
IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXX 1

Optimizing Inter-Core Communications under
the LET Paradigm using DMA Engines

Paolo Pazzaglia Member, IEEE , Daniel Casini Member, IEEE , Alessandro Biondi Member, IEEE and
Marco Di Natale Senior Member, IEEE

Abstract—Modern automotive applications are increasingly characterized by the need to transfer massive amounts of data in a
predictable and deterministic way, possibly leveraging the Logical Execution Time (LET) paradigm. However, current proposals for LET
communications are limited to core-commanded data transfers, which may result in large delays for data-intensive systems. To address
this issue, we explore the use of Direct Memory Access (DMA) to handle LET communication with improved parallelism. Each DMA
transfer operates on a contiguous memory area, thus calling for an optimized memory mapping to maximize performance. Modern
DMA engines offer also advanced configurations, such as linked-lists of data transfers, which may provide more flexibility at the
expenses of an increased (initial) programming overhead. Leveraging all such features of DMA engines, we propose a set of designs
and protocols for LET communications with trade-offs between latency and space requirements. For each option we present the
formulation to compute the optimal scheduling and memory allocation solution as a mixed-integer linear programming problem.
Experimental results show the feasibility of the approach and a comparison of the solutions obtained using the proposed methods,
showing a considerable improvement in terms of data acquisition latency when compared to LET communication without DMA.

Index Terms—Logical Execution Time, Direct Memory Access Engines, Multicore Automotive Systems, Real-Time Systems.

F

1 INTRODUCTION

Modern multicore automotive applications are character-
ized by the need for predictable and deterministic com-
munication among computational activities (tasks), possi-
bly allocated on different cores. To this end, the Logical
Execution Time (LET) paradigm [1] has been increasingly
adopted by the automotive industry [2]. The LET paradigm
allows for time-deterministic communications among tasks
on multicore platforms by restricting the copy of data at
specific time instants, such as the beginning and the end of a
task period. LET also emerged as an opportunity to precisely
schedule in time memory accesses and avoid contention
among tasks concurrently accessing shared memories (e.g.,
a DRAM) from different cores [3], [4].

In literature, implementations of inter-core LET commu-
nication that also mitigate inter-core memory contention
leverage tasks running at the highest priority in each core,
copying data between a private core-local memory (e.g., a
scratch-pad) and the global memory, used as intermediate
storage [5], [6]. In this paper, we refer to such commu-
nications as local-global-local. In prior work, these copies
are core-commanded and may not be suitable when large
amounts of data are transferred across cores due to their
potentially large delays. This can be a relevant issue in many
emerging automotive applications, such as autonomous
driving systems, which involve data-intensive communica-

• P. Pazzaglia is with the Saarland University, Saarbrücken, Germany.
• D. Casini, A. Biondi, M. Di Natale are with the Real-Time Systems

Laboratory (ReTiS Lab) and the Department of Excellence in Robotics
and Artificial Intelligence, Scuola Superiore Sant’Anna.
E-mail: pazzaglia@cs.uni-saarland.de, {daniel.casini, alessandro.biondi,
marco.dinatale}@santannapisa.it

Manuscript received XXX.

tions (e.g., camera images, lidar data, etc.). In these cases,
Direct Memory Access (DMA) engines offer an interesting
opportunity to free cores from the duty of copying data,
fostering parallelism and reducing waiting times for tasks.

In practice, a careful design is required to conjugate the
parallelism introduced by the DMA with the semantics of
the LET paradigm. First of all, the causality dependencies
of all DMA-based communications must always be guar-
anteed. Next, DMA engines require data to be allocated
in contiguous memory areas to be moved in a single data
transfer (i.e., without processor intervention), thus calling
for an optimized memory allocation. On the other hand,
many DMA engines found in commercial platforms [7], [8],
[9] include more advanced features, such as the possibility
of programming multiple consecutive DMA data transfers
with a single processor intervention (“linked-list” mode [7]).
In this case, data can be transferred between non-contiguous
memory areas but requiring additional programming over-
heads and interrupt management. When using the linked-
list mode, the DMA can raise the completion interrupt when
each transfer is completed, or when the whole list is com-
pleted, giving rise to non-trivial trade-offs. Furthermore, by
leveraging clever buffering mechanisms, the DMA engine
can also be used to perform direct transfers between private
core-local memories, referred to as local-to-local communica-
tions, without involving the (slower) global memory.
This paper. This paper proposes a set of new DMA-
based protocols to handle inter-core LET communication
in multicores, thus allowing to retain the benefits of LET
while freeing the cores from the duty of copying data.
We tackle both classic and linked-list-based DMA transfers,
as well as supporting both local-global-local copies and
direct copies between local memories. The paper presents
a mixed-integer linear programming formulation to derive



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXX 2

an optimal memory allocation scheme and schedule of the
communications in different configurations. The goal of
the optimization problem is to address all the causality
constraints mandated by LET while minimizing the data ac-
quisition latency of each task. An evaluation is performed to
compare different communications strategies, showing that
the usage of DMA engines can reduce the data acquisition
latency compared to the original approach of [1].

This paper extends a conference publication [10] of the
same authors by: (i) supporting two variants of DMA trans-
fers programmed through a linked-list, on top of the clas-
sical configuration where each transfer between contiguous
memory areas requires a processor intervention to program
the DMA; (ii) supporting also local-to-local DMA transfers,
while [10] targeted only local-global-local communications,
thus aiming to a reduced number of transfers; (iii) providing
a more general modelization of the system, as well as sup-
porting the new contributions in the optimization problem,
which is improved and enriched with additional constraints
and comments not included in [10]; and (iv) reporting
extended experimental results to explore the advantages
provided by the new contributions of this work.

2 RELATED WORK

The Logical Execution Time paradigm was first proposed
in the seminal paper of Henzinger et al. [1], as part of the
Giotto time-triggered language. While the original proposal
dated 2001, LET only gained renewed attention in recent
years [11], when the automotive industry faced the problem
of restoring the causal order of execution when moving
legacy applications from single to multicore platforms (see
e.g. Hamann et al. [2]). Later, Biondi and Di Natale [5]
proposed a scheme for practically implementing the LET
paradigm in a multicore platform, focusing on the Aurix
Tricore TC275 [12]. Igarashi et al. [13] proposed heuristic
methods to schedule tasks communicating with LET to
avoid communication contention, later extending the ap-
proach to clustered many-core platforms [14]. Pazzaglia et
al. [6] presented a method for functional partitioning on
a multicore platform of real-time applications communi-
cating according to the LET paradigm. Gemlau et al. [15]
introduced the concept of System-level LET, which aims
at making LET suitable also for tasks communicating in
distributed systems, where communication delays are con-
siderably longer than those experienced between cores.

Several works adopted the LET paradigm for the case
of chains of communicating tasks. For example, Martinez
et al. [16] proposed an end-to-end analysis of tasks com-
municating according to LET, also proposing methods to
select offsets to increase the predictability. The same authors
proposed in [17] an extended analysis for communicating
tasks using different communication models, such as ex-
plicit, implicit and LET. Becker et al. [18], [19] analyze the
end-to-end delay of effect chains with LET, while Gunzel
et al. [20] provided a timing analysis of asynchronized
distributed chains. Kordon and Tang [21] proposed methods
to bound the age latency of a real-time task set under LET.

In an orthogonal research direction, several authors ad-
dressed the problem of optimizing the loading of data in

core-local memories with DMAs. Saidi et al. proposed meth-
ods to find an optimal clustering of transfers for applications
that require moving data from an off-chip slow memory to
local memories using buffering mechanisms [22], [23]. Other
notable works proposed protocols [24], [25], [26] to pre-
load core-local memories when adopting the PRedictable
Execution Model (PREM) [27] characterized by disjoint
read, execute, and write phases under different settings.
Wasly and Pellizzoni derived protocols for static [28] and
dynamic [24] scheduling in systems using PREM. Tabish
et al. [29], [25] considered the case where the DMA is
accessed via time-division multiplexing, whereas Casini et
al. [26] proposed a co-scheduling mechanism optimized to
favor latency-sensitive tasks. Rouxel et al. [30] presented an
approach for reducing communication delays using a DMA
and a static scheduling algorithm. Other papers addressed
the problem of limiting the memory-space requirement and
proposed memory allocation algorithms [31], [32]. Whitham
et al. [33] and Puaut et al. [34] presented algorithms to obtain
a predictable allocation in scratchpad memories.

Overall, to the best of our knowledge, no prior work
jointly considered the usage of DMA engines to perform
inter-core communications using LET, with the exception of
the previous conference version of this paper [10].

3 SYSTEM MODEL

3.1 Platform Model
The real-time embedded platform considered in this work
consists of a set P = {P1, . . . , PN} of N cores. Each core
Pk ∈ P has a private local memory (e.g., a scratchpad
or a cache using lockdown), which is dual-ported [24],
[25], i.e., two different areas of the local memory can be
simultaneously accessed without contention. Shared cache
memories are either not present or turned off. The platform
also includes a global memory shared by all cores. The set
of all memories is denoted withM = {M1, . . . ,MN ,MG},
where the first N ones are local memories (with Mk being
the memory assigned to Pk), and MG is global. A DMA
engine is included in the platform, performing data transfers
between any pair of memories, and operating in parallel
with respect to the core executions. This setting is represen-
tative of commercial platforms used in automotive systems,
e.g., the AURIX TC2xx and AURIX TC3xx by Infineon [12],
or other high-end platforms when using cache lockdown.

