a variable number of cores. This model is particularly relevant to modern real-time systems, as it allows transforming general
parallel tasks into bundled tasks while preserving accurate parallelism. However, it has only been analyzed for global scheduling, which
carries analytical pessimism and considerable run-time overheads. This paper introduces two response-time analysis techniques for
parallel real-time tasks under partitioned, fixed-priority gang scheduling under the bundled model, together with a set of specialized
allocation heuristics. Experimental results compare the proposed methods against state-of-the-art approaches.

Index Terms—Real-time systems, multiprocessor scheduling, parallel tasks, gang scheduling, partitioned scheduling.

✦

1 INTRODUCTION

The study of parallel real-time task models has gained at-
tention due to the increased computational power required
by cyber-physical systems. Notable examples are emerging
applications in autonomous driving [1, 2], Industry 4.0 [3],
robotics [4], and artificial intelligence [5]. These applications
are often characterized by tasks composed of parallel com-
putations and exhibit a varying degree of parallelism during
execution while requiring to meet real-time constraints.
Different approaches have been proposed over the years to
schedule real-time parallel workloads, both in terms of task
models and scheduling algorithms.

Among them, the gang scheduling paradigm is partic-
ularly interesting as it has been shown to improve over-
all performance by reducing communication and context-
switch delays [6]. Essentially, it consists of grouping tasks in
“gangs”, where each gang needs to be co-scheduled simul-
taneously on a set of cores. Gang scheduling also showed
benefits in achieving less pessimistic worst-case execution
times (WCETs) by managing shared hardware resource con-
tention [7]. Moreover, it is supported by widely used parallel
computing paradigms such as MPI and OpenMP.

However, existing works on real-time gang partitioned
scheduling often assume the so-called rigid model where
the number of cores required by a task remains constant
during the task execution [8, 9], disregarding the parallel
graph structure of the task. This leads to overestimating the
demand for computational resources, as several applications
require a variable degree of parallelism during execution.

V. Rispo, F. Aromolo, D. Casini, and A. Biondi are with the Tecip Institute,
Scuola Superiore Sant’Anna, Pisa, Italy. F. Aromolo, D. Casini and A. Biondi
are also with the Department of Excellence in Robotics and AI, Scuola
Superiore Sant’Anna, Pisa, Italy.
E-mail:{v.rispo, f.aromolo, d.casini, al.biondi}@santannapisa.it
Manuscript received April 19, 2021; revised August 16, 2021.

1
2
3

t

Cores
t

Cores

WCET

(a)

(b)

(c)

MAX
HEIGHT

1
2
3

Fig. 1: Example of a parallel task (inset (a)) executed under the bundled
(inset (b)) and rigid (inset (c)) models. (c) shows how the rigid model
does not account for the varying degrees of parallelism of the task,
modeling the execution by relying on the maximum number of cores
only. Instead, (b) faithfully models the parallelism of the task, allowing
the potential scheduling of other tasks in the time intervals in which
some of the cores are not needed (highlighted in green).

These limitations are overcome in the bundled model [10],
where tasks consist of bundles (or segments), each requiring
a different number of cores (the height of the bundle), thus
more accurately accounting for the varying degrees of par-
allelism exhibited by tasks over time, as shown in Fig. 1.

When scheduling tasks on a multicore platform, a key
decision is whether to follow a global or partitioned ap-
proach [11]. In global scheduling, tasks can migrate across
cores, while partitioned scheduling statically assigns tasks
to cores, disallowing migration.

Both approaches have advantages and disadvantages:
global scheduling offers transparency to users without
requiring upfront allocation and tends to have shorter
average-case response times. On the other hand, partitioned
scheduling provides better timing predictability, control
over microarchitectural effects like memory contention [12],
and reduced context-switch and migration overheads [13],
but requires dealing with the design-time allocation prob-
lem of finding a suitable assignment of each computa-
tional activity to the available processing cores [11]. Fur-
thermore, for sequential tasks, it has been formally proven

0000–0000/00$00.00 © 2021 IEEE

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3441823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

that popular analysis techniques for global scheduling are
analytically dominated by partitioned scheduling under
fixed-priority [14], earliest deadline first (EDF), and first-in-
first-out (FIFO) scheduling [15]. These negative results for
global scheduling renewed interest in partitioned schedul-
ing. Overall, although global scheduling can improve the
average-case timing performance thanks to its dynamic
load balancing capabilities, partitioned scheduling has been
shown to provide enhanced worst-case behavior and im-
proved predictability by enabling a more precise timing
analysis. However, partitioned scheduling is generally less
studied in the literature for parallel task models.

Overall, to the best of the authors’ knowledge, no pre-
vious work addressed the problem of deriving a schedu-
lability analysis for a set of gang-scheduled parallel tasks
executing under the bundled model in the case of parti-
tioned scheduling, despite the aforementioned benefits and
the enhanced modeling accuracy offered by the bundled
execution model.

The case of gang tasks scheduled under partitioned
scheduling has only been investigated by Ueter et al. [9];
however, their work only applies to the more restrictive
rigid execution model. On the other hand, the bundled
execution model has been studied only for global schedul-
ing [10]. With respect to the problems addressed in the afore-
mentioned works, the schedulability analysis problem for
the case of bundled gang tasks under partitioned scheduling
introduces an additional layer of complexity due to the
difficulty in precisely identifying the interfering workload
for each bundle of the task under analysis. Specifically, the
main challenges in effectively solving the analysis problem
consist in (i) precisely determining the set of interfering
higher-priority bundles for each bundle of the analyzed task
and (ii) ensuring that the interference generated by a higher-
priority bundle is not accounted for multiple times when
analyzing each of the bundles composing the analyzed
task. Moreover, no specialized allocation strategy has been
proposed to efficiently assign each bundle to a suitable set
of cores under the partitioned bundled model.

Therefore, we highlight a significant gap in the state of
the art related to the analysis of gang tasks.
Contribution. To fill this gap, this paper derives two
schedulability analyses for partitioned gang scheduling of
parallel tasks under fixed priorities. Contrary to the state-
of-the-art for partitioned gang scheduling, which follows
the rigid model [9], this work adopts a more accurate
representation of the internal parallelism of the tasks by
means of the bundled task model [10]. In particular, we first
present a closed-form schedulability analysis where each
bundle of a task is separately analyzed, thus obtaining a
set of response-time bounds for each task in the system.
The closed-form analysis solves challenge (i) by providing
a precise characterization of the interfering workload for
each bundle of the analyzed task. Then, a second, more
precise solution is proposed by bounding inter-task interfer-
ence with an optimization problem formulated with Mixed-
Integer Linear Programming (MILP). This enhanced design-
time schedulability analysis better accounts for non-trivial
scheduling effects that are difficult to capture with a closed-
form solution, as a way to avoid to account for the same
interference source multiple times, thus addressing chal-

lenge (ii). Specialized partitioning heuristics for the bundled
model are also proposed to find an efficient mapping of each
bundle to the available cores, leveraging specific properties
of the model. Finally, the results of an extensive experi-
mental evaluation are presented, comparing the proposed
approach with other approaches [9, 10], showing improve-
ments up to 34%.

2 SYSTEM MODEL

We consider a symmetric multicore platform equipped with
M identical cores P = {p1, p2, . . . , pM}. The application
workload is modeled as a task set of N sporadic bundled
parallel tasks Γ = {τ1, τ2, . . . , τN}. The bundled task set
can be derived from sporadic parallel directed acyclic graph
(DAG) tasks, as recalled in Section 3.

Each task τi consists of a sequence of bi bundles de-
noted by τi = (τi,1, τi,2, . . . , τi,bi), and is characterized by a
minimum inter-arrival time Ti, a relative deadline Di ≤ Ti

(constrained deadline), and a unique fixed priority πi. The
symbol τi is also used to denote the set of bundles of a task.

Given an arbitrary task τi, the set of tasks with higher
priorities than τi is denoted by hp(τi). We assume tasks in
Γ are ordered by decreasing priority.

A task τi generates an infinite sequence of jobs (or
instances) separated by at least Ti time units. Each job of
τi executes the bi bundles in order. Bundle instances are
referred to as bundle jobs or, simply, jobs. The priority πi of
each task τi is inherited by each job of the task and all the
bundle instances in that job.

Each bundle τi,j ∈ τi is characterized by two parameters
(hi,j , li,j), where hi,j ≤M is the number of cores needed to
gang-schedule the bundle and li,j is the worst-case execu-
tion time (WCET) of the bundle on each core. We define the
WCET of the entire task τi as Li =

∑bi
j=1 li,j .

Tasks are scheduled according to a partitioned, preemp-
tive, fixed-priority gang scheduling scheme. Therefore, each
bundle needs to be statically allocated to a set of available
cores. From the requirement of hi,j cores of each bundle, the
partitioning phase decides the actual set of cores that are
allocated for the bundle. To this end, we define the concept
of partitioned bundled gang assignment. A partitioned bundled
gang assignment Ai,j ⊆ {p1, p2, . . . , pM} of a bundle τi,j of
a task τi is a subset of cores of size |Ai,j | = hi,j ≤M , which
are assigned to execute jobs of bundle τi,j .

The utilization per assigned core pk of a single bundle
τi,j of a task τi is defined as U⋆

i,j = li,j/Ti, while its
total utilization (over multiple cores) is defined as Ui,j =
(li,j · hi,j)/Ti. The utilization of a task τi is defined as
Ui =

∑bi
j=1(li,j · hi,j)/Ti.

The worst-case response time (WCRT) bound Ri of a task
τi is an upper-bound on the longest time span from when
any of its jobs is released to when it completes. Analogously,
the WCRT bound Ri,j of a bundle τi,j is an upper-bound on
the longest time span from when any instance of bundle
τi,j is released to when it completes. A task is said to be
schedulable if Ri ≤ Di. A task set is said to be schedulable if
all its tasks are schedulable.

We say that a task τi is active at time t if a job of τi is
released at or before t and has not finished yet. A bundle
τi,j is said to be active at time t if and only if (1) the task τi

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3441823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

TABLE 1: Table of the main symbols used in this paper.

Sym. Description Sym. Description

pk k-th core τi i-th task
Li total WCET of τi Di relative deadline of τi
Ti min. inter-arrival time bi number of bundle of τi
πi fixed priority of τi τi,j j-th bundle of τi
li,j WCET of τi,j hi,j # of cores of τi,j
Ai,j gang assign. of τi,j Ri,j WCRT of τi,j
Bi,j set of bundles that can

interfere with τi,j

Ti,j set of tasks that can in-
terfere with τi,j

is active, (2) the current instance of τi,j is not completed yet,
and (3) when j > 1, the bundle τi,j−1 has finished executing.
For each job of τi, a corresponding job of τi,j is released at
the first time instant after the release of τi in which all the
conditions (1), (2), and (3), hold. Assuming that the task set
is schedulable, for any time instant t, there is at most one
active bundle for each task τi, since Ri ≤ Di ≤ Ti.

To help the reader follow the adopted notation, Table 1
reports the main symbols introduced in the system model.

3 BACKGROUND

This section summarizes the key pillars on which the
paper builds. First, Section 3.1 reviews the dynamic self-
suspending task model. Then, Section 3.2 reviews the algo-
rithm proposed in [10] to convert both fork-join and DAG
tasks to the bundled model.

3.1 The Dynamic Self-Suspending Model
In the dynamic self-suspending task (DSS) model, each task
τi is characterized by a tuple (Ci, Si, Di, Ti, πi), where Ci

is the cumulative WCET of τi, Si is an upper bound on
the self-suspension time of τi across all of its suspension
intervals, Ti is the minimum inter-arrival time between jobs
of τi, Di ≤ Ti is the relative deadline of each job of τi, and
πi is the priority of τi. The utilization of a self-suspending
task τi is defined as Ui = Ci/Ti. Tasks are assigned to a
unique priority level such that task τi has a higher priority
than task τj if τi ∈ hp(τj), and are scheduled on a single
processor under a fixed-priority scheduler.

Following [16], under this model an upper bound on the
WCRT Ri of a dynamic self-suspending task τi is given by
the minimum positive value for t such that

Ci+Si+
∑

τp∈hp(τi)

⌈
t+

∑i−1
j=p Sjxj + yp (Rp − Cp)

Tp

⌉
Cp ≤ t,

(1)
where yp = (1− xp), xp = 1 if Up(Rp−Cp) > Sp×

∑p
ℓ=1 Uℓ,

and xp = 0 otherwise, provided that Rp ≤ Dp holds for
each τp ∈ hp(τi). Note that a different WCRT upper bound
for the task under analysis τi can be obtained for every pos-
sible assignment of xp, with τp ∈ hp(τi). The computation
in Eq. (1) considers the interference on τi generated by the
set of higher-priority tasks hp(τi) by explicitly accounting
for their maximum suspension times. This unifying analysis
dominates existing techniques where the suspensions of
interfering tasks are accounted for either with a release jitter
term or with a blocking time term. In particular, if all values
of xp are set to 0, then this analysis is equivalent to modeling
the suspensions as release jitter, while if all values are set to 1

1
2
3

t

Cores

(b)Phase 1 Phase 2 Phase 3 Phase 4

Cores

1
2
3
4

t

(a)

Fig. 2: Examples of transformations from the fork-join (inset (a)) and
DAG (inset (b)) task models to the bundled model.

then the analysis is equivalent to modeling the suspensions
as blocking time. Other configurations of the xp values allow
to account for the suspension of each higher-priority task in
different ways, according to the values of the corresponding
xp parameters. Note that, when setting all values of xp

to 0, we obtain an analysis that does not explicitly depend
on the suspension times of the higher-priority tasks, where
the WCRT upper bound is simply given by the minimum
positive value for t such that

Ci + Si +
∑

τp∈hp(τi)

⌈
t+ (Rp − Cp)

Tp

⌉
Cp ≤ t. (2)

3.2 Model Transformation to Bundled Tasks

To make the paper self-consistent, we briefly describe the
model transformations proposed in [10].
Fork-Join. In the fork-join model [17, 18] (Fig. 2(a)), tasks are
composed of an interleaved sequence of parallel phases of
computation with multiple subtasks, subject to precedence
constraints. In each phase, if all subtasks have the same
WCET, the phase is mapped to only one bundle with WCET
li,j , i.e., equal to the WCET of the phase, and a required
number of cores hi,j equal to the number of subtasks of the
phase. If the subtasks in a phase have different WCETs, the
phase is mapped to one bundle for each different WCET, as
for phase 3 of Fig. 2. In this case, the first bundle has WCET
equal to the shorter subtask and includes all the subtasks,
while the following bundle includes only the subtasks with
higher WCET. The WCET of this bundle is set to be equal
to the total WCET minus the WCET of the previous bundles
obtained by transforming the phase under analysis.
DAG. In this case, the execution of the program is simu-
lated, with a scheduling simulator, according to any work-
conserving application scheduler using M cores where each
subtask executes in a non-preemptive way for its WCET,
as shown in Fig. 2(b). If the parallelism degree of the DAG
task is larger than the number of cores, the maximum time
interval in which the number of used cores remains constant
is identified in the simulation. For this interval, a bundle τi,j
is created such that hi,j is equal to the number of cores and
li,j is equal to the length of that interval.

4 CLOSED-FORM SCHEDULABILITY ANALYSIS

This section proposes a closed-form schedulability anal-
ysis for bundled gang tasks executed under partitioned
fixed-priority scheduling. The proposed analysis follows the
response-time analysis approach, where a bound Ri on the
WCRT is first derived for all tasks τi ∈ Γ, and then the task
set is deemed schedulable if Ri ≤ Di holds ∀τi ∈ Γ.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3441823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

We assume that a partitioned gang assignment Ai,j is
given for each bundle τi,j of each task τi ∈ Γ. Techniques to
suitably partition bundled tasks are discussed in Section 6.
We focus on analyzing whether an arbitrary task under anal-
ysis τi ∈ Γ can meet its deadline, assuming that all the tasks
in hp(τi) are already deemed schedulable1. Therefore, the
schedulability test iterates from the highest-priority bundled
task to the lowest-priority bundled task in the task set Γ. To
this end, we derive individual response-time bounds Ri,j

for each bundle τi,j of the task τi under analysis, and we
deem it schedulable if Ri =

∑bi
j=1 Ri,j ≤ Di holds.

An individual WCRT bound Ri,j for a bundle τi,j is
obtained using a transformation to the DSS task model
in two different ways, both yielding a valid WCRT upper
bound for τi,j . In both methods, the bundle under analysis
is transformed into a DSS task τ ′i,j with suspension time
S′
i,j = 0 and WCET C ′

i,j = li,j . The difference between the
two techniques is that, in the former, referred to as bundle-
level transformation, each interfering bundle is transformed
into a DSS task, whereas, in the second method, referred
to as task-level transformation, each interfering task is trans-
formed into a DSS task. In both methods, a WCRT upper
bound is obtained for the bundle under analysis by applying
the state-of-the-art reviewed in Section 3.1 to the resulting
sets of DSS tasks, yielding two WCRT upper bounds RB

i,j

and RT
i,j for the first and second method, respectively. The

final WCRT upper bound Ri,j is computed as the minimum
of the two bounds, i.e., Ri,j = min {RB

i,j , R
T
i,j}.

Next, definitions are introduced to characterize the inter-
ference suffered by an arbitrary bundle τi,j under analysis.
The set Bi,j of bundles that can interfere with τi,j is:

Bi,j = {τp,l ∈ τp | τp ∈ Γ∧(Ai,j∩Ap,l ̸= ∅)∧πp > πi}, (3)

which is the set of high-priority bundles that share at least
one core with τi,j . The set of the tasks Ti,j corresponding to
bundles in Bi,j and that can hence interfere with τi,j is:

Ti,j = {τp ∈ Γ | ∃τp,l ∈ τp such that τp,l ∈ Bi,j}. (4)

Bundle-Level Transformation for Interfering Bundles.
Next, we discuss how to model each interfering bundle as
a DSS task. To obtain a characterization of the interference
suffered by τi,j , we study the timing behavior of the bundles
τp,l ∈ Bi,j that can interfere with τi,j from the point of view
of the bundle under analysis.

Lemma 1. Consider a bundle under analysis τi,j and an
interfering bundle τp,l ∈ Bi,j that is the highest priority
active bundle in Bi,j at a given time t. From the point of
view of τi,j , the bundle τp,l exhibits a suspension behavior
at time t (i.e., it is the highest priority active bundle in Bi,j
but it is not executing at time t) if and only if at least one
bundle τk,q in Bp,l but not in Bi,j is executed at t.

Proof. If the bundle τp,l is the highest-priority active bundle
in Bi,j and it is not executing at time t, then it is interfered
by a bundle τk,q in Bp,l; hence τk has higher priority than τp.
Clearly τk,q /∈ Bi,j , otherwise τp,l would not be the highest

1. This is also a required assumption to apply the analysis by Chen et
al. [16] in Eq. (1), which we ultimately use to derive the WCRT bounds
after leveraging the task-set transformation proposed next.

t

t

t

t

5 10 12 17 19 24

Fig. 3: Example of self-suspending behavior of the higher-priority
bundle τp,l ∈ Bi,j as seen from the point of view of the bundle under
analysis τi,j . The self-suspending behavior of τp,l is represented in the
figure by the dotted boxes and is due to a bundle τk,q with higher
priority than τp,l that executes on p3, which is one of the cores needed
by τp,l but not needed by τi,j .

priority active bundle in Bi,j at time t, contradicting the
hypothesis. Therefore, τk,q must be in Bp,l \ Bi,j .

Now, suppose that a bundle τk,q ∈ Bp,l\Bi,j is executing
at time t. By contradiction, assume that τp,l is not suspended
at t. Since τp,l has the highest priority in Bi,j , then it must
be in execution at the same time instant t. However, τk,q is
also executing at time t and is in the set Bp,l \ Bi,j , thus
τk,q has higher priority than τp,l and Ap,l

⋂
Ak,q ̸= ∅. This

is not possible because it implies that both τk,q and τp,l
are executing at the same time on the same cores. Thus,
τp,l must be in a suspended state at time t and the lemma
follows.