3.2 Application Model
The application consists of a set Γ={τ1, . . . , τn} of periodic
real-time tasks, under partitioned scheduling, i.e., each task
τi is statically assigned to a processor. We introduce P(τi)
and M(τi) as functions that retrieve the core where τi exe-
cutes and the associated memory, respectively. The subset of
tasks assigned to processor Pk is denoted by Γk. Each task τi
is synchronously released at the system startup s0 = 0 and
releases a potentially infinite sequence of instances called
jobs, separated by a period Ti. Each instance is required
to complete within Di time units from its release, where
Di =Ti is the relative (implicit) deadline. A task is deemed
schedulable when each of its jobs completes before its dead-
line. Hereafter, we work under the hypothesis that Γ is al-
ways schedulable. Introducing H as the hyperperiod of the



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXX 3

task set, the set of release instants of τi in the interval [0, H)
is denoted with the symbol Ti = {ti,0, ti,1, . . . , ti,Ni−1},
with Ni = H/Ti, ti,0 = s0 and ti,j+1 = ti,j + Ti. The set
of the release instants of all tasks is T =

⋃n
i=1 Ti.

An arbitrary pair of tasks τp and τc is characterized by
a producer-consumer relationship when the consumer task
τc reads a variable dx that is written by the producer task
τp. We refer to this relationship as a functional dependency
fq = (τp, τc, dx). In this context, a variable is an abstract
entity that contains data. The set F(τp, τc) denotes the set of
functional dependencies between τp (producer) and τc (con-
sumer). For ease of notation, given a functional dependency
fq and a variable dx, we introduce the operator ∈ to denote
whether dx is part of fq : in this case, dx ∈ fq holds.

Tasks access variables by reading and writing data stored
in memory locations called labels. In the following we restrict
our analysis to those labels that are assigned to variables in
functional dependencies. Each label `l is characterized by
a tuple `l = {σl,Mk, ak,l, dx}, where (i) σl represents the
size (in bytes), (ii) Mk ∈ M represents the memory which
`l is assigned to, (iii) ak,l represents the address in Mk at
which label `l is contiguously mapped (i.e., `l spans from
ak,l to ak,l +σl), and (iv) dx represents the variable mapped
in that label. To avoid memory interference across cores, we
require that any task τi in Pk accesses only labels mapped
in the corresponding local memory Mk. The set of all labels
in Mk is denoted as L(Mk).

In the following, we consider the case where a shared
variable dx may be read by multiple tasks but can be
written by one task only. This assumption reflects common
programming practices in automotive systems, which avoid
the need of introducing locking protocols to maintain con-
sistency when multiple writers access the same variable [2].
It can be relaxed at the expense of storing additional mem-
ory buffers and a more complicate notation. Also, we con-
sider the case where consumer and producer tasks may be
mapped in different cores. This is also a common occurrence
in many real-world applications.

3.3 Communications and Data Acquisition Deadline

To guarantee the temporal consistency of the shared vari-
ables across all functional dependencies, the Logical Exe-
cution Time paradigm is enforced in the system. Here we
present the basic features that are required to understand
the system structure.

To prevent access conflicts between tasks communicating
under the LET semantics, lock-free implementations are
used, and multiple labels are used as local copies for each
shared variable dx. For each variable dx in a functional
dependency fq = (τp, τc, dx), a pointer ρxp(t) (resp., ρxc (t))
is assigned to τp (resp., τc). Each pointer refers to the label
(memory address) that the task must access at time t to
write (resp., to read) the variable dx. Pointers are updated
over time to guarantee that a producer and a consumer task
do not access the same local copy of the variable, while
satisfying the LET semantics.

Communications are the concrete means used to guaran-
tee the temporal consistency of the functional dependencies
across the local labels. In this paper, a communication with
index z occurring at time t, denoted with cz(t), moves

the value of a variable dx between its associated labels,
and updates (e.g., swaps) the pointers associated with the
(reader or writer) task. Depending on where the producer
and consumer tasks are allocated, such communications can
be either intra-core or inter-core. How to properly optimize
such communications while enforcing the LET paradigm
will be discussed in the next sections.

A job of τi released at time t ∈ Ti is ready when all the
data it requires, according to its functional dependencies, are
available in the labels pointed by its set of pointers. When
the job is ready, it may start executing. The data acquisition
deadline γi of a task τi is the latest possible (relative) time
when any job of τi may become ready while preserving the
schedulability of Γ. The maximum time elapsed between the
(periodic) release of any job of τi and when it becomes ready
is referred to as data acquisition latency and denoted with λi:
thus, λi ≤ γi must be enforced to ensure schedulability.

4 THE LET SEMANTICS

In the original LET definition (Giotto) [1], every periodic
instance of τi updates its input values at its release instant
(LET read). The job then uses those values to compute new
output values, which are made available to a consumer
(LET write) only at the end of the period. We refer to LET
writes and reads in general as LET communications. LET
communications in Giotto are logically performed in zero-
time. The resulting behavior is deterministic in both time
and value, and causality is always enforced.

When dealing with real platforms, the time needed to
move data and to execute tasks cannot be neglected. Thus,
the zero-time communication assumption does not hold.
All communications and executions must then be properly
scheduled to retain causality as assessed by LET. In the
following, we extract the key properties of LET, which will
serve as guidelines to propose a label mapping and protocol
for DMA-based communications under the LET paradigm.

4.1 Extracting the Core Properties of LET

LET communications in the application proposed in this
paper are formally denoted as follows:
• LET write W (τp, dx, t): task τp makes available to a

consumer τc the instance of dx produced during its job
completed at t, and updates the pointer ρxp(t) to reserve a
label for its next job; and
• LET read R(dx, τc, t): task τc acquires the value of dx

available at t, and stores it in a local label pointed by ρxc (t).
In the following, when referring to a generic LET com-

munication occurring at t, we will also use the abstract
notation cz(t), where cz(t) can refer to either a LET write
W (τp, dx, t) or a LET read R(dx, τc, t). Similarly to the
functional dependencies, we introduce the operator ∈ to
denote whether τi is involved in cz(t).

In practical implementations, it is convenient to perform
at the beginning of each period the LET writes that were
supposed to happen at the end of the previous period, and
the reads for the current one. Such communication will still
be in agreement with the original LET semantics [1] as
long as all writes are performed before the reads that are
causally related. Introducing a partial order “≺” between



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXX 4

communications (i.e., a ≺ b means that communication a
must be completed before starting communication b), the
previous statement is formally defined in Property 1.

Property 1 (LET communications to and from the same
task). W (τi, da, ti,x) ≺ R(db, τi, ti,x) must hold for any release
time ti,x ∈ Ti and for every variable db ∈ F(τp, τi) read by τi
(and produced by any task τp), and every variable da ∈ F(τi, τc)
written by τi and consumed by any τc. All LET communications
involving τi must complete before executing the x-th job of τi.

In addition, causal dependencies between tasks commu-
nicating using LET must be satisfied. At any point in time,
LET writes of a producer task τp for a data da ∈ F(τp, τc)
need to complete before starting the LET reads of τc. This is
formally defined in Property 2.

Property 2 (LET inter-task communications). W (τp, da, t)≺
R(da, τc, t) must hold for each pair of tasks τp, τc ∈ Γ such that
F(τp, τc) 6= ∅, if ∃t ∈ Ti ∩ Tj , ∀da ∈ F(τp, τc).

As final requirement, under the realistic hypothesis that
communications require a non-zero amount of time to be
performed, LET communications issued at different time
instants must not overlap, as stated in Property 3.

Property 3. For each pair t1, t2 ∈ T with t1 < t2, all LET
communications required at time t1 are completed before starting
those assigned to time t2.

4.2 Identifying Necessary LET communications
Depending on the periods of the producer and consumer
tasks, it is possible to safely skip those LET reads and writes
that are unnecessary [5]. For example, a producer task τp with
an undersampled consumer τc might skip some writes if
that data will be overwritten before it is consumed by τc.
Similarly, a consumer τc that is oversampling a producer τp
may skip some of its reads if the value of the shared variable
has not changed since its previous activation.

Considering a pair τp, τi ∈ Γ such that F(τp, τi) 6= ∅, the
set of time instants where a LET write by τp is required is
defined in [5] as {ηWp,i(v) · Tp | v ∈ N}, with

ηWp,i(v) =

{
bv · Ti/Tpc if Tp < Ti,

v otherwise. (1)

Similarly, considering a pair τi, τc ∈ Γ such that F(τi, τc) 6=
∅, the set of time instants when a LET read is needed by τc
is defined [5] as {ηRi,c(v) · Tc | v ∈ N}, with

ηRi,c(v) =

{
dv · Ti/Tce if Tc < Ti,

v otherwise. (2)

The values defined by Eqs. (1) and (2) repeat every
LCM(Ti, Tp) and LCM(Ti, Tc), respectively [5]. By consid-
ering all the tasks τj ∈ Γ \ {τi} that have shared labels
with τi, the LET writes and reads issued by task τi will then
repeat periodically with period H∗i :

H∗i = LCM (Ti, {Tj | F(τi, τj) 6= ∅ ∨ F(τj , τi) 6= ∅}) . (3)

Building upon this observation, we extract the necessary LET
communications of τi. Since H∗i is an integer divisor of H ,
we only need to check the subset T ∗i ⊆ Ti of the release
instants of τi that require at least one LET communication
in the interval [0, H∗i ).

Algorithm 1 Constructing sets of LET communications
1: function COMPUTE LETGROUP (t, τi)
2: GW (t, τi) = ∅, GR(t, τi) = ∅
3: for τj ∈ Γ do
4: for v ∈ N, v < H∗

i /Ti do
5: if ηWi,j(v)·Ti == t then
6: for dx ∈ fq = (τi, τj , dx) do
7: GW (t, τi) = GW (t, τi) ∪W (τi, dx, t)

8: if ηRj,i(v) · Ti == t then
9: for dx ∈ fq = (τj , τi, dx) do

10: GR(t, τi) = GR(t, τi) ∪R(dx, τi, t)

11: return GW (t, τi), GR(t, τi)

The set of necessary LET writes and LET reads required
by τi at t ∈ T ∗i are defined as GW (t, τi) and GR(t, τi),
respectively, and are computed with Algorithm 1.