Example. An example of this behavior is shown in Fig. 3. In
the figure, a bundle under analysis τi,j suffers interference
from a higher-priority bundle τp,l ∈ Bi,j . From the point
of view of τi,j , τp,l exhibits a suspension behavior when
τp,l itself is interfered by another bundle τk,q ∈ Bp,l \ Bi,j .
Specifically, assume that (i) τi,j , the lowest priority bundle,
needs to execute on cores p1 and p2; (ii) τp,l needs to execute
on cores p2, p3, and p4; and (iii) τk,q , the highest priority
bundle, needs to execute on p3. The bundle τi,j starts to
execute on p1 and p2, then, at t = 5, one instance of τp,l
becomes active and preempts τi,j because τp,l has higher
priority and needs to execute on p2. At t = 10, a job of τk,q
becomes active and preempts τp,l, since it needs to execute
on p3 and has higher priority. As seen in Fig. 3, from the
point of view of τi,j , τp,l is self-suspended at this time.
This is because τi,j is not assigned to p3; therefore, from
the perspective of τi,j , τp,l is ready to execute on the core
p2, which it shares with τi,j , but it is not executing. This is
equivalent to a situation where τp,l self-suspends between
times 10 to 12. The same self-suspending behavior is also
observed between times 17 and 19.

Lemma 2 derives an upper bound on the suspension
time of a bundle τp,l ∈ Bi,j as seen from the point of view
of τi,j .

Lemma 2. Consider a bundle τi,j under analysis and a
higher-priority bundle τp,l ∈ Bi,j belonging to the task τp.
When analyzing τi,j , the suspension time of bundle τp,l, as
seen from the point of view of the bundle under analysis
τi,j , is upper bounded by

Si,j
p,l = min

Rp,l − lp,l,
∑

τk,q∈{Bp,l\Bi,j}

⌈
Rp,l + R̂k,q

Tk

⌉
lk,q

 ,

(5)

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3441823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

where R̂k,q = min
{
Rk −

∑bk
z=q+1 lk,z,

∑q
z=1 Rk,z

}
2.

Proof. First, the suspension of the bundle τp,l, as seen from
the point of view of the bundle under analysis τi,j , cannot
exceed Rp,l − lp,l; otherwise the definition of WCRT would
be violated. Then, by Lemma 1, the maximum amount of
suspension of τp,l, as seen from the point of view of τi,j ,
is equal to the interference suffered by τp,l by bundles in
Bp,l \ Bi,j . Consider a bundle τk,q ∈ Bp,l \ Bi,j . The WCRT
of the interfering bundle τk,q with respect to the release of
the task τk and up to the completion of τk,q can be upper
bounded by the sum of the WCRTs Rk,z of the preceding
bundles in τk and the WCRT Rk,q of τk,q itself, since τk,q
cannot start executing before all of the preceding bundles
in τk are completed. Another upper bound to the WCRT
of τk,q is given by the WCRT Rk of τk minus the WCET
lk,z of all the bundles following τk,q in τk, since τk,q will
always terminate within that time. A tighter WCRT upper
bound, denoted by R̂k,q , can be obtained by considering the
minimum of the two WCRT bounds for τk,q . Next, consider
that the number of instances of a task τx with sporadic
release pattern that can exist in an interval of length t is
upper bounded by

⌈
t+Rx

Tx

⌉
[19]. Thus, the number of in-

stances of τk,q that can exist in a time interval of length Rp,l

is upper bounded by
⌈
Rp,l+R̂k,q

Tk

⌉
. Each of these instances

cannot execute and cause interference on τp,l for more than
lk,q time units. Hence the lemma follows.

To analyze τi,j , we transform the bundles in Bi,j into
DSS tasks, as reported in Theorem 1.

Theorem 1. Consider a bundle τi,j under analysis and an
interfering higher-priority bundle τp,l ∈ Bi,j . When analyz-
ing τi,j , τp,l can be safely modeled by a DSS task τ sus

p,l =

(C ′
p,l, S

′
p,l, Dp, Tp, πp), where C ′

p,l = lp,l and S′
p,l = Si,j

p,l +∑l−1
k=1 Rp,k, with Si,j

p,l defined as in Lemma 2.

Proof. Each job of the higher-priority bundle τp,l cannot
cause more interference than C ′

p,l on τi,j . By Lemma 2, each
job of the bundle τp,l can be considered as self-suspended
for at most Si,j

p,l units of time from the point of view of τi,j .
The bundle τp,l is released when the preceding bundle τp,l−1

terminates its execution. Thus, the interfering workload
generated by a job of τp,l on τi,j is delayed by at most∑l−1

k=1 Rp,k units of time since the release of the correspond-
ing job of τp. This delay is modeled as an additional self-
suspension interval for the job of τp,l.

From Theorem 1, the WCRT upper bound RB
i,j is ob-

tained by analyzing the transformed task τ ′i,j equivalent
to τi,j , subject to the interference of the DSS tasks in
Bsus
i,j =

⋃
τp,l∈Bi,j

τ sus
p,l .

Task-Level Transformation for Interfering Tasks. Next, we
discuss how to model each interfering task (instead of each
bundle of each interfering task) as a DSS task.

By definition of Ti,j , only tasks τp ∈ Ti,j can interfere
with the bundle under analysis τi,j , therefore, in the follow-
ing, we study the timing behavior of the tasks in this set
from the point of view of τi,j .

2. Note that if q + 1 > bk then
∑bk

z=q+1 lk,z = 0.

t

t

t10 15 20 25

Fig. 4: Self-suspending behavior of the higher priority bundle τp,2 ∈
τp, where τp ∈ Ti,1 with respect to a bundle under analysis τi,1. The
highlighted interval between time instants 15 and 20 shows the self-
suspending behavior of τp,2 that executes on core p3 and does not
need cores necessary to τi,1, i.e., p1 and p2.

Consider an interfering task τp ∈ Ti,j that is the highest
priority active task in Ti,j at a given time instant t. From
the point of view of the bundle under analysis τi,j , τp can
exhibit a behavior at time t that is analogous to a suspension,
meaning that τp is the highest priority active task in Ti,j
at t but it is not executing on any cores in Ai,j at t. Note
that, at any time instant, at most one bundle of each job of
a bundled task τp can be active. Consequently, the job of
τp is suspended at time t if and only if the current active
bundle is suspended. This possible suspension behavior
for τp at time t can be one of two types, depending on
whether the bundle of τp that is active at time t belongs
to Bi,j or not. In the former case, i.e., if τp,l ∈ Bi,j , the
resulting behavior for the active bundle of τp is equivalent to
that observed in the bundle-level transformation approach,
thus its suspension behavior is characterized as in Lemma
1. In the latter case, i.e., if τp,l /∈ Bi,j , a different type
of suspension is observed, which is specific to the task-
level transformation. Specifically, if τp,l /∈ Bi,j , then τp,l is
not using any of the cores necessary to the bundle under
analysis τi,j , i.e., Ap,l

⋂
Ai,j = 0. Therefore, from the point

of view of τi,j , τp,l exhibits a suspension behavior for all
the time it is active. This latter behavior is illustrated in the
following example.
Example. Consider a bundle τi,1 under analysis with par-
titioned bundled assignment Ai,1 = {p1, p2}. Furthermore,
consider an interfering bundle task τp = (τp,1, τp,2, τp,3),
such that Ap,1 = {p2, p3}, Ap,2 = {p3}, and Ap,3 = {p2, p3},
as shown in Fig. 4. At t = 0, bundle τi,1 starts executing, but
is then preempted by τp,1 at t = 10. τp,1 executes on p2
and p3 up to t = 15, when τp,1 completes and τp,2 starts
executing on p3, which is not in the the set of cores Ai,1

required by τi,1. Therefore, τp,2 exhibits the self-suspension
behavior described above from the point of view of τi,1 due
to the fact that interfering tasks are composed of multiple
bundles and not every bundle executes on cores in the set
of cores Ai,1.

Lemma 3 provides an upper bound of the suspension of
τp,l as seen from the point of view of τi,j in case τp,l /∈ Bi,j .

Lemma 3. Consider a bundle τi,j under analysis and a
higher-priority bundle τp,l /∈ Bi,j belonging to the bundled
task τp ∈ Ti,j . When analyzing τi,j , the suspension of the
bundle τp,l as seen from the point of view of τi,j is upper
bounded by Si,j

p,l = Rp,l.

Proof. Suppose by contradiction that Si,j
p,l > Rp,l. This

means that the bundle is active for more than Rp,l, thus
violating the definition of WCRT.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3441823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Theorem 2 shows how to safely transform the set of
interfering tasks τp ∈ Ti,j into an equivalent DSS task.

Theorem 2. Consider a bundle τi,j under analysis and a higher-
priority bundled task τp ∈ Ti,j that can interfere with τi,j . When
analyzing τi,j , the bundled task τp can be safely modeled by a
dynamic self-suspending task τ sus

p = (C ′
p, S

′
p, Dp, Tp, πp), with

C ′
p =

∑
τp,l∈Bi,j∩τp

lp,l and S′
p =

∑
τp,l∈τp

Si,j
p,l , (6)

where, if τp,l ∈ Bi,j , Si,j
p,l is defined as in Lemma 2,

while, if τp,l /∈ Bi,j , Si,j
p,l is defined as in Lemma 3.

Proof. We first prove C ′
p. By definition of WCET, each of

the bundles τp,l ∈ τp that can interfere with the bundle τi,j
under analysis, i.e., such that τp,l ∈ Bi,j , cannot execute
more than its WCET lp,l. Consequently, the corresponding
WCET of the DSS task τ sus

p built from the bundles of τp
contained in Bi,j cannot execute more than the sum of their
WCETs. We then prove S′

p. The task τp exhibits a suspension
behavior from the point of view of τi,j at time instant t if and
only if its active bundle at the time instant t is exhibiting a
suspension behavior. From the point of view of τi,j , there
are two mutually exclusive conditions for each bundle τp,l of
the task τp: either τp ∈ Bi,j or τp /∈ Bi,j . In the former case,
the amount of suspension exhibited by the bundle τp,l from
the point of view of τi,j is upper bounded by the term Si,j

p,l
defined in Lemma 2. In the latter case, the suspension of τp,l
is upper bounded by the term Si,j

p,l defined as in Lemma 3.

Therefore, the WCRT upper bound RT
i,j is computed

using as interfering task set T sus
i,j =

⋃
τp∈Ti,j

τ sus
p , where

τ sus
p is the equivalent dynamic self-suspending task obtained

transforming the task τp using Theorem 2.