The algorithm works as follows. Given τi ∈ Γ and
t ∈ T ∗i, for each task τj ∈ Γ, it checks all the jobs with
index v of τi in [0, H∗i ) (line 4). Then, it checks whether t
coincides with a release time in which a LET communication
is needed (lines 5 and 8). If so, the corresponding LET writes
and reads for each label shared between τi and τj are added
to GW (t, τi) and GR(t, τi) (lines 7 and 10).

Finally, by introducing T ∗ =
⋃
τi∈Γ T ∗i, the set of all

the LET communications at time t ∈ T ∗ is defined as
C(t) =

⋃
τi∈ΓG

R(t, τi) ∪ GW (t, τi). Since all tasks are syn-
chronously released at time s0, the set of communications
at each time t ∈ T ∗ is a subset of the set at time s0 [5], i.e.,
C(t) ⊆ C(s0), ∀t ∈ T ∗.

4.3 Implementing LET: the Giotto proposal
When considering a practical implementation, the authors
of Giotto [1] proposed a strict order of execution for LET
communications, that satisfies both Properties 1 and 2 (and
under the hypothesis that the communication overhead is
limited such that Property 3 also holds). At any time instant
t ∈ T when one or more LET communications are required,
this order is enforced with the following sequence:

1) First, each task instance released at t performs all its
LET writes.

2) Then, each task instance released at t performs all its
LET reads.

3) Finally, all task instances released at t are set as ready.
This implementation trivially satisfies the requirements

of Properties 1 and 2, and it has been adopted in other
works that consider the LET paradigm. However, it has
two fundamental issues. First, any task τi released at time
t is required to wait for all LET write and read operations
of all task instances that complete at t and start at t, even
if such communications have no causal dependencies with
τi. This may introduce unnecessary and harmful delays to
latency-sensitive tasks, especially if heavy communication
is required. Furthermore, high-priority tasks may need to
wait for communications related to lower priority tasks,
resulting in a priority inversion. The next section presents an
alternative approach that solves such issues by leveraging
the parallelism introduced by DMA engines.

5 LET COMMUNICATIONS WITH DMA
This section proposes a set of possible designs and pro-
tocols to perform DMA-based LET communications. The



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXX 5

𝜏𝑐

ℓ𝑥1

ℓ𝑥2

ℓ𝑥3

LET 
write

LET 
read𝑝𝑝

𝑥(𝑡)

𝑝𝑐
𝑥(𝑡)

𝑃𝑘

𝑀𝑘

𝜏𝑝

(a) Intra-core

𝜏𝑝 𝜏𝑐

ℓ𝑥1

ℓ𝑥2
ℓ𝑥3

LET 
write

𝑝𝑝
𝑥(𝑡)

𝑝𝑐
𝑥(𝑡)

LET 
read

𝑃1 𝑃2

𝑀1 𝑀2
𝑀𝐺

(b) Local-global-local inter-core

𝜏𝑐

ℓ𝑥1

ℓ𝑥2

ℓ𝑥3
𝑝𝑐
𝑥(𝑡)

LET 
read

LET 
write

𝑝𝑝
𝑥(𝑡)

𝑃1 𝑃2

𝑀1 𝑀2

𝜏𝑝

(c) Local-to-local inter-core

Figure 1: Different label mapping configurations for LET communications, with the associated pointer and copy mechanism

design involves the mapping of shared variables in local or
global memories, as well as the usage of different features
of DMA engines to arrange data transfers. Our proposals
allow for the following benefits: (i) a limited interference
on the task executions, thanks to the usage of a DMA to
offload data transfers; (ii) the possibility of finding a more
flexible order of LET communications with respect to the
Giotto proposal, which can be exploited to guarantee an
early release for latency-sensitive tasks; (iii) the possibility
of leveraging local-to-local transfers besides classical local-
global-local ones to reduce delays in LET communications.

5.1 Mapping Shared Variables to Labels
First, we need to consider the actual mapping of variables in
labels to separate the data manipulated by the tasks during
their execution from the value logically defined by the LET
abstraction. We distinguish three different cases.

5.1.1 Intra-core communications
When two tasks τp and τc in a functional dependency
fl = (τp, τc, dx) are mapped into the same core Pk, they
are involved in an intra-core communication. Here, this kind
of communications is managed using triple buffering [17].

In detail, for each variable dx, three labels `x1
, `x2

, and
`x3

are allocated in the local memory Mk, assigned to dx.
If more than one consumer exist in the same core, a similar
mechanism can be applied by reserving a total of 2 + ncons
labels instead, where ncons is the number of consumer tasks.
LET reads and writes are implemented by updating the
value of the pointers ρxp(t) and ρxc (t) assigned to τp and
τc, respectively. Such LET communications are not managed
by the DMA engine. An example is shown in Figure 1(a).
At the beginning, ρxp(t) and ρxc (t) point to `x2

and `x3
,

respectively. When the following instance of τp is released,
ρxp(t) is switched to `x1

, which was unused, while `x2
retains

the value produced by the previous instance of τp, which
will become available for the next instance of τc, effectively
performing a LET write. When the next job of τc is released,
ρxc (t) is switched to point to `x2

, performing a LET read.
ρxc (t) is moved only if there is a pending read. The process
then continues, cyclically rotating the three labels.

5.1.2 Inter-core local-global-local communications
When tasks τp and τc in a functional dependency fl ex-
ecute on two different cores P(τp) 6= P(τc), a possible
label mapping consists in mimicking the local-global-local
communications presented in [5]. Three labels are assigned

to dx: `x1 mapped in M(τp), `x3 in M(τc), and `x2 in the
global memory MG (Figure 1(b)).

In this case, both LET writes and reads are implemented
as physical copies of data between labels, fromM(τp) toMG

and from MG to M(τc), respectively. The pointers ρxp(t) and
ρxc (t) always point to `x1 and `x3 , respectively, and they are
never switched. If dx has multiple consumers, the mapping
strategy still requires only one local copy in M(τp), one in
the global memory MG, and one each for every consumer
task in their respective memories.

This scheme allows for a limited usage of memory space
in local memories but requires a global memory MG to
allocate a copy of the label. Also, two physical communi-
cations are needed, accessing the (usually slower) global
memory. Consequently, this option may be more suitable in
platforms where local memories are small. Also intra-core
communications can be managed using this design.

5.1.3 Inter-core local-to-local communications
When tasks τp and τc in a functional dependency fl execute
on two different cores, we can choose a different mapping
that does not involve communicating by means of an inter-
mediate copy in the global memory.

Also in this case, the communication of a variable dx
can be managed by using three labels `x1

, `x2
, and `x3

. The
first two are assigned to M(τp), while label `x3

is allocated
to M(τc) (Figure 1(c)). Labels `x1

, `x2
are handled with a

pointer switching mechanism for τp such that, at each job
release of τp, ρxp(t) switches between `x1

and `x2
. On the

other hand, the pointer ρxc (t) of τc always refers to label
`x3

. In this case, the producer task τp performs a LET write
by swapping the pointer and storing the data produced in
the previous job of τp in the label not currently pointed by
ρxp(t). Conversely, the LET read requires a physical copy
of data from the label not currently pointed by ρxp(t) (i.e.,
corresponding to the last available output of τp) to `x3

.
By trading one data copy with a pointer swap, this strat-

egy helps in reducing the total communication overhead,
but requires more space in the local memory of τp to store
the buffer label. This mechanism can be generalized for the
case where the variable dx has multiple consumers: two
local copies will be again required in M(τp), plus one label
for each consumer task in their respective memories.

Alternatively, two labels could be reserved for each
consumer task, and one for the producer. In this case, the
LET write would be a physical copy to one of the labels
at M(τc), while the LET read would consist of a pointer
swap for the consumer task. However, when considering



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXX 6

one producer but possibly multiple consumers per variable,
as in this paper, this translates in a higher total number of
labels in local memories. For the sake of space, this case
will not be explicitly treated in this paper. Nonetheless, our
approach can be easily adapted to this case.

For the case of local-to-local strategy, depending on the
state of ρxp(t) at the time of the LET read for a consumer
task τc, the actual copy mandated by the LET read for a
variable dx involves two different pairs of labels ({`x1

, `x3
}

and {`x2
, `x3
}, respectively). Since τp will swap its pointer at

each activation, if τc has an odd number of activations in the
interval [0, H), then after the hyperperiod the pattern of the
label copies associated to LET reads of τc will be reversed.
In this case, it is necessary that the set T ∗ of activations is
properly computed across the interval [0, 2 · H) to account
for all the different label pairings in the analysis.

5.2 DMA-Based LET Communication

In our application, a DMA engine is in charge of moving
shared data from a source memoryMs to any other different
destination memory Md. Memories are dual-ported and
each task may access data from its local memory only,
allowing the DMA engine to perform LET communications
on a core in parallel with the execution of tasks of the
same core, provided that they are not accessing the same
labels at the same time. Conversely, the pointer swapping
mechanism is managed at the task level, and we assume
it has a negligible overhead.

A DMA transfer is formally defined as a tuple dg(t) =
{Cg(t),Ms,Md,Lg(t), as,g, ad,g}, with t ∈ T ∗. Here, Cg(t)
represents a set of ordered LET communications (write
or read) involving one ore more tasks, i.e., Cg(t) =
{cg1(t), cg2(t), . . . }; Ms and Md represent the source and
destination memory of the transfer; Lg(t) represents the
corresponding set of labels involved in the LET commu-
nications of Cg(t), in both memories; finally, as,g and ad,g
represent the start addresses at which labels in Lg(t) are
contiguously allocated in Ms and Md, respectively. The
overall amount of data moved by the DMA transfer dg(t)
is
∑
`l∈Lg(t) σ`l . The set of all the DMA transfers at t due to

tasks from all cores is denoted by D(t) =
⋃
g dg(t).

To be suitable for a DMA transfer, Lg(t) and their copies
must be all contiguously allocated both in Ms and Md, and
with the same order. Additionally, the index g of dg(t) repre-
sents the order of execution of that DMA transfer, with respect
to the other transfers ofD(t). To preserve the LET semantics,
the index values must be carefully assigned so that both
Properties 1 and 2 are always satisfied ∀t ∈ T ∗. All such
aspects, including satisfying Property 3, must be verified at
the design stage and will be reflected in the constraints of
the optimization problem presented in Section 6.

5.2.1 Programming the DMA

To manage the DMA-based LET communication, a LET
task τLET ∈ Γ with highest priority is added in one of
the cores. The task τLET has the duty of dispatching those
LET communications that require a physical copy by pro-
gramming the DMA. Having only one LET task reduces the
design complexity and allows to free all but one core from

communication-related processing. This comes at the ex-
pense of a more significant interference on the core running
the LET task (which could be, e.g., the one with the lowest
utilization). Without loss of generality, we assume hereafter
that τLET is mapped to PN . Nonetheless, the following
approach is adaptable to the case one LET task per core,
by properly adapting the notation.

Multiple LET communications can be grouped in a single
DMA transfer. Each single DMA transfer involves contigu-
ous portions of memory, both in Ms and in Md. Thus, only
communications that share the same source and destination
memories can be grouped in a single DMA transfer. To
program a single data transfer using the DMA, τLET requires
specifying: (i) the start address of the label to be copied
in the source memory Ms, (ii) the start address in the
destination memory Md, (iii) the size of the data transfer.

5.2.2 Advanced DMA Transfers Configurations
Inspired by realistic hardware designs [7], in this pa-
per we consider three possible DMA behaviors: B ∈
{SIMPLE,LL-EOT,LL-EOL}, where SIMPLE represent the
standard mode, LL-EOT stands for linked-list end-of-transfer,
and LL-EOL for linked-list end-of-list.
• SIMPLE is the mode presented above: the DMA must be

programmed every time it needs to perform a data trans-
fer; at the end of the transfer, an interrupt is triggered.
• In LL-EOT and LL-EOL modes, the DMA can be pro-

grammed to perform multiple (i.e., a linked-list of) DMA
transfers. The two linked-list behaviors differ by the fact
that LL-EOL triggers an interrupt only when the entire
list of transfers is completed, while LL-EOT triggers an
interrupt at the end of each individual DMA transfer.

While the SIMPLE behavior considers the traditional
case where each transfer dg(t), consisting of contiguously
allocated labels, is programmed independently, LL-EOT and
LL-EOL model more flexible DMA behaviors. In a linked
list, two DMA transfers can then occur back to back (i.e.,
without processor intervention between them) even if they
have non-contiguous labels, and between different mem-
ories. For consistency in the remainder of the paper, we
introduce the notation for a linked-list occurring at a time t
as dlv(t) = {dv1(t), dv2(t), . . .}, which contains an ordered
list of DMA data transfers that are programmed at the same
time. When B = SIMPLE the transfer list will correspond to
a single DMA transfer, i.e., dlv(t) = {dv(t)}.

5.2.3 Timing Characterization of DMA
We assume that a fixed amount of time oIN + oDT is re-
quired from τLET to program a DMA transfer in SIMPLE
mode, where oIN is the initialization overhead of the DMA
programming and oDT is the overhead of uploading the
command for a single DMA transfer, with oDT ≤ oIN [35].
This overhead is independent of the size of the (contigu-
ous) labels to be transferred. After the programming phase
completes, the transfer phase will have a fixed time cost ωC
per byte copied. An interrupt service routine (ISR) notifies
the DMA completion: we assume that processing such ISR
requires up to oISR time units.

The time spent by τLET to program a linked-list with mul-
tiple DMA transfers will be in general longer than program-
ming one single transfer, but not longer than programming



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXX 7

each transfer separately [35]. We represent the overhead of
programming a list dlv(t) with the sum oIN +oDT · (|dlv(t)|).
This formulation allows for the equivalence between a data
transfer in SIMPLE mode and a linked-list having only one
transfer. The cost per byte copied and the ISR overhead will
have the same formulation as for the SIMPLE mode, i.e., ωC
per byte copied and oISR for processing the ISR.

5.3 Communication Protocol

In this section, we present a protocol to enforce the LET
Properties at the level of the DMA transfers, under different
configurations. For each t ∈ T ∗, let dlv(t) be the transfer list
programmed at t. The proposed protocol behaves according
to the following rules.
R1 A task τi released at time t, is ready for execution when

all the LET communications in GW (t, τi) and GR(t, τi)
are completed.

R2 If B = SIMPLE, τLET programs the DMA for dlv(t) =
dv(t) and suspends. Upon completion, an interrupt is
raised to notify the termination of the data transfer to
the corresponding task(s) whose data was involved in
the transfer. The LET task is then awakened to handle
the next transfer dv+1(t).

R3 If B = LL-EOT, τLET programs the DMA with a linked-
list dlv(t) with possibly multiple consecutive transfers.
When a transfer in the list is finished, an interrupt is
raised to notify the termination of the data transfer to
the corresponding task(s) whose data was involved in
the transfer. If the list reached the end, the LET task is
awakened to handle the next transfer list dlv+1(t).

R4 If B = LL-EOL, τLET programs the DMA with a linked-
list dlv(t) with possibly multiple consecutive transfers.
When all transfers in the list are finished, an interrupt
is raised to notify the termination of the data transfers
to the corresponding task(s) whose data was involved
in the transfers. If the list reached the end, the LET task
is awakened to handle the next transfer list dlv+1(t).

R5 When a DMA completion interrupt arrives, all the tasks
for which the data dependencies are satisfied by the
completed DMA transfers are marked as ready.

The rules in the proposed protocol guarantee that a
job can become ready as soon as the interrupt of a DMA
transfer notifies that its last LET communication has been
performed. After that, the job can start executing (if it is the
pending job with the highest priority), while other DMA
transfers are still possibly occurring in parallel.

5.4 Observations about the Design Options

Finding the optimal grouping of LET communications in
DMA transfers, as well as the order of such DMA transfers
and the grouping in linked-lists, requires solving an opti-
mization problem at design time. Moving multiple labels
with a single transfer, in general, reduces the overhead,
as it requires less processor intervention. This is beneficial
for guaranteeing that the data acquisition deadlines are
satisfied, while it complicates the label allocation problem.
Furthermore, a single DMA transfer or list may involve data
related to different tasks: this may cause additional delays,
since tasks become ready only at the DMA completion ISR.

ℓ𝑎

ℓ𝑏

ℓ𝑐

𝑀1

ℓ𝑎′

ℓ𝑏′

ℓ𝑐′

ℓ𝑑

ℓ𝑑′

𝑀𝐺 𝑀2

(a)   Memory layout

τ1 in 𝑃1 writes ℓ𝑐 and reads ℓ𝑎 and ℓ𝑏, 
while τ2 in 𝑃2 writes ℓ𝑑

DMA initialization (𝑜𝐼𝑁) DMA transfer prog (𝑜𝐷𝑇)

Completion ISR (𝑜𝐼𝑆𝑅) Suspension

DMA copy Task activation Task is ready

𝑃1

𝑃2

DMA

τ1

τ2

t

t

t
ℓ𝑎′ →ℓ𝑎 |ℓ𝑏′ →ℓ𝑏

ℓ𝑐 →ℓ𝑐′ ℓ𝑑 →ℓ𝑑′

𝑃1

𝑃2

DMA

τ1

τ2

t

t

t
ℓ𝑎′ →ℓ𝑎 |ℓ𝑏′ →ℓ𝑏

ℓ𝑐 →ℓ𝑐′ ℓ𝑑 →ℓ𝑑′

(b)          SIMPLE configuration (c)            LL-EOT configuration

τ1

τ2

t

t

t
ℓ𝑎′ →ℓ𝑎 |ℓ𝑏′ →ℓ𝑏

ℓ𝑐 →ℓ𝑐′ ℓ𝑑 →ℓ𝑑′

τ1

τ2

t

t

t
ℓ𝑎′ →ℓ𝑎 |ℓ𝑏′ →ℓ𝑏

ℓ𝑐 →ℓ𝑐′ ℓ𝑑 →ℓ𝑑′

𝑃1

𝑃2

DMA

𝑃1

𝑃2

DMA

(d)          LL-EOL configuration (e)          Giotto + DMA transfers

τ1

τ1

τ1

τ1

τ2 τ2

τ2 τ2

Figure 2: Example schedule of LET communications using
a DMA engine with the three proposed approaches (insets
(b)-(d)) and with the original Giotto approach [1] (inset (e)).

In conclusion, none of the linked-list approaches domi-
nates the other. For instance, LL-EOL causes less overhead
related to the processing of the DMA completion ISR, but
it gives less control over when a task can start running.
Indeed, a task may need to wait for potentially un-related
communications of other tasks to be copied in the same
DMA data transfer, since the interrupt is raised only at the
completion of the list. This may translate in higher data
acquisition latencies. Conversely, LL-EOT causes higher in-
terference due to the DMA ISR, but provides more flexibility
on the start of each task, since the processor is notified about
the completion of each individual transfer.

Figure 2 shows an example schedule for LET communi-
cations of two tasks τ1 in P1 and τ2 in P2, using a DMA
with the local-global-local mapping. At the beginning of the
schedule, both tasks are activated. Task τ1 requires a LET
read of `a and `b and a LET write of `c, while τ2 requires a
LET write of `d. Inset (a) reports the memory layouts: `a and
`b are mapped contiguously both inM1 and inMG, thus can
be grouped in a single DMA transfer. Inset (b) illustrates the
schedule obtained using the SIMPLE configuration: thanks
to the proposed protocol, an optimized reordering of the
communications is possible, where the LET reads of τ1
are performed before the LET write of τ2, which is useful
if τ1 is latency-sensitive. Inset (c) considers the LL-EOT
configuration, where the three DMA transfers are mapped
in one linked-list. While the LET write of τ1 ends later than
in case (b), both tasks are marked as ready earlier than in
the SIMPLE case, due to an overall lower programming
overhead. In inset (d), a single list under the LL-EOL
configuration guarantees the earliest ready instant for τ2,
but also delays τ1 at the same time. Finally, inset (e) shows
the Giotto approach [1], when performing communications
with the DMA; in this case, all LET writes are required to



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXX 8

be executed before the LET read of τ1. The latency for both
tasks is the greatest among all other cases.