Observation. The WCRT bound obtained with the proposed
closed-form analysis can account for the same interference
source multiple times, possibly leading to pessimistic WCRT
estimations, since the bundles of the task under analysis
are analyzed separately. This is similar to the so-called pay-
bursts-only-once problem [20]. To overcome this limitation,
Section 5 proposes an MILP formulation to refine the previ-
ous bound and reduce the analytical pessimism.

5 OPTIMIZATION-BASED ANALYSIS

Next, we present an MILP formulation to provide a more
accurate upper bound on the worst-case response time of
a bundled task. In this formulation, the WCRT of the task
under analysis is maximized, subject to a set of constraints
that reduce the search space to obtain a tighter WCRT
estimation. The MILP formulation is applied at design time
to extract refined WCRT upper bounds. The closed-form
WCRT bounds derived in Section 4 are leveraged to define
the constraints.

The optimization-based analysis works by bounding the
WCRTs using an iterative algorithm that uses, at each iter-
ation, the optimal solution of the MILP to bound the inter-
task interference that the task under analysis can experience.

Overview. Consider a task τi under analysis. Following
standard response-time analysis principles, the WCRT of τi

can be bounded by the smallest non-negative fixed point of
the following recurrence, computed starting from Ri = Li:

Ri ← Li + Ii(Ri), (7)

provided that Ii(Ri) is a safe upper bound on the inter-
ference suffered by τi if Ri is its tentative WCRT bound.
The iterative search of the fixed point stops in two cases: (1)
when a fixed point is found, in which case Ri can be deemed
as a safe WCRT bound; or (2) when Ri > Di, in which case
no WCRT bound can be claimed.

The MILP formulation presented next computes Ii(Ri).
In the following, we assume that WCRT bounds of

higher-priority tasks are already available when analyzing a
given task, which can be easily achieved by analyzing tasks
in priority order, and that Rh ≤ Dh holds for each task τh
with higher priority than τi.

The MILP formulation for a bundled task τi models an
arbitrary, tentative schedule σ of a single job of task τi and a
set of higher-priority tasks that can interfere with τi, which
starts with the release of the job of τi and ends with its
completion.

In addition to the sets Bi,j (Eq. (3)) and Ti,j (Eq. (4)),
we also define the set Ti of tasks that can interfere with an
arbitrary task τi under analysis as:

Ti = {τp | ∃τp,l ∈ τp such that τp,l ∈ Bi}, (8)

where

Bi = {τp,l | ∃τi,j ∈ τi such that τp,l ∈ Bi,j} (9)

is the set of bundles that can interfere with τi.
The arbitrary schedule modeled by the optimization

problem is characterized by variables encoding the response
times of the bundles of τi and the inter-task interference
suffered by each of such bundles, defined as follows.

Definition 1. The inter-task interference Ii,jp,l imposed by a
higher-priority bundle τp,l ∈ Bi,j on a bundle τi,j is the
maximum cumulative time in which τi,j is active but not
executing because τp,l is executing on one or more cores
required by τi,j .

MILP Variables. The following variables are defined:

• For each bundle τi,j of τi, its individual response
time Ri,j ∈ [li,j , Ri,j] in σ is encoded as a real
variable, where Ri,j is the WCRT upper bound given
by the closed-form analysis (Section 4);

• For each bundle τi,j of τi and for each higher-priority
τp,l ∈ Bi,j , Ii,jp,l ∈ R≥0 is a real variable encoding the
inter-task interference due to jobs of τp,l on τi,j in σ.

MILP Formulation. For the sake of clarity, the candidate
WCRT bound for τi is denoted by R†

i in the presentation
of the following constraints. The MILP has the objective of
maximizing the inter-task interference that the task under
analysis τi can suffer in the schedule σ of length R†

i . Thus,
the objective function is defined as:

maximize Ii(R
†
i) =

bi∑
j=1

∑
τp,l∈Bi,j

Ii,jp,l . (10)

The constraints presented next limit the search space of
the optimizer; in fact, an unconstrained maximization of the

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3441823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

interference would lead to an infinite value of the objective
function, which is a safe WCRT bound but is also useless.
Constraints Overview. Given the tentative WCRT upper
bound for the task under analysis τi, Constraint 1 bounds
the search space for the WCRT upper bound variables based
on the tentative WCRT of τi. Furthermore, the WCRT upper
bounds produced by the closed-form analysis presented
in Section 4, although potentially pessimistic, can be used
to limit the search space for the interference variables in
the MILP. Therefore, Constraint 2 is given to bound the
interference on each bundle τi,j of the task under analysis
τi, using the WCRT upper bounds obtained with the closed-
form analysis. Note that this constraint also makes the MILP
formulation safe by construction, since the WCRT upper
bound obtained with the optimization cannot exceed the
upper bound obtained with the closed-form analysis.

Constraints 3-6 were introduced to limit the pessimism
of the analysis with respect to the closed-form approach by
trying to minimize the number of times that each interfering
source (bundle or task) is accounted for in the computation
of the WCRT of the task under analysis and of its bundles.
In particular, Constraint 3 limits the interference that each
interfering task τp as a whole could cause on the bundle
τi,j of the task τi under analysis, while Constraint 4 limits
the interference by τp on the whole task τi under analysis.
Moreover, Constraint 6 limits the interference that each
bundle τp,l of the interfering task τp could cause on the
bundle τi,j of the task τi under analysis, while Constraint 5
limits the interference on the whole task τi under analysis.
The above constraints leverage the fact that only one bundle
of each task can be active at any time t to limit the amount of
interference suffered by the task under analysis and its bun-
dles. Constraints 3-6 leverage the interference term from the
analysis for self-suspending tasks in Eq. (2) to obtain upper
bounds on the interference suffered by the bundles of the
task under analysis or by the task as a whole. This approach
is possible without performing an explicit transformation
to self-suspending tasks because the interference term does
not require an upper bound of the suspension of higher-
priority tasks. Additionally, note that Constraints 3 and 6
obtain upper bounds on the interference suffered by the
bundles of the task under analysis caused respectively by
the interfering task as a whole and by its bundles, similar to
the computation of RT

i,j and RB
i,j in the closed-form analysis.

Some of the constraints presented in the following are
not reported in a linear form to simplify the presentation. 3

Next, we start presenting the constraints. Constraint 1
enforces the definition of the individual response times Ri,j

with respect to the tentative WCRT bound R†
i .

Constraint 1. Given the tentative response time R†
i of τi, the

WCRT of bundles τi,j ∈ τi in σ are constrained as follows:

bi∑
j=1

Ri,j ≤ R†
i . (11)

3. A ceiling operator of the form ⌈f(x)⌉ can be safely linearized using
an auxiliary integer variable y that is constrained as f(x) ≤ y ≤ f(x)+
1 − ϵ, where ϵ is a small real number compatible with the integrality
tolerance used by the solver. Note that linearization is only required
whenever the ceiling operator is applied to a function containing an
MILP variable.

Proof. The constraint follows by the definition of R†
i .

Let R∗
i,j represent the WCRT upper bound for τi,j ob-

tained with the closed-form analysis. Constraint 2 bounds
the interference on each bundle τi,j due to all the interfering
bundles in Bi,j using the WCRT upper bound R∗

i,j .

Constraint 2. For each τi,j ∈ τi,∑
τp,l∈Bi,j

Ii,jp,l ≤ R∗
i,j − li,j . (12)

Proof. The set of higher-priority bundles that can cause in-
terference on τi,j is given by Bi,j . The interference caused by
the bundles in this set is upper bounded by the cumulative
interference suffered by τi,j , which is itself upper bounded
by R∗

i,j − li,j , given the values of the WCRT upper bounds
R∗

i,j obtained using the closed-form analysis.

The following constraints leverage the fact that WCRT
bounds are computed in priority order, so that the bounds
of tasks with higher priority than τi are known. For each
higher-priority task τp, let R∗

p represent a WCRT bound of
τp. In addition, let R∗

p,l represent a WCRT bound for each
bundle of τp, obtained with the closed-form analysis.

Constraint 3 bounds the interference on each bundle
τi,j ∈ τi due to all bundles of τp.

Constraint 3. For each τi,j ∈ τi, for each τp ∈ hp(τi),∑
τp,l∈Bi,j∩τp

Ii,jp,l ≤
⌈
Ri,j +R∗

p − C ′
p

Tp

⌉
· C ′

p, (13)

where C ′
p is defined as in Theorem 2.

Proof. The left-hand side (LHS) of the inequality represents
the interference suffered by τi,j generated by the bundles of
τp that can interfere with τi,j , i.e., those in Bi,j∩τp. The right-
hand side (RHS) of the inequality is constructed by noting
that the interference due to all the bundles of τp is upper
bounded by the interference that task τp as a whole can
generate on τi,j . By Theorem 2, task τp can be modeled as a
DSS task τsusp for the purpose of evaluating the interference
of τp on τi,j . The bundle τi,j does not perform any kind
of self-suspension during its execution, and can thus be
modeled as a self-suspending task τsusi,j with priority πi and
suspension length 0. Hence, an upper bound on the number
of jobs of τp that can interfere with τi,j in an interval of
length Ri,j can be obtained by considering the interference
term in Eq. (2).

Constraint 4 bounds the overall interference on task τi
due to each interfering task τp.

Constraint 4. For each τp ∈ hp(τi),

bi∑
j=1

∑
τp,l∈Bi,j∩τp

Ii,jp,l ≤
⌈
R†

i +R∗
p − C ′

p

Tp

⌉
· C ′

p, (14)

where C ′
p is defined as in Theorem 2.