5.5 Schedulability Analysis
Although it is not the main focus of this paper, we briefly
discuss how to leverage state-of-the-art results for analyzing
the system schedulability. Tasks running on Pk can be ana-
lyzed with response-time analysis techniques for periodic
tasks, with a release jitter given by the data acquisition
latency. For the core PN , the schedulability involves also
checking the LET task τLET. Since τLET runs at highest
priority, under the considered model, it can be delayed only
by the ISR associated with the DMA completion interrupt.
Its schedulability is ensured by the optimization problem
of Section 6 and is required for Property 3 to hold. Addi-
tionally, the LET task behaves as a generalized multiframe
task [5], where each job exhibits a segmented self-suspending
behavior [36]. When computing the high-priority interfer-
ence on PN , it is possible to model each execution segment
of τLET as an independent sporadic task [36].

6 OPTIMIZATION PROBLEM

This section presents a mixed-integer linear programming
(MILP) formulation to derive an optimal schedule of DMA-
based LET transfers under the proposed protocol, with the
relative ordering of labels in memories. The formulation
handles local-global-local and local-to-local communication
strategies, combined with any of the three DMA behaviors
SIMPLE, LL-EOT and LL-EOL introduced before.

For each task in Γ, we assume that the strategy for inter-
core communications has been chosen and that for each
shared variable its corresponding set of labels has been
assigned to the memories, as presented in Section 5.1. The
label addresses are left as variables to be optimized.

6.1 MILP Variables
First, we introduce the main variables of the formulation.
Here, B is the Boolean set and R is the set of real numbers.
For brevity, all variables having index t are implicitly de-
fined for all t ∈ T ∗.
• Adjacency of labels: Ak,a,b ∈ B is set to 1 if the address of `b

is immediately below `a in Mk; otherwise it is set to 0.
• LET communication in DMA transfer: CDt,z,g ∈ B is set to

1 if the LET communication cz(t) ∈ C(t) is mapped in the
g-th DMA transfer dg(t); otherwise it is set to 0.
• Last communication of task in DMA transfer: LCDt,i,g ∈ B is

set to 1 if the last LET communication of τi ∈ Γ occurring
at t is in the g-th DMA transfer; otherwise it is set to 0.
• Data acquisition latency of task: LATt,i ∈ R contains the data

acquisition latency experienced by τi ∈ Γ at t.
The following are the most prominent auxiliary variables.
• DMA transfer not empty: DFt,g ∈ B is set to 1 if at least

one communication is mapped in the DMA transfer dg(t);
otherwise it is set to 0.
• Position of label: Pk,a ∈ R is equal to the relative position

of the label `a mapped in Mk. Pk,a is defined such that
∀Mk ∈M:

∑
`a∈L(Mk) Pk,a =

∑|L(Mk)|
i=1 i.

• Index of DMA transfer for LET communication: CDIt,z ∈ R
is equal to the index g of the DMA transfer dg(t) where

the communication cz(t) is mapped, i.e., ∀cz(t) ∈ C(t),
CDIt,z =

∑
g g · CDt,z,g .

• Index of DMA transfer for last LET communication: LCDIt,i ∈
R is equal to the index g of the DMA transfer dg(t)
where the last LET communication of τi at t is mapped,
i.e., ∀τi ∈ Γ such that ∃ cz(t) ∈ C(t) associated to τi,
LCDIt,i =

∑
g g · LCDt,i,g .

The latter variables in R represent integer values, but re-
laxed as reals to improve the performance of the optimiza-
tion engine. Indeed, CDIt,z and LCDIt,i can only take inte-
ger values from the equality constraints on them. Similarly
Pk,a is constrained to integer values by Constraint 6.

Finally, we introduce two additional variables to be used
only for the case B = LL-EOL or B = LL-EOT.
• DMA transfer in linked-list: DLt,g,v ∈ B is set to 1 if

the DMA transfer dg(t) is mapped in the v-th linked-list
dlv(t); otherwise it is set to 0.
• LET communication in linked-list: CLt,z,v ∈ B is set to 1

if the LET communication cz(t) is mapped in the v-th
linked-list; otherwise it is set to 0.

6.2 Main MILP Constraints

At a given activation instant t ∈ T ∗, the number of possible
DMA transfers (as well as the number of linked-lists) is
upper-bounded by the number of communications required
at t, i.e., |C(t)|. When using the notation

∑
g and

∑
v without

explicit ranges, referring to DMA transfers and linked-lists,
respectively, we then imply using a range from 1 to |C(t)|.

In the constraints we use the notation A ∧ B := X to
denote an auxiliary Boolean variable X that contains the
logical AND between the Boolean values A and B. This
corresponds in MILP formulation to the set of the following
inequalities: X ≤ A, X ≤ B and X ≥ A + B − 1. Further-
more, the notation maxsAs := B corresponds to the set of
inequalities: ∀s, B ≥ As and B ≤ As + (1−Xs) ·M , where
Xs are Boolean auxiliary variables such that

∑
sXs = 1, and

M is a sufficiently-large positive constant value to represent
infinity (commonly denoted as big-M).

We start by introducing the main constraints of the
formulation, which are used in all DMA behaviors. A proof
is presented for those constraints that are not intuitive.

6.2.1 Mapping Labels and Communications

Each communication cz(t) ∈ C(t) must be mapped to ex-
actly one DMA data transfer. This is checked in Constraint 1.

Constraint 1. ∀t ∈ T ∗, ∀cz(t) ∈ C(t), then:
∑
g CDt,z,g = 1.

Similarly, the last communication of task τi must be
mapped to exactly one DMA data transfer (Constraint 2).

Constraint 2. ∀t ∈ T ∗, ∀τi ∈ Γ, s.t. ∃cz(t) ∈ C(t) with τi ∈
cz(t), it holds that:

∑
g LCDt,i,g = 1

Constraint 3 enforces the definition of LCDIt,i, stating
that the index of the DMA data transfer performing the last
LET communication of τi is computed as the maximum data
transfer index of all communications of τi occurring at t.

Constraint 3. ∀t ∈ T ∗ and ∀τi ∈ Γ, it holds that:
LCDIt,i = maxcz(t)∈(GR(t,τi)∪GW (t,τi)) CDIt,z



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXX 9

Since the indexes of DMA transfers reflect their priority
order, we drive the solver to fill the ones with lower indexes
first, possibly leaving empty those with higher indexes.
This is obtained using Constraint 4, which also enforces the
definition of DFt,g ∈ B.

Constraint 4. ∀t ∈ T ∗ and ∀g = {1, 2, . . . , |C(t)|} then:
(i) DFt,g ≤

∑
z CDt,z,g ; (ii) DFt,g ≥ CDt,z,g , ∀cz(t) ∈ C(t);

and (iii) DFt,g ≥ DFt,g+1.

Proof. In inequality (i), DFt,g ∈ B is constrained to be 0 if ∀z,
CDt,z,g = 0, i.e., when no communications are in dg(t); the
inequality has no effect if at least one of CDt,z,g is equal to 1.
In a complementary way, the inequality (ii) forces DFt,g to
be 1 if at least one of CDt,z,g is equal to 1, and has no effect if
∀z, CDt,z,g = 0. Finally, the inequality (iii) guarantees that
if dg(t) has no communications (i.e., DFt,g = 0), then the
immediately next DMA transfer will be empty too.

Next, Constraint 5 states that, for each memory Mk ∈
M, each label is allocated immediately below only one label,
and immediately above another label. Dummy labels are
provided at the beginning and at the end of the memory
space to ensure the consistency of the constraint.

Constraint 5. ∀Mk ∈M,∀`a ∈ L(Mk) it holds that:∑
`s∈L(Mk)\`a Ak,a,s = 1 and

∑
`p∈L(Mk)\`a Ak,p,a = 1

To obtain a unique position address for each label, we
leverage the variable Pk,a in the following constraint.

Constraint 6. ∀Mk ∈M,∀`a, `b ∈ L(Mk), `a 6= `b, then:
Pk,a+1−(1−Ak,a,b) ·M ≤ Pk,b ≤ Pk,a+1+(1−Ak,a,b) ·M,
whereM is a large positive constant value that represents infinity.

Proof. If `b is mapped immediately below `a inMk (Ak,a,b =
1), then the position index of `b is equal to the one of `a plus
1. If Ak,a,b = 0 the constraint has no effect.

Next, we must ensure that all those labels that are
involved in the same DMA transfer are contiguous in the
same order, in both the source and destination memories.
This is equivalent to check that, if any two communications
cx(t) and cy(t) are in dg(t), such that cx(t) copies data from
`a ∈ Ms to `a′ ∈ Md and cy(t) copies data from `b ∈ Ms

to `b′ ∈ Md, then either: (i) the labels of cx(t) and cy(t)
are adjacent in both memories; or (ii) there exists at least
one other communication in dg(t) whose labels are adjacent
to either the ones of cx(t) or cy(t), in both memories. Both
cases can be generalized by stating that it exists at least one
pair of labels `c ∈ Ms and `c′ ∈ Md, involved in a copy
during dg(t), that are mapped immediately below the pair
of either cx(t) or cy(t) in both memories, where it can even
be `c = `a and `c′ = `a′ , or `c = `b and `c′ = `b′ . This is
formally enforced in MILP formulation by Constraint 7.