Proof. Let Iip,l represent the interference on τi caused by
τp,l, and Iip represent the interference on τi caused by τp.
At any point in time t, at most one bundle of τi can be
active; therefore, we have Iip,l =

∑bi
j=1 I

i,j
p,l and for the same

reason we have that Iip =
∑

τp,l∈Bi,j∩τp
Iip,l. As a result,

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3441823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

the LHS of the constraint represents the total interference
Iip that a task τp can cause on the task under analysis τi.
Next, we show that the number of interfering jobs in Eq. (2)
is valid in the context of this constraint (RHS). Consider
the transformation of τi into a rigid gang task τRi , with
WCET equal to the sum of the lengths li,j of the bundles
τi,j in τi, and height given by the cardinality of the union of
the cores Ai,j assigned to each bundle τi,j , i.e.,

∣∣∣⋃bi
j=1 Ai,j

∣∣∣.
The interference caused by the higher-priority task τp on
τRi cannot be smaller than the interference Iip. A rigid gang
task can be considered as a particular case of bundled task
with only one bundle. Therefore, Theorem 2 can be applied
to bound the interference caused by τp on the transformed
rigid task τRi , which is equivalent to a single bundle of a
bundled task. In particular, task τp can be modeled as a DSS
task τsusp , whereas the task τRi does not perform any self-
suspension during its execution, and can thus be modeled
as a DSS task with suspension length 0 and priority πi.
Therefore, an upper bound on the number of jobs of τp that
can cause interference on τRi , and thus on τi, in an interval
of length R†

i can be obtained by considering the simplified
interference term in Eq. (2).

Constraint 5 bounds the interference on task τi due to
each interfering bundle τp,l.

Constraint 5. For each τp,l ∈ Bi,

bi∑
j=1

Ii,jp,l ≤
⌈
R†

i + R̂p,l − C ′
p,l

Tp

⌉
· C ′

p,l, (15)

where R̂p,l = min
{
R∗

p −
∑bp

q=l+1 lp,q,
∑l

q=1 R
∗
p,q

}
and C ′

p,l

is defined as in Lemma 1.

Proof. The LHS of the constraint represents the total in-
terference that a bundle τp,l can cause on the task under
analysis τi. Let us now focus on the RHS. First, we need
to show that the number of interfering jobs in Eq. (2) is
valid in the context of this constraint. This is analogous
to the proof of Constraint 4, with the only difference of
modeling each individual bundle τp,l as a DSS task τsusp,l ,
by leveraging Theorem 1 instead of Theorem 2 because this
constraint uses a bundle-level transformation instead of a
task-level transformation, which is used in Constraint 4.
Then, we prove the validity of the bound on the term
R̂p,l−C ′

p,l used as a release jitter term in the RHS to leverage
Eq. (2). Term C ′

p,l directly follows from Eq. (2) after the
model transformation. The response time of the interfering
bundle τp,l with respect to the release of the task τp is upper
bounded by R̂p,l that is computed as in Lemma 2.

Constraint 6 bounds the interference on each bundle τi,j
of τi due to each interfering bundle τp,l in Bi,j .

Constraint 6. For each τi,j ∈ τi, for each τp,l ∈ Bi,j ,

Ii,jp,l ≤
⌈
Ri,j + R̂p,l − C ′

p,l

Tp

⌉
· C ′

p,l, (16)

where R̂p,l = min
{
R∗

p −
∑bp

q=l+1 lp,q,
∑l

q=1 R
∗
p,q

}
and C ′

p,l

is defined as in Theorem 1.

Proof. Similarly to the proof of Constraint 5, the response
time of the interfering bundle τp,l with respect to the release
of the task τp is upper bounded by R̂p,l. By Lemma 1,
the bundle τp,l can be modeled as a DSS task τsusp,l for the
purpose of evaluating the interference of τp,l on τi,j . The
bundle τi,j does not perform any self-suspension during
its execution, and can thus be modeled as a DSS task τsusi,j

with suspension length 0 and priority πi. Therefore, an
upper bound on the number of jobs of τp,l that can cause
interference on τi,j in an interval of length Ri,j can be
obtained by considering the interference term in Eq. (2).

The fixed-point iterative algorithm described in Eq. (7)
terminates in a finite number of steps. Specifically, since
the inter-task interference Ii (computed using the MILP
formulation) is a monotonically non-decreasing function,
either (1) the algorithm converges to a fixed point Ri ≤ Di

when two consecutive iterations of the algorithm produce
the same value for the interference Ii, or (2) the tentative
WCRT Ri becomes Ri > Di, in which case the algorithm
terminates and no valid WCRT bound is produced for τi.

6 PARTITIONED BUNDLE ASSIGNMENT

The assignment procedure determines a suitable set of cores
Ai,j for each bundle τi,j of all tasks τi ∈ Γ, as part of the
offline design phase. Determining an optimal allocation is
considered a highly intractable problem (NP-hard in the
strong sense), even for the less general case of rigid gang
tasks [9]. In the following, we describe a set of viable
allocation techniques for bundled gang tasks.

We first provide an outline of the allocation procedure,
with reference to Algorithm 1. Variants and specialized en-
hancements of the baseline approach for the case of bundled
gang tasks are presented later in Section 6.1. In every
considered technique, tasks are considered in decreasing
priority order (Lines 3-22 of Algorithm 1). For each task
τi, the bundles τi,j are each allocated to a set of cores Ai,j

according to their precedence constraints (Lines 4-22). The
allocation under partitioned scheduling considers each core
as a container with unitary capacity, with reference to the
overall utilization of the core and in an analogy to the bin-
packing problem.

Variants of Allocation Algorithms. For each allocation tech-
nique presented next, three possible variants are considered
(selected with the Variant input variable), each inspired by
a corresponding bin-packing heuristic algorithm (worst fit,
best fit, and first fit). These common heuristics, typically also
used for partitioning sequential tasks, are extended to the
case of bundles, which may require more than one core. To
extend the worst fit approach to the bundled model, for each
bundle τi,j , the cores are sorted in increasing order of their
current utilization by considering all the previously consid-
ered bundles already allocated to a set of cores (Line 6).
Then, we search for a set of hi,j cores where the current
bundle fits (Lines 7-20). In particular, the fitting of each
bundle τi,j (Line 9) is determined by considering a sliding
window of length hi,j of consecutive cores given their
ordering by increasing current utilization (Line 8). Note that,
when considering a sliding window of cores, the contiguity is
not determined based on the index of the corresponding cores but

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3441823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

Algorithm 1 Baseline allocation methods (utilization-based
and schedulability-based allocation).

1: procedure ALLOCATION(Γ, P,Variant,Method)
2: UProcs← {0, . . . , 0}|P |
3: for all τi ∈ Γ in decreasing priority order do
4: for all τi,j ∈ τi do
5: Allocated← FALSE
6: ProcOrder← processor order by Variant
7: for all pk ∈ P ordered by Variant do
8: W ← ProcOrder[k, (k + hi,j)%M]
9: if ∃w ∈W | UProcs(w) + U⋆

i,j > 1 then
10: continue
11: if Method = Utilization-based then
12: Allocated← TRUE
13: if Method = Schedulability-based then
14: Γ′ ← task set including all allocated

tasks and the allocated bundles of
τi, assuming Ai,j = W

15: if SchedAnalysis(Γ′) = TRUE then
16: Allocated← TRUE
17: if Allocated = TRUE then
18: Ai,j ←W
19: for all pa ∈ Ai,j do
20: UProcs(pa)← UProcs(pa) +U⋆

i,j
break

21: if Allocated = FALSE then
22: return Failure (task set not allocated)
23: return Success (task set allocated)

according to their current utilization. As a result, the core
ordering is recomputed multiple times and can potentially
change for each bundle allocation. This has the effect of
reducing the number of combinations of cores to be tested
while still considering the configurations that are most likely
to provide a schedulable result according to the heuristic.
The window corresponding to the tentative assignment of
cores for the bundle τi,j is shifted over the ordered set
of cores until the first element of the window reaches the
last core. In all positions where part of the sliding window
exceeds the maximum core index, the window is wrapped
around the set of cores as in a circular vector structure
(Line 8).

Each of the allocation techniques described next is based
on this overall approach and is applied by considering each
of the three variants resulting from the different ordering
heuristics in sequence (worst fit, which we already dis-
cussed, best fit, which sorts cores in decreasing order of
their current utilization, and first fit, which simply considers
cores in order of index) on the complete task set Γ, stopping
at the first variant producing a valid allocation. If none of
the variants returns a valid allocation for Γ (Lines 21-22),
then the allocation procedure fails, although it might still
be possible that a feasible allocation exists due to the non-
optimal nature of the algorithm.

6.1 Allocation Methods
We now present four allocation techniques.
1) Utilization-based allocation. This is the baseline ap-
proach (described in Algorithm 1 when the Method input

Algorithm 2 Specialized allocation methods (specialized
schedulability-based and WCRT-based allocation).

1: procedure SPECALLOCATION(Γ, P,Variant,Method)
2: UProcs← {0, . . . , 0}|P |
3: for all τi ∈ Γ in decreasing priority order do
4: Ri,j ← +∞
5: for all τi,j ∈ τi do
6: Allocated← FALSE
7: ProcOrder← processor order by Variant
8: for all pk ∈ P ordered by Variant do
9: W ← ProcOrder[k, (k + hi,j)%M]

10: if ∃w ∈W | UProcs(w) + U⋆
i,j > 1 then

11: continue
12: Γ′ ← task set including all allocated

tasks and the allocated bundles of
τi, assuming Ai,j = W

13: Sched, R′
i,j ← SchedAnalysis(Γ′, i, j)

14: if Sched = TRUE then
15: Allocated← TRUE
16: if Method = Schedulability-based then
17: Ai,j ←W
18: break
19: if Method = WCRT-based then
20: if R′

i,j ≤ Ri,j then
21: Ai,j ←W
22: Ri,j ← R′

i,j

23: if Allocated = FALSE then
24: return Failure (task set not allocated)
25: for all pk ∈ P do
26: MaxUtask← maxτi,j∈τi|pk∈Ai,j

U⋆
i,j

27: UProcs(pk)← UProcs(pk) +MaxUtask

28: return Success (task set allocated)

Fig. 5: Example of allocation for a bundle τ2,0 within the specialized
schedulability- and WCRT-based allocation procedure (worst-fit variant).

variable is set to Utilization-based). For the allocation of
cores Ai,j for a bundle τi,j , a tentative assignment is con-
sidered valid if the bundles fit in all the cores in terms of
utilization in the tentative allocation window (Lines 11-12).
Schedulability is only checked at the end once all bundles of
all tasks have been assigned to cores.
2) Schedulability-based allocation. This technique (de-
scribed in Algorithm 1 when Method is set to
Schedulability-based) extends the previous approach by de-
termining the fitting of each bundle τi,j to a set of cores not
only based on the utilization of the target cores, but also by
running the schedulability test for any tentative assignment
of the bundle (Lines 13-16).
3) Specialized schedulability-based allocation. The above

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3441823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

allocation methodologies are suitable for both rigid and
bundled gang tasks. It is possible to define a specialized
technique (described in Algorithm 2 when Method is set
to Schedulability-based) for the case of bundled gang tasks
by considering that, for any time instant t, at most one
bundle can be active for each task τi ∈ Γ if the task set is
schedulable. Leveraging this observation, during allocation,
the contribution of each task τi to the utilization of core pk is
determined as the maximum utilization among the bundles
of τi that are assigned to pk, rather than accumulating the
utilization contributed by all the bundles of τi (Lines 25-
27). This influences the core ordering when using worst fit
and best fit. As in the previous approach, schedulability is
checked for each tentative assignment.

4) Specialized WCRT-based allocation. In all the previous
approaches, each bundle is assigned to the first set of
cores that meets the utilization-based test or the schedu-
lability test. In contrast, this heuristic (described in Algo-
rithm 2 when Method is set to WCRT-based) evaluates all
the schedulable tentative assignments after allocating the
current bundle τi,j according to the previously discussed
sliding window approach and selects the one characterized
by the lowest WCRT upper bound for τi,j (Lines 19-22).

Example. Fig. 5 depicts how the allocation for a bundle τ2,0
is selected within the specialized schedulability and WCRT-
based allocation, in its worst-fit variant in a system with 3
cores. Consider that the bundled tasks τ0 = {τ0,0} and
τ1 = {τ1,0, τ1,1, τ1,2} were already allocated, such that
A0,0 = {p0, p1}, A1,0 = {p0, p2}, A1,1 = {p2}, and
A1,2 = {p0, p2}. The utilization for the bundles τ0,0, τ1,0,
τ1,1, τ1,2, and τ2,0 are 0.25, 0.15, 0.19, 0.12, and 0.18, respec-
tively. Therefore, the utilization of each of the three cores p0,
p1, and p2, computed by considering the maximum bundle
utilization for each task in each given core, is, respectively,
0.40, 0.25, and 0.19. Thus, the order of cores considered
when allocating τ2,0 is p2, p1, p0. We then slide a window
of length 2 (equal to the height of τ2,0) and we record the
WCRT bound R2,0 for each feasible allocation. The fitting
is assessed based on the maximum utilization which is
reported under the cores in Fig. 5. Finally, we select the
allocation with the lowest WCRT, that is, A2,0 = {p1, p0}.
Complexity Analysis. The time complexity of the
utilization-based allocation approach is O(NBM2),
where B is an upper bound on the number of bundles
across the tasks. The complexity of the other allocation
approaches is O(NBM2 + NBMO(SchedAnalysis)),
where O(SchedAnalysis) is the complexity of the selected
schedulability analysis. The complexity O(SchedAnalysis)
is O(NB(O(DSStransf) + O(DSSanalysis))) when using
the closed-form analysis and O(NB(O(DSStransf) +
O(DSSanalysis)) + NO(MILP)) when using the
optimization-based analysis, where O(MILP) is the
complexity of solving an instance of the proposed MILP
formulation, O(DSStransf) = O(N2B3) is the complexity
of the DSS transformation, and O(DSSanalysis) is the
complexity of the DSS analysis reported in Equation (1),
which is pseudo-polynomial [16].

The complexity of the MILP formulation in terms of
the number of constraints and number of variables per
constraint is described in Table 2. The overall number of

variables in the MILP is O(NB2), whereas the number of
constraints is O(NB2).
TABLE 2: Complexity of the MILP formulation in terms of the number
of constraints and number of variables per constraint.

Constraint Eq. # of constraints # of variables per constraint
1 (11) O(1) O(|bi|)
2 (12) O(|bi|) O(N ×B)
3 (13) O(|bi| ×N) O(B)
4 (14) O(N) O(|bi| ×B)
5 (15) O(N ×B) O(|bi|)
6 (16) O(|bi| ×B ×N) O(B)

7 EVALUATION

This section presents a selection of representative results of
an extensive experimental evaluation campaign that was
performed to evaluate the performance of the proposed
analysis and allocation techniques. The aim of the experi-
ments is to: (i) evaluate and compare the proposed alloca-
tion techniques, (ii) compare the performance of the closed-
form and the optimization-based analyses, (iii) compare
the proposed approach with the state-of-the-art analysis for
global scheduling of bundled gang tasks by Wasly and Pel-
lizzoni [10] and the state-of-the-art analysis for partitioned
scheduling under the rigid model [9], and (iv) compare the
runtime of the algorithms considered in the evaluation.
Experimental Setup. The task sets evaluated in the ex-
periments were generated following the approach in [10],
which we recap in the following. Each task τi was generated
by selecting the total WCET Li from the discrete uniform
distribution [10, 150], and the number of bundles bi from
the discrete uniform distribution [2, 5]. Ti was selected from
the discrete uniform distribution [Li, 10 · Li], resulting in a
task utilization Ui between Vi/(10 · Li) and Vi/Li, where
Vi =

∑bi
j=1 li,j · hi,j is the volume of the bundled gang task

τi. As a result, the minimum and the maximum possible
values of each Ti were 10 and 1500, respectively. The relative
deadline was set to Di = Ti (implicit deadlines). To obtain
a task set Γ with a given system utilization value U =∑

τi∈Γ Ci/Ti, tasks were generated iteratively and added
until the desired utilization U was reached. Finally, three
types of task sets were considered to generate the height
hi,j and the length li,j of each bundle τi,j ∈ Γ. For lightly-
parallel task sets, each bundle was randomly categorized as
either a short or tall bundle, with a probability of 50%. The
height of short and tall bundles was selected in the discrete
uniform distributions [1, ⌈0.3 ·m⌉] and [m−⌈0.3 ·m⌉+1,m],
respectively. To generate li,j , 80% of the WCET Li was
randomly distributed among the short bundles, while the
remaining 20% was distributed among tall bundles. For
heavily-parallel task sets, generation is similar to the lightly-
parallel task sets, except that 80% of the WCET is assigned
to tall bundles and 20% to short ones to obtain the length of
the bundles. For mixed task sets, the height of each bundle
is selected from the discrete uniform distribution [1,m], and
Li is uniformly distributed among all bundles.

Task priorities were assigned according to rate mono-
tonic (i.e., priorities inversely proportional to periods). In
some of the experiments, we considered a multicore plat-
form with m ∈ {4, 8, 16}, and the system utilization U
was varied from 0 to m in increments of 0.5. In other
experiments, we varied the number of cores M between

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3441823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

4 and 16 and fixed the system utilization U to a given
percentage of the total maximum system utilization (i.e., of
the number of cores in the system). Then, for each system
configuration point to be evaluated (system utilization or
number of cores), a total of 100 task sets were generated and
analyzed with the analyses under evaluation.

We evaluated the schedulability ratio, i.e., the ratio of
schedulable task sets over the total number of generated
task sets, for each tested system configuration. The average
and maximum runtimes of the analysis techniques were
collected as part of the experiments. All the experiments
were executed on a computer equipped with an Intel Core
i9-9900 with 8 multithreaded cores with a base frequency of
3.10 GHz, and 32 GiB of main memory.

7.1 Evaluation of Partitioned Analyses
Fig. 6(a) shows the schedulability achieved under a relevant
system configuration with the two proposed analyses: the
closed-form analysis (Sec. 4) and the optimization-based
analysis (Sec. 5). The runtime times required by both ap-
proaches in the same configuration are reported in Fig. 6(h).
When the two approaches are applied to mixed task sets
running on 8 cores, a significant performance gap, up to
57%, is exhibited between the closed-form (CF) and the
optimization-based (MILP) analyses (Fig. 6(a)). On the other
hand, the performance gain of the optimization-based anal-
ysis comes at a significant cost in terms of analysis runtime
(Fig. 6(h)). Fig. 6(h) reports the maximum (max) and average
(avg) runtimes of the analyses observed when running the
experiments in Fig. 6(a). When considering the average
runtimes, the MILP analysis only takes thirty times more
than the closed-form analysis. Overall, the runtimes are
largely compatible with offline system design workflows.

7.2 Evaluation of Allocation Techniques
Fig. 6(b) compares the schedulability performance achieved
with different allocation methods and with an optimal, ex-
haustive search algorithm that tests all the possible combi-
nations of allocation for every bundle (Exact). Since Exact
is characterized by an exponential algorithmic complexity,
the experiment involving a comparison with the Exact algo-
rithm is performed on a simplified experimental setup. In
particular, we used a fixed number of tasks equal to N = 3,
while the number of bundles bi is selected from the reduced
discrete uniform distribution [2, 4]. The utilization is divided
among the tasks using the UUnifast algorithm [21], which
generates a set of uniformly-distributed utilization values
Ui for each task such that

∑
τi∈Γ Ui = U , where U is

the target system utilization. In this simplified setup, we
considered a platform with m = 4 cores, and the system
utilization U was varied from 0.4 to 2.2 in increments of
0.2. Then, for each value of U , a total of 100 task sets
were generated and analyzed with the allocation techniques
under evaluation, using the optimization-based analysis to
assess schedulability.

In the comparison, we also considered the utilization-
based allocation (Util-based), the schedulability-based allo-
cation (Sched-based), the specialized schedulability-based
allocation (Spec-based), and the specialized WCRT-based
allocation (RSpec-based).

Fig. 6(b) considers the simplified experimental setup
when applied to mixed task sets and reports the perfor-
mance of Exact, while Fig. 6(c) considers the general task-set
generation setup (discussed at the beginning of the section)
and a higher number of cores (8), but excluding Exact (for
scalability reasons due to the exhaustive search).

Fig. 6(j) reports the schedulability ratio achieved with the
proposed allocation methods when varying the number of
cores in the system between 4 and 16 and fixing the system
utilization to a value equal to 60% of the number of cores
(i.e., of the maximum possible system utilization).