Constraint 7. ∀t ∈ T ∗, for each pair cx(t), cy(t) ∈ C(t), x 6= y,
sharing the same source Ms and destination memory Md, such
that cx(t) involves copying data from `a to `a′ and cy(t) involves
copying data from `b to `b′ , ∀g ∈ {1, 2, . . . |C(t)|} it holds that:

(CDt,x,g ∧ CDt,y,g) ≤
∑

cz(t)∈Z(t)

(
ACDz

t,a,c,g + ACDz
t,b,c,g

)

where cz(t) is any communication with source Ms and des-
tination Md, copying data from `c to `c′ and ACDz

t,?,c,g =
(As,?,c ∧ Ad,?′,c′ ∧ CDt,z,g).

Proof. If cx(t) and cy(t), which move data from local mem-
ory Ms to memory Md, are in the same DMA transfer of
index g, then the LHS of the inequality assumes value 1.
From the definition of DMA transfers, this requires that
either (i) the labels `a, `b in Ms are mapped in adjacent
memory slots and `a′ , `b′ in Md are mapped in adjacent
memory slots, or (ii) at least one between `a and `b is
adjacent to another label `c in Ms that is part of the same
g-th DMA transfer (the same holds for `a′ and `b′ with `c′
in Md). In both cases, for the constraint to hold, the RHS
must also be set to at least 1. Note that ACDz

t,a,c,g = 1 if and
only if label `c is mapped below `a in Ms, and `c′ is mapped
below `a′ in Md (As,a,c = Ad,a′,c′ = 1) and cz(t) is in the
DMA transfer of index g (CDt,z,g = 1). This is consistent
with the above points (i), when cz(t) = cy(t), and (ii). A
dual reasoning can be made if ACDz

t,b,c,g = 1.
Conversely, if at least one between cx(t) and cy(t) is

not in the DMA transfer of index g, then the LHS of the
inequality equals 0 and the constraint has no effect.

6.2.2 Linked-Lists Properties

This section presents the constraints related to the linked-
list, to be used only when B = LL-EOL or B = LL-EOT.

First, an arbitrary DMA transfer dg(t) can be mapped in
a linked list only if at least one communication is mapped
in that transfer. Then, since the indexing of the linked-
lists matches their priority order, we also enforce that dg(t)
cannot be mapped in a linked-list with index greater than g.
Such properties are coded in Constraint 8.

Constraint 8. ∀t ∈ T ∗, ∀g ∈ {1, 2, . . . |C(t)|}, it holds that:∑g
v=1 DLt,g,v = DFt,g and

∑|C(t)|
v=g+1 DLt,g,v = 0.

Since at least one DMA transfer is issued at each t ∈ T ∗,
as well as at least one linked-list, the equality DLt,1,1 = 1
derives from Constraint 8.

Then, Constraint 9 enforces that the linked-lists are filled
in order, i.e., an arbitrary DMA transfer dg(t), with g > 1,
can be either mapped in the linked-list that contains dg−1(t),
or in the list that follows next.

Constraint 9. ∀t ∈ T ∗, ∀g ∈ {2, . . . |C(t)|}, it holds that:
DLt,g,v + DLt,g,v+1 ≤ DFt,g + (1−DLt,g−1,v) ·M , and
DLt,g,v + DLt,g,v+1 ≥ DFt,g − (1−DLt,g−1,v) ·M .

Proof. When dg−1(t) is mapped in the v-th linked-list, then
DLt,g−1,v = 1 and DLt,g,v+DLt,g,v+1 = DFt,g , which means
that if dg(t) contains at least one communication (DFt,g =
1), then dg(t) is eifther in the linked-list with index v or v+1.
When DLt,g−1,v = 0, the constraint has no effect.

The definition of CLt,z,v is enforced by checking if cz(t)
is mapped in any dz(t) that is listed in dlv(t), as follows.

Constraint 10. ∀t ∈ T ∗, ∀cz(t) ∈ C(t) and ∀v ∈
{1, 2, . . . |C(t)|}, it holds that: CLt,z,v =

∑
g(CDt,z,g∧DLt,g,v).



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXX 10

LATt,i ≥ (oIN + oDT + oISR) · LCDIt,i + ωC ·
( g∑
g=1

∑
cz(t)∈C(t)

σl · CDt,z,g

)
− (1− LCDt,i,g) ·M (4)

LATt,i ≥ (oIN +oISR) ·v+oDT ·
( v∑
v=1

∑
d

DLt,d,v

)
+ωC ·

( v∑
v=1

∑
cz(t)∈C(t)

σl ·CLt,z,v

)
−
(

1−
∑
g

(LCDt,i,g ∧DLt,g,v)
)
·M (5)

LATt,i ≥ oIN ·v+oISR ·LCDIt,i+oDT ·
( v∑
v=1

∑
d

DLt,d,v

)
+ωC ·

( g∑
g=1

∑
cz(t)∈C(t)

σl ·CDt,z,g

)
− (2−LCDt,i,g−DLt,g,v) ·M (6)

6.2.3 LET Properties and Data Acquisition Deadlines
Property 1 is enforced through Constraint 11, by imposing
that any LET write of τi is mapped in a DMA transfer with
index lower than the one containing any LET read of τi.

Constraint 11 (Property 1). ∀t ∈ T ∗, ∀τi ∈ Γ, for each pair
cw(t) ∈ GW (t, τi) and cr(t) ∈ GR(t, τi): CDIt,w < CDIt,r .

Constraint 12 enforces Property 2, i.e., for each func-
tional dependency, the corresponding LET write must be
completed before the LET read.

Constraint 12 (Property 2). ∀t ∈ T ∗, for each pair
cw(t), cr(t) ∈ C(t) with cw(t) = W (τp, dx, t) and cr(t) =
R(dx, τc, t), then: CDIt,w < CDIt,r.

For those tasks that use local-to-local communications
under the label mapping of Section 5.1.3, the LET writes
are performed as pointer swaps by the task itself. In this
case, Properties 1 and 2 must be constrained by design,
guaranteeing that the pointer swaps are completed before
performing the LET reads with the DMA.

The communication latency LATt,i experienced by τi at
t ∈ T ∗ is computed by accumulating the delays of all the
communications occurring at t until the completion of the
ISR that marks τi as ready to execute. Constraint 13 provides
a bound for the three possible DMA configurations.

Constraint 13. ∀t ∈ T ∗, ∀τi ∈ Γ, s.t. ∃cz(t) ∈ C(t) with
τi ∈ cz(t), the inequality LATt,i ≤ γi must hold, and:
• if B = SIMPLE, ∀g ∈ {1, 2, . . . |C(t)|} Equation (4) holds;
• if B = LL-EOL, ∀g ∈ {1, 2, . . . |C(t)|} Equation (5) holds;
• if B = LL-EOT, ∀g, v ∈ {1, 2, . . . |C(t)|} Equation (6) holds;
where σl is the size of the label involved in cz(t).

Proof. The proof is provided for each DMA configuration.
For B = SIMPLE, assume that the last LET communi-

cation of τi at t occurs in the DMA transfer with index
g. If this is not the case, the last big-M term in the RHS
of Equation (4) makes the constraint inactive. When the
constraint is active, τi is released at the completion of the
DMA transfer with index LCDIt,i; each transfer generates
a (worst-case) overhead given by the programming plus
interrupt costs, i.e., oIN + oDT + oISR: this corresponds to the
first term in the RHS. The second term is the sum of sizes of
the labels involved in the first g DMA transfers, multiplied
by the cost of each copy ωC .

For B = LL-EOL, the sum
∑
g(LCDt,i,g ∧ DLt,g,v) in

Equation (5) is equal to 1 if the last communication of τi at
t occurs in any DMA mapped in the v-th linked-list. The
big-M term makes the constraint inactive if this condition
does not hold. When the constraint is active, v linked-lists
are processed until the release of τi. Each list requires an

initialization overhead of oIN, plus oISR for the interrupt and
oDT for each DMA transfer mapped in the list (accounted for
in the first two terms in the RHS). The third term accounts
for the cost of transferring the labels involved in the first v
lists, by summing all variables CLt,z,v multiplied by ωC .

For B = LL-EOT, assume that the last LET communica-
tion of τi occurs at the g-th DMA transfer mapped in the
v-th list. If this does not hold, the big-M term in the RHS of
Equation (6) makes the constraint inactive. Each list requires
an initialization overhead of oIN and oDT for each transfer
in the list. Since interrupts are issued at the completion of
each DMA transfer, τi experiences LCDIt,i interrupts of cost
oISR before being ready. Those components are the first three
terms in the RHS. The contribution due to the transfer labels
is then identical to the case of SIMPLE.

Finally, Property 3 is enforced by Constraint 14.

Constraint 14 (Property 3). ∀t ∈ T ∗, ∀τi ∈ Γ, then:

LATt,i ≤ tnext − t,

where tnext is the instant in T ∗ occurring immediately after t.

6.3 Objective Function

Two objective functions are proposed: minimizing the max-
imum number of DMA transfers in any t ∈ T ∗, or the
maximum ratio between the communication delay and the
task’s period, i.e.:

minimize max
t∈T ∗, τi∈Γ

(
LCDIt,i

)
, (7)

or minimize max
t∈T ∗, τi∈Γ

(
LATt,i/Ti

)
. (8)

The formulation can be extended to cope with other ob-
jectives and constraints, e.g., minimizing or limiting mem-
ory fragmentation.

7 EXPERIMENTAL RESULTS

We apply the approaches presented in the paper to a case
study representative of an autonomous driving application,
proposed by Bosch for the WATERS 2019 Industrial Chal-
lenge [37]. The parameters of tasks, labels and the data de-
pendencies are provided with the case study, while the task
mapping is based on the challenge solution of [38]. Figure 5
shows a schematic representation of the application.