The results in Fig. 6(b,c,j) show that RSpec-based per-
forms better than the other allocation techniques. In partic-
ular, in Fig. 6(c), we highlight a significant performance gap
(of up to 15% in terms of schedulability ratio) in favor of
RSpec-based, with respect to Spec-based and up to 31%
with respect to Util-based. Therefore, RSpec-based was
selected as the allocation technique to be used in the other
experiments. Moreover, we observe (in Fig. 6(b)) that RSpec-
based achieves similar performance to the algorithm that
tests all the possible combinations of allocation. Specifically,
RSpec-based exhibits a loss of schedulability ratio of at
most 3% only with respect to Exact, while offering drastic
improvements in terms of algorithmic complexity since it
does not require an exhaustive evaluation of all the possible
combinations of allocation for each bundle. The results in
Fig. 6(j) confirm again the RSpec-based method as the best
allocation strategy, with a slight decline in performance for
all methods when the number of cores increases.

7.3 Comparison with the State of the Art

The third set of experiments compares the schedulability
ratio attained by the proposed MILP-based analysis for
bundled gang tasks executing under partitioned scheduling
with the state-of-the-art MILP-based analysis for bundled
gang tasks executing under global scheduling [10] (gl) and
the state-of-the-art closed-form analysis for rigid gang tasks
executing under partitioned scheduling [9] (rig).

When evaluating the performance achieved by the global
scheduling approach, in addition to the results of the analy-
sis performed using the nominal values of the WCETs of
each task obtained by the task set generation procedure,
we report the results of the analysis on modified task sets
where the WCETs of each task were inflated from 0% to 20%
(with steps of 5%) of their nominal value. These results aim
at evaluating the performance of global scheduling under
more fair conditions with respect to partitioned scheduling
approach to account for well-known phenomena such as
migration costs [13], loss of cache affinity [12], and the
difficulty in deriving tight WCET bounds. In particular, the
experiments report the results of the global scheduling with
no WCET inflation (gl) and with WCETs inflated by 5%
(gl+5), 10% (gl+10), 15% (gl+15), and 20% (gl+20).

Fig. 6(d) compares the various approaches considering
mixed-parallel task sets on 4 cores. The proposed approach
(our) performs better than global scheduling, with a perfor-
mance gain in terms of schedulability ratio of up to 13% in
the case with no WCET inflation, 23% with 5% inflation, and
up to 39% in the case of 20% inflation. With respect to rig,
our provides an improvement of up to 18%.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3441823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

Sc
he

du
la

bi
lit

y
ra

tio

System utilization

CF
MILP

(a) mixed, 8 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Sc
he

du
la

bi
lit

y
ra

tio

System utilization

RSpec-based
Spec-based

Sched-based
Util-based

Exact

(b) mixed, 4 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

Sc
he

du
la

bi
lit

y
ra

tio

System utilization

RSpec-based
Spec-based

Sched-based
Util-based

(c) mixed, 8 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

Sc
he

du
la

bi
lit

y
ra

tio

System utilization

rig
our

gl
gl+5

gl+10
gl+15
gl+20

(d) mixed, 4 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5
Sc

he
du

la
bi

lit
y

ra
tio

System utilization

rig
our

gl
gl+5

gl+10
gl+15
gl+20

(e) lightly-parallel, 8 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

Sc
he

du
la

bi
lit

y
ra

tio

System utilization

rig
our

gl
gl+5

gl+10
gl+15
gl+20

(f) heavily-parallel, 8 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

Sc
he

du
la

bi
lit

y
ra

tio

System utilization

rig
our

gl
gl+5

gl+10
gl+15
gl+20

(g) lightly-parallel, 16 cores

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8

R
un

tim
e

(m
s)

System utilization

max-CF
avg-CF
max-M
avg-M

(h) mixed, 8 cores

 0
 50

 100
 150
 200
 250
 300
 350

 0 1 2 3 4 5 6 7 8

R
un

tim
e

(m
s)

System utilization

max-rig
avg-rig

max-our
avg-our
max-gl
avg-gl

(i) heavily-parallel, 8 cores

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4 6 8 10 12 14 16

Sc
he

du
la

bi
lit

y
ra

tio

Number of cores

Util-based
Sched-based

Spec-based
RSpec-based

(j) mixed, U = 60% of the number of cores

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4 6 8 10 12 14 16

Sc
he

du
la

bi
lit

y
ra

tio

Number of cores

rig
our

gl

gl+5
gl+10
gl+15

gl+20

(k) mixed, U = 60% of the number of cores

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 4 6 8 10 12 14 16

Sc
he

du
la

bi
lit

y
ra

tio

Number of cores

rig
our

gl

gl+5
gl+10
gl+15

gl+20

(l) lightly-parallel, U = 40% of the number of cores

Fig. 6: Comparison in terms of schedulability ratio (a-g) or required runtime (h,i) between: the two proposed analyses (a,h), the exact and heuristic
allocation techniques (b), heuristic allocation techniques (c,j), and of the proposed MILP-based analysis with global scheduling [10] and partitioned
rigid scheduling [9] (d-g,i,k,l).

An even better improvement can be observed when
considering lightly-parallel task sets on 8 cores (Fig. 6(e)).
Here, the performance gain with respect to global schedul-
ing reaches up to 17% without WCET inflation, 25% with
5% inflation, and 45% with 20% inflation. Furthermore, our
exhibits a significant perform gain with respect to rig, up to
34%. Fig. 6(f) considers heavily-parallel tasks. In this case,
our provides a slight performance improvement to global
scheduling without WCET inflation (gl), up to at most 4%.
However, the improvement with respect to gl+5 and gl+20
is significant, and equal to up to 17% and 44%, respectively.
The improvement of our with respect to rig is up to 21%.
Fig. 6(g) reports the results for 16 cores and lightly-parallel
tasks, showing a similar trend to other experiments.

Fig. 6(k,l) presents the comparison when varying the
number of cores in the system from 4 to 16, and fixing
the system utilization to a fixed percentage of the number
of cores. Note that Fig. 6(k) considers the same randomly
generated dataset of mixed task sets utilized in Fig. 6(j).
Instead, Fig. 6(l) refers to lightly parallel task sets with

a percentage of utilization equal to 40% of the number
of cores. The results in Fig. 6(k,l) show a similar descen-
dent trend in performance across all the evaluated analyses
which stabilizes when considering 10 or more cores, with a
larger gain in performance with respect to global scheduling
observed in Fig. 6(l). Overall, our consistently outperforms
the other approaches, especially when considering inflated
WCETs for global scheduling due to the additional over-
heads incurred by the approach.

Finally, Fig. 6(i) reports the maximum (max) and average
(avg) runtimes of the analyses observed when running the
experiments in Fig. 6(d). The fastest method is the analysis
for partitioned rigid scheduling [9] (rig), since it is based on
a closed-form approach. In this case, the average and max-
imum runtimes are in the order of tenths of milliseconds.
On the other hand, the analyses for partitioned bundled
scheduling and global scheduling (our and gl) are based on
an optimization approach, thus requiring higher runtimes,
in the order of hundreds of milliseconds for maximum
runtimes and less than 60 milliseconds for average runtimes.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3441823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

Overall, all the evaluated approaches have runtimes com-
patible with typical offline design workflows.

8 RELATED WORK

The timing behavior of parallel tasks has been extensively
studied in the literature, according to global [22, 23], feder-
ated [24]–[26], and partitioned scheduling [27, 28]. The latter
category is closer to this research. The analysis techniques
for these models are either based on decomposition-based
scheduling [27, 29] or on direct response-time analysis tech-
niques [28, 30]–[32]. Similar to this paper, approaches based
on response-time analysis leverage self-suspending task the-
ory [33, 34]. However, they do not target gang scheduling,
allowing subtasks to be scheduled independently.

Works on gang scheduling (and parallel tasks in general)
are further classified on how cores are assigned to the
parallel application. The rigid model [9, 35] assigns the
number of cores a priori and does not change it during its
execution; the moldable model [36] still does not change
during the execution the number of cores, but determines
it at runtime; the malleable model [37] allows changing the
number of cores allocated to an application at runtime; and
finally, the bundled model. To the best of our knowledge,
only this paper and [10] considered the bundled scheduling
paradigm. Concerning the analysis of gang tasks, most
works considered global scheduling algorithms [8, 35], with
the only recent work by Ueter et al. [9] considering parti-
tioned scheduling, but under the rigid model, hence not ac-
counting for the varying degree of parallelism that parallel
programs exhibit during their execution.

Overall, none of the previous work considered the gang
scheduling of parallel real-time tasks under partitioned
scheduling and the bundled model.

9 CONCLUSIONS AND FUTURE WORK

This paper presented two response-time analysis techniques
for bundled gang tasks under fixed-priority partitioned
scheduling: a closed-form analysis based on a transforma-
tion to a set of self-suspending tasks, and an optimization-
based approach that significantly improves the bounds ob-
tained with the closed-form analysis. Specialized allocation
strategies were also proposed. Experimental results were
presented to evaluate the schedulability of the proposed
allocation and analysis techniques, showing performance
improvements up to 34% and 17%, with respect to rigid
partitioned gang scheduling [9] and global gang schedul-
ing [10], respectively.

Future work includes deriving an analysis for bun-
dled gang tasks under partitioned Earliest Deadline First
scheduling, e.g., by leveraging existing results for self-
suspending tasks under EDF [38]–[40], and devising more
advanced partitioning heuristics for bundled gang tasks.

ACKNOWLEDGMENTS

This work has been partially supported by the SERICS
project funded by the Italian Ministry of University and
Research (PNRR), under Grant PE00000014.

REFERENCES

[1] L. Belluardo, A. Stevanato, D. Casini, G. Cicero, A. Biondi, and
G. Buttazzo, “A multi-domain software architecture for safe and
secure autonomous driving,” in 2021 IEEE 27th International Con-
ference on Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA), 2021, pp. 73–82.

[2] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Au-
toware on board: Enabling autonomous vehicles with embedded
systems,” in 2018 ACM/IEEE 9th International Conference on Cyber-
Physical Systems (ICCPS), 2018, pp. 287–296.

[3] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund,
“Industrial internet of things: Challenges, opportunities, and di-
rections,” IEEE transactions on industrial informatics, vol. 14, no. 11,
pp. 4724–4734, 2018.

[4] Y. Yang and T. Azumi, “Exploring real-time executor on ros 2,” in
2020 IEEE International Conference on Embedded Software and Systems
(ICESS). IEEE, 2020, pp. 1–8.

[5] D. Casini, “A theoretical approach to determine the optimal size
of a thread pool for real-time systems,” in 2022 IEEE Real-Time
Systems Symposium (RTSS), 2022, pp. 66–78.

[6] M. A. Jette, “Performance characteristics of gang scheduling
in multiprogrammed environments,” in Proceedings of the 1997
ACM/IEEE conference on Supercomputing, 1997, pp. 1–12.

[7] W. Ali and H. Yun, “Rt-gang: Real-time gang scheduling frame-
work for safety-critical systems,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2019, pp. 143–155.

[8] Z. Dong and C. Liu, “Analysis techniques for supporting hard
real-time sporadic gang task systems,” Real-Time Systems, vol. 55,
pp. 641–666, 2019.

[9] N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen, “Hard
Real-Time Stationary GANG-Scheduling,” in 33rd Euromicro
Conference on Real-Time Systems (ECRTS 2021), ser. Leibniz Inter-
national Proceedings in Informatics (LIPIcs), B. B. Brandenburg,
Ed., vol. 196. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021, pp. 10:1–10:19. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2021/13941

[10] S. Wasly and R. Pellizzoni, “Bundled scheduling of parallel real-
time tasks,” in IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), 2019, pp. 130–142.

[11] R. I. Davis and A. Burns, “A survey of hard real-time schedul-
ing for multiprocessor systems,” ACM computing surveys (CSUR),
vol. 43, no. 4, pp. 1–44, 2011.

[12] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Mem-
guard: Memory bandwidth reservation system for efficient perfor-
mance isolation in multi-core platforms,” in 2013 IEEE 19th Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2013, pp. 55–64.

[13] B. B. Brandenburg and M. Gül, “Global scheduling not required:
Simple, near-optimal multiprocessor real-time scheduling with
semi-partitioned reservations,” in 2016 IEEE Real-Time Systems
Symposium (RTSS), 2016, pp. 99–110.

[14] Y. Sun and M. Di Natale, “Pessimism in multicore global schedula-
bility analysis,” Journal of Systems Architecture, vol. 97, pp. 142–152,
2019.

[15] A. Biondi and Y. Sun, “On the ineffectiveness of 1/m-based
interference bounds in the analysis of global EDF and FIFO
scheduling,” Real-Time Systems, vol. 54, no. 3, pp. 515 – 536, 2018.

[16] J.-J. Chen, G. Nelissen, and W.-H. Huang, “A unifying response
time analysis framework for dynamic self-suspending tasks,” in
28th Euromicro Conference on Real-Time Systems (ECRTS), 2016.

[17] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel
real-time tasks on multi-core processors,” in 2010 31st IEEE Real-
Time Systems Symposium, Nov 2010.

[18] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic, “Techniques
optimizing the number of processors to schedule multi-threaded
tasks,” in 24th Euromicro Conference on Real-Time Systems, July 2012.

[19] B. B. Brandenburg, “Scheduling and locking in multiprocessor
real-time operating systems,” Ph.D. dissertation, The University
of North Carolina at Chapel Hill, 2011.

[20] S. Schliecker and R. Ernst, “A recursive approach to end-to-
end path latency computation in heterogeneous multiprocessor
systems,” in Proceedings of the 7th international conference on Hard-
ware/software codesign and system synthesis, 2009, pp. 433–442.

[21] E. Bini and G. C. Buttazzo, “Measuring the performance of schedu-
lability tests,” Real-time systems, vol. 30, no. 1-2, pp. 129–154, 2005.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3441823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

[22] S. Baruah, “Improved multiprocessor global schedulability analy-
sis of sporadic DAG task systems,” in 2014 26th Euromicro Confer-
ence on Real-Time Systems, July 2014.

[23] J. Fonseca, G. Nelissen, and V. Nélis, “Improved response time
analysis of sporadic DAG tasks for global FP scheduling,” in
Proceedings of the 25th International Conference on Real-Time Networks
and Systems, ser. RTNS ’17, 2017.

[24] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah,
“Analysis of federated and global scheduling for parallel real-
time tasks,” in 2014 26th Euromicro Conference on Real-Time Systems.
IEEE, 2014, pp. 85–96.

[25] X. Jiang, N. Guan, H. Liang, Y. Tang, L. Qiao, and Y. Wang,
“Virtually-federated scheduling of parallel real-time tasks,” in
IEEE Real-Time Systems Symposium (RTSS), 2021, pp. 482–494.

[26] N. Ueter, G. Von Der Brüggen, J.-J. Chen, J. Li, and K. Agrawal,
“Reservation-based federated scheduling for parallel real-time
tasks,” in IEEE Real-Time Systems Symposium (RTSS). IEEE, 2018.

[27] X. Jiang, X. Long, N. Guan, and H. Wan, “On the decomposition-
based global edf scheduling of parallel real-time tasks,” in IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2016, pp. 237–246.

[28] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “Partitioned
fixed-priority scheduling of parallel tasks without preemptions,”
in IEEE Real-Time Systems Symposium (RTSS), 2018, pp. 421–433.

[29] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet, “Global
edf scheduling of directed acyclic graphs on multiprocessor sys-
tems,” in Proceedings of the 21st International conference on Real-Time
Networks and Systems, 2013, pp. 287–296.

[30] J. Fonseca, G. Nelissen, V. Nelis, and L. M. Pinho, “Response time
analysis of sporadic DAG tasks under partitioned scheduling,” in
11th IEEE Symposium on Industrial Embedded Systems (SIES), 2016.

[31] F. Aromolo, A. Biondi, G. Nelissen, and G. Buttazzo, “Event-
driven delay-induced tasks: Model, analysis, and applications,” in
2021 IEEE 27th Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2021, pp. 53–65.

[32] F. Aromolo, G. Nelissen, and A. Biondi, “Replication-based
scheduling of parallel real-time tasks,” in 35th Euromicro Conference
on Real-Time Systems, ECRTS 2023. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2023, p. 18.

[33] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. Audsley,
R. Rajkumar, D. de Niz, and G. von der Brüggen, “Many
suspensions, many problems: a review of self-suspending tasks
in real-time systems,” Real-Time Systems, pp. 55(1):144–207, 2019.
[Online]. Available: https://doi.org/10.1007/s11241-018-9316-9

[34] J.-J. Chen, G. von der Brüggen, W.-H. Huang, and C. Liu, “State
of the art for scheduling and analyzing self-suspending sporadic
real-time tasks,” in IEEE 23rd International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2017.

[35] S. Lee, S. Lee, and J. Lee, “Response time analysis for real-time
global gang scheduling,” in 2022 IEEE Real-Time Systems Sympo-
sium (RTSS). IEEE, 2022, pp. 92–104.

[36] G. Nelissen, J. Marcè i Igual, and M. Nasri, “Response-time anal-
ysis for non-preemptive periodic moldable gang tasks,” in 34th
Euromicro Conference on Real-Time Systems (ECRTS 2022). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[37] J. Błażewicz, M. Machowiak, J. Węglarz, M. Y. Kovalyov, and
D. Trystram, “Scheduling malleable tasks on parallel processors to
minimize the makespan,” Annals of Operations Research, vol. 129,
pp. 65–80, 2004.

[38] F. Aromolo, A. Biondi, and G. Nelissen, “Response-time analysis
for self-suspending tasks under edf scheduling,” in 34th Euromicro
Conference on Real-Time Systems (ECRTS 2022). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2022.

[39] M. Günzel, G. von der Brüggen, and J.-J. Chen, “Suspension-aware
earliest-deadline-first scheduling analysis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 11, pp. 4205–4216, 2020.

[40] M. Günzel, G. von der Brüggen, K.-H. Chen, and J.-J. Chen, “Edf-
like scheduling for self-suspending real-time tasks,” in 2022 IEEE
Real-Time Systems Symposium (RTSS), 2022, pp. 172–184.

10 BIOGRAPHY SECTION

Veronica Rispo received the graduate (cum
laude) degree in embedded computing systems
engineering, the joint master’s degree from the
Scuola Superiore Sant’Anna of Pisa and the
University of Pisa. She is currently working to-
ward the PhD degree with the Real-Time Sys-
tems (ReTiS) Laboratory of the Scuola Supe-
riore Sant’Anna of Pisa. Her current research
interests include the modeling and analysis of
distributed real-time applications.

Federico Aromolo received the M.Sc. degree
(cum laude) in embedded computing systems
from the Scuola Superiore Sant’Anna of Pisa
and the University of Pisa, and the Ph.D. de-
gree (cum laude) in computer engineering from
the Scuola Superiore Sant’Anna. He is assistant
professor with the Real-Time Systems (ReTiS)
Laboratory of the Scuola Superiore Sant’Anna.
His research interests include real-time schedul-
ing algorithms, schedulability analysis, and real-
time operating systems.

Daniel Casini received the graduate (cum
laude) degree in embedded computing systems
engineering, the joint master’s degree from the
Scuola Superiore Sant’Anna of Pisa and Uni-
versity of Pisa, and the PhD degree in com-
puter engineering from the Scuola Superiore
Sant’Anna of Pisa (with honors). He is assistant
professor with the Real-Time Systems (ReTiS)
Laboratory of the Scuola Superiore Sant’Anna
of Pisa. In 2019, he has been visiting scholar
with the Max Planck Institute for Software Sys-

tems (Germany). His research interests include software predictability
in multi-processor and distributed systems, middleware frameworks, and
schedulability analysis.

Alessandro Biondi received the graduate (cum
laude) degree in computer engineering from the
University of Pisa, Italy, within the excellence
program, and the PhD degree in computer en-
gineering from the Scuola Superiore Sant’Anna.
In 2016, he has been visiting scholar with the
Max Planck Institute for Software Systems (Ger-
many). He is associate professor with the Real-
Time Systems (ReTiS) Laboratory of the Scuola
Superiore Sant’Anna. His research interests in-
clude design and implementation of realtime op-

erating systems and hypervisors, schedulability analysis, cyberphysical
systems, synchronization protocols, and component-based design for
real-time multiprocessor systems. He was recipient of six best paper
awards, one Outstanding Paper Award, the IEEE TCCPS Early Career
Award 2023, the ACM SIGBED Early Career Award 2019, and the EDAA
Dissertation Award 2017.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3441823

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