We performed the experiments considering oIN + oDT =
3.36µs from the results of measurements from [25], and
the relation oIN ≈ 2 · oDT from [35], with the delay due
to a DMA completion interrupt equal to oISR = 10µs. The
data acquisition deadlines of the tasks have been derived



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXX 11

(a), OBJ-DEL, L2L

LID DASM CAN EKF PLAN SFM LOC LDET DET
0

50

100

λ
i

ra
ti

os
(%

)

(b), OBJ-DMAT, L2L

LID DASM CAN EKF PLAN SFM LOC LDET DET
0

50

100

λ
i

ra
ti

os
(%

)

(c), OBJ-DEL, LGL

LID DASM CAN EKF PLAN SFM LOC LDET DET
0

50

100

λ
i

ra
ti

os
(%

)

(d), OBJ-DMAT, LGL

LID DASM CAN EKF PLAN SFM LOC LDET DET
0

50

100

λ
i

ra
ti

os
(%

)

SIMPLE/Giotto CPU SIMPLE/Giotto DMA-A SIMPLE/Giotto DMA-B

Figure 3: Delays λi obtained with our base DMA protocol
(SIMPLE) compared with other Giotto-based proposals.

(a), OBJ-DEL, L2L

LID DASM CAN EKF PLAN SFM LOC LDET DET
0

50

100

150

λ
i

ra
ti

os
(%

)

(b), OBJ-DMAT, L2L

LID DASM CAN EKF PLAN SFM LOC LDET DET
0

50

100

150

200

λ
i

ra
ti

os
(%

)

(c), OBJ-DEL, LGL

LID DASM CAN EKF PLAN SFM LOC LDET DET
0

50

100

150

200

λ
i

ra
ti

os
(%

)

(d), OBJ-DMAT, LGL

LID DASM CAN EKF PLAN SFM LOC LDET DET
0

100

200

λ
i

ra
ti

os
(%

)

LL-EOT/Giotto CPU LL-EOT/SIMPLE LL-EOL/Giotto CPU LL-EOL/SIMPLE

Figure 4: Delays λi obtained with the linked-list approaches
compared with SIMPLE DMA behavior and Giotto-CPU.

with the following sensitivity analysis procedure. First, we
computed the worst-case response time Ri of each task
τi ∈ Γ of the Challenge, and the slack Si = Di − Ri. Then,
we set γi = α · Si, and we checked the schedulability using
γi as a bound on the jitter, with α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.
Due to space limitations, we present only the results for
α = 0.2, which provides the shortest deadlines that still
guarantee feasible solutions.

We evaluated six different variants of the approaches
described in this paper, combining the case where (a) all

CAN SFM LDET DET

LID LOC PLANEKF DASM

𝑃1 𝑃3 𝑃5 𝑃6

𝑃5 𝑃4

𝑃0 𝑃2 𝑃1

3 5 2

Figure 5: Task chains of the WATERS 2019 Challenge. Px is
the processor where the task is mapped, while in green are
the number of labels exchanged (1 in the untagged arrows).

Table 1: Observed running times (T = timeout), number of
DMA transfers (DT), and number of linked lists (LL).

Strategy MILP runtime # DT/ # LL
OBJ-DMAT OBJ-DEL OBJ-DMAT OBJ-DEL

SIMPLE-L2L 9 sec 38 sec 11 / - 13 / -
EOT-L2L 73 sec 31 sec 11 / 5 13 / 3
EOL-L2L 112 sec 1h 48min 11 / 1 11 / 5

SIMPLE-LGL 29 min 12 min 12 / - 15 / -
EOT-LGL 1h 3min 4 hours (T) 12 / 10 16 / 3
EOL-LGL 1h 59min 4 hours (T) 12 / 7 13 / 10

communications are performed as local-global-local (labeled
LGL) and (b) all communications are performed as local-to-
local (L2L), with the three DMA configurations considered
in this work, namely: the SIMPLE DMA behavior, LL-EOT,
and LL-EOL. For each combination, we also considered
three different baseline approaches for comparison: (i) the
state-of-the-art Giotto approach [1], with LET copies per-
formed by the CPU (Giotto-CPU), (ii) the Giotto approach
enhanced with the usage of a DMA but without the commu-
nication reordering proposed in this paper and a separate
DMA transfer (i.e., no knowledge of the memory layouts)
for each LET copy (Giotto-DMA-A), and (iii) the Giotto
approach with DMA and using the memory layout and
transfer grouping found by the optimization problem for
the case at point (i) (Giotto-DMA-B), but without the
communication reordering (i.e., still requiring all LET writes
to be completed before the LET reads).

Each combination is applied to the two objective func-
tions presented in Section 6.3: minimizing the number of
DMA transfers (Equation (7), OBJ-DMAT), and minimizing
the λi/Ti ratio (Equation (8), OBJ-DEL). The experiments
have been performed on a machine with 128GB of memory,
2x Intel Xeon(R) CPU E5-2640 v4 @ 2.40GHz, with 40 cores.
The MILP formulation has been coded in C++ and solved
with IBM CPLEX, setting a timeout of 4 hours.

Evaluation of SIMPLE-based Approaches. The results of
the first set of experiments are reported in Figure 3, showing
the advantages of the baseline approach SIMPLE when com-
pared with the Giotto-based solutions. Four representative
configurations are reported in Fig. 3. The X-axis reports the
nine tasks of the WATERS 2019 Challenge, namely, LID,
DASM, CAN, EKF, PLAN, SFM, LOC, LDET, and DET,
while the Y-axis shows the ratio of the data acquisition
latency λi of each task τi obtained solving our optimization,
over the one obtained with the three alternative approaches.
Fig. 3 (a) and (c) show the results obtained when mini-
mizing the λi/Ti ratio, targeting the L2L and LGL case,
respectively. The plots show considerable improvements
to all previously available approaches. In both cases, our



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXX 12

solution enables improved parallelism and reorders the
communications allowing an early start for most of the
tasks. Among the baseline approaches, Giotto-CPU has
values closest to SIMPLE, then Giotto-DMA-B performs
better than Giotto-DMA-A. This can be explained as in the
case under analysis, the communication reordering has the
highest impact in reducing the latencies, while Giotto-CPU
benefits from not having the programming overhead.

In the L2L case, all write-only tasks (LID, CAN, SFM,
LDET, and DET) achieve a communication delay equal to
zero, since all their LET writes are managed by switching
pointers (with negligible cost), and our protocol allows them
to be immediately ready. Still in the L2L case, tasks with
LET reads achieves improvement up to 98% (i.e., DASM
task in Fig. 3 (a)). Conversely, in the LGL case, the maximum
improvement of 88% is achieved by the DET task (Fig. 3 (c)).

Similar trends can be observed in Fig. 3 (b) and (d),
which minimize the number of DMA transfers. In these
charts, the ratios λi are slightly higher because the solver
tends to privilege a lower number of DMA transfers over
an improved λi. Table 1 summarizes the number of DMA
transfers and the running times for all experiments.
Evaluation of Linked-Lists Approaches. The second set of
experiments targets LL-EOT and LL-EOL configurations.
Here, the complexity of the formulation increases with
the addition of the variables and constraints associated to
the linked-list. Two tests did not converge to the optimal
mapping before the timeout (see Table 1), but the solver was
still able to provide feasible (even if suboptimal) solutions.
Figure 4 summarizes the results of the latency, comparing
the one found using the linked-list approaches, with the
one of SIMPLE strategy (dashed columns) and with the
baseline Giotto-CPU approach (filled columns). Table 1
reports both the number of transfers and lists.

In Figure 4(a) and (b), we target the L2L mapping. Here,
Figure 4(a) shows that LL-EOT and LL-EOL provide similar
latencies with respect to the mapping obtained with SIMPLE
(most dashed columns are close to 100%), while still beating
the Giotto-based approach for the vast majority of the tasks.
We can see, for example, how the DASM task of LL-EOL in
inset (a) has a worse latency with respect to the SIMPLE one,
but in reality their difference in absolute terms is little (39µs
vs. 27µs), and still outperforms the latency obtained with
Giotto-CPU (892µs). Figure 4(b) shows slightly higher
ratios because again the solver privileges a lower number
of DMA transfers with respect to latency. In the L2L case,
the linked-list approaches get the best improvements over
SIMPLE for LL-EOT in Figure 4(b), up to 45%, and for
LL-EOL in Figure 4(a), up to 35%. Figure 4(c) and (d) show
the results for the LL-LGL mapping. Here, the behavior
is varied, also related to the fact that two experiments for
OBJ-DEL reached timeout and the solution is possibly not
optimal. This is more evident, for example, for the DET
task in the LL-EOL case (Figure 4(c)) or for the CAN and
SFM tasks for LL-EOT (Figure 4(d)). Comparing the linked-
list approaches with SIMPLE in the LGL case, the best
improvements are achieved in Figure 4(c), reaching up to
93% and 50% for LL-EOT and LL-EOL, respectively (for the
CAN and LDET tasks).

Finally, Table 1 gives additional insight about the num-
ber of DMA transfers and lists. Both linked-lists approaches

provided the same number of transfers obtained with
SIMPLE when testing OBJ-DMAT, with LL-EOT preferring a
mapping in a higher number of lists with respect to LL-EOL.
Conversely, when minimizing λi/Ti, as expected, LL-EOL
is driven to increase the number of lists with respect to
LL-EOT, to provide an early release for the tasks.

8 CONCLUSIONS

DMA engines offer excellent opportunities to enhance the
performance of automotive systems. However, their intro-
duction calls for re-purposing some consolidated assump-
tions in implementing the core principles of LET. To this
end, we presented a set of new protocols to perform LET
communications while leveraging the parallelism offered by
a DMA engine. This paper provided methods for finding an
optimized scheduling and memory allocation of the LET
communications of different tasks using a MILP formula-
tion. The proposed methods have been compared experi-
mentally with the Giotto approach with core-commanded
data transfers, providing solutions for the WATERS 2019
Challenge task set that allow respecting the data acquisition
deadline constraints.

REFERENCES

[1] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” in International
Workshop on Embedded Software. Springer, 2001, pp. 166–184.

[2] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst,
“Communication Centric Design in Complex Automotive Embed-
ded Systems,” in 29th Euromicro Conference on Real-Time Systems
(ECRTS 2017), 2017.

[3] M. Hassan and R. Pellizzoni, “Bounding dram interference in
cots heterogeneous mpsocs for mixed criticality systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2018.

[4] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “A Holistic
Memory Contention Analysis for Parallel Real-Time Tasks under
Partitioned Scheduling,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2020.

[5] A. Biondi and M. Di Natale, “Achieving Predictable Multicore
Execution of Automotive Applications Using the LET Paradigm,”
in Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2018.

[6] P. Pazzaglia, A. Biondi, and M. Di Natale, “Optimizing the func-
tional deployment on multicore platforms with logical execution
time,” in 2019 IEEE Real-Time Systems Symposium (RTSS), 2019.

[7] Infineon, “General Purposes Direct Memory Access (GPDMA).”
[8] ——, “STM32U5-System-DMA Linked list (DMALL) Rev1.0.”
[9] ATMEL, “ AT17417: Usage of XDMAC on SAM S/SAM E/SAM.”
[10] P. Pazzaglia, D. Casini, A. Biondi, and M. Di Natale, “Optimal

memory allocation and scheduling for dma data transfers under
the let paradigm,” in 58th Design Automation Conference, 2021.

[11] R. Ernst, S. Kuntz, S. Quinton, and M. Simons, “The logical
execution time paradigm: New perspectives for multicore systems
(dagstuhl seminar 18092),” Dagstuhl Reports, vol. 8, 2018.

[12] Infineon, “AURIX™ 32-bit microcontrollers for automotive and
industrial applications Highly integrated and performance opti-
mized.”

[13] S. Igarashi, T. Ishigooka, T. Horiguchi, R. Koike, and T. Azumi,
“Heuristic contention-free scheduling algorithm for multi-core
processor using let model,” in IEEE/ACM 24th International Sym-
posium on Distributed Simulation and Real Time Applications, 2020.

[14] A. Yano, S. Igarashi, and T. Azumi, “Contention-free scheduling
algorithm using let paradigm for clustered many-core processor,”
in 2021 IEEE/ACM 25th International Symposium on Distributed
Simulation and Real Time Applications (DS-RT), 2021, pp. 1–4.

[15] K.-B. Gemlau, L. Köhler, R. Ernst, and S. Quinton, “System-level
logical execution time: Augmenting the logical execution time
paradigm for distributed real-time automotive software,” ACM
Trans. Cyber-Phys. Syst., 2021.



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXX 13

[16] J. Martinez, I. Sañudo, and M. Bertogna, “Analytical characteriza-
tion of end-to-end communication delays with logical execution
time,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2018.

[17] ——, “End-to-end latency characterization of task communication
models for automotive systems,” Real-Time Systems, 2020.

[18] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Syn-
thesizing job-level dependencies for automotive multi-rate effect
chains,” in 2016 IEEE 22nd International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2016.

[19] ——, “End-to-end timing analysis of cause-effect chains in auto-
motive embedded systems,” Journal of Systems Architecture, 2017.

[20] M. Günzel, K.-H. Chen, N. Ueter, G. v. d. Brüggen, M. Dürr, and
J.-J. Chen, “Timing analysis of asynchronized distributed cause-
effect chains,” in IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2021.

[21] A. M. Kordon and N. Tang, “Evaluation of the Age Latency of a
Real-Time Communicating System Using the LET Paradigm,” in
32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), 2020.

[22] S. Saidi, P. Tendulkar, T. Lepley, and O. Maler, “Optimizing explicit
data transfers for data parallel applications on the cell archi-
tecture,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 8, no. 4, pp. 1–20, 2012.

[23] ——, “Optimizing two-dimensional dma transfers for scratchpad
based mpsocs platforms,” Microprocessors and Microsystems, vol. 37,
no. 8, pp. 848–857, 2013.

[24] S. Wasly and R. Pellizzoni, “Hiding memory latency using fixed
priority scheduling,” in 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2014.

[25] R. Tabish, R. Mancuso, S. Wasly, R. Pellizzoni, and M. Caccamo,
“A real-time scratchpad-centric OS with predictable inter/intra-
core communication for multi-core embedded systems,” Real-Time
Systems, 2019.

[26] D. Casini, P. Pazzaglia, A. Biondi, M. Di Natale, and G. Buttazzo,
“Predictable memory-cpu co-scheduling with support for latency-
sensitive tasks,” in 57th Design Automation Conference (DAC), 2020.

[27] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo,
and R. Kegley, “A predictable execution model for cots-based em-
bedded systems,” in 17th Real-Time and Technology and Applications
Symposium (RTAS), 2011.

[28] S. Wasly and R. Pellizzoni, “A dynamic scratchpad memory unit
for predictable real-time embedded systems,” in 2013 25th Euromi-
cro Conference on Real-Time Systems, 2013.

[29] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak,
R. Pellizzoni, and M. Caccamo, “A Real-Time Scratchpad-Centric
OS for Multi-Core Embedded Systems,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2016.

[30] B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut, “Hiding com-
munication delays in contention-free execution for spm-based
multi-core architectures,” in 31st Euromicro Conference on Real-Time
Systems, 2019.

[31] A. Marchand, P. Balbastre, I. Ripoll, M. Masmano, and A. Crespo,
“Memory resource management for real-time systems,” in 19th
Euromicro Conference on Real-Time Systems, July 2007, pp. 201–210.

[32] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “Memory
feasibility analysis of parallel tasks running on scratchpad-based
architectures,” in 39th Real-Time Systems Symposium (RTSS), 2018.

[33] J. Whitham and N. Audsley, “Implementing time-predictable load
and store operations,” in Proceedings of the Seventh ACM Interna-
tional Conference on Embedded Software, 2009, pp. 265–274.

[34] I. Puaut and C. Pais, “Scratchpad memories vs locked caches
in hard real-time systems: a quantitative comparison,” in 2007
Design, Automation Test in Europe Conference Exhibition, 2007.

[35] S. Saıdi, “Optimizing dma data transfers for embedded multi-
cores,” PhD disseratation, univercity of Grenovale, 2012.

[36] J.-J. Chen et al., “Many suspensions, many problems: a review
of self-suspending tasks in real-time systems,” Real-Time Systems,
2018.

[37] A. Hamann, D. Dasari, F. Wurst, I. Sañudo, N. Capodieci,
P. Burgio, and M. Bertogna, “WATERS Industrial Challenge
2019,” Re-uploaded at https://retis.sssup.it/∼d.casini/resources/
WATERS2019/WATERS Industrial Challenge 2019 final.pdf.

[38] D. Casini, P. Pazzaglia, A. Biondi, G. Buttazzo, and M. Di Natale,
“Addressing analysis and partitioning issues for the Waters 2019
challenge,” in 10th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2019.

Paolo Pazzaglia (IEEE Member) is a Postdoc-
toral researcher at the Computer Science De-
partment, Saarland University. He completed his
Ph.D. in computer engineering (with honors), at
the Real-Time Systems (ReTiS) Laboratory of
the Scuola Superiore Sant’Anna, Pisa, in 2020.
He was a visiting Ph.D. student at the Depart-
ment of Automatic Control, Lund University, in
the winter semester 2018/19. His research is at
the intersection of control systems and real-time
systems, with the goal of improving robustness

and enforcing determinism in modern embedded control applications.

Daniel Casini (IEEE Member) is Assistant Pro-
fessor at the Real-Time Systems (ReTiS) Lab-
oratory of the Scuola Superiore Sant’Anna of
Pisa. He graduated (cum laude) in Embedded
Computing Systems Engineering, a joint Master
degree by the Scuola Superiore Sant’Anna of
Pisa and University of Pisa, and received a Ph.D.
in computer engineering at the Scuola Superi-
ore Sant’Anna of Pisa (with honors). In 2019,
he has been visiting scholar at the Max Planck
Institute for Software Systems (Germany). His

research interests include software predictability in multi-processor sys-
tems, schedulability analysis, synchronization protocols, and the design
and implementation of real-time operating systems and hypervisors.

Alessandro Biondi (IEEE Member) is Assistant
Professor at the Real-Time Systems (ReTiS)
Laboratory of the Scuola Superiore Sant’Anna.
He graduated (cum laude) in Computer Engi-
neering at the University of Pisa, Italy, within
the excellence program, and received a Ph.D. in
computer engineering at the Scuola Superiore
Sant’Anna. In 2016, he has been visiting scholar
at the Max Planck Institute for Software Systems
(Germany). His research interests include de-
sign and implementation of real-time operating

systems and hypervisors, schedulability analysis, cyber-physical sys-
tems, synchronization protocols, and component-based design for real-
time multiprocessor systems. He was recipient of six Best Paper Awards,
one Outstanding Paper Award, the ACM SIGBED Early Career Award
2019, and the EDAA Dissertation Award 2017.

Marco Di Natale (IEEE Senior Member) is a
Full Professor at the Scuola Superiore SantAnna
and IEEE Senior member. He has been visiting
researcher at the University of California, Berke-
ley, in 2006 and 2008/09 and a researcher in
the area of real-time systems and embedded
systems for more than 20 years; winner of six
Best Paper Awards and the Archie T. Colwell
Award. He has served as Program Chair, Track
Chair, and General chair and has been organizer
of tutorials and special sessions for the main

conferences in the area, including the Real-time Application Symposium
(RTAS), the Design Automation Conference (DAC), the Design Automa-
tion and Test in Europe (DATE) and the IEEE SIES and ICESS. He is
currently on the Editorial Board of the IEEE Transactions on Industrial
Informatics and the Springer Real-Time Systems Journal.


