
Neurocomputing 452 (2021) 768–778
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Towards online myoelectric control based on muscle synergies-to-force
mapping for robotic applicationsq
https://doi.org/10.1016/j.neucom.2020.08.081
0925-2312/� 2020 Elsevier B.V. All rights reserved.

q This work has been partially founded by the PRIN-2015 ModuLimb (Prot.
2015HFWRYY) and supported by the Italian project RoboVir within the BRIC INAIL-
2016 program.
⇑ Corresponding authors at: Department of Electrical and Information Engineer-

ing, Polytechnic University of Bari, Bari, BA, Italy (D. Buongiorno).
E-mail addresses: cristian.camardella@santannapisa.it (C. Camardella), domeni-

co.buongiorno@poliba.it (D. Buongiorno).
Cristian Camardella a,⇑, Michele Barsotti a, Domenico Buongiorno b,c,⇑, Antonio Frisoli a,
Vitoantonio Bevilacqua b,c

a PercRo Laboratory, Scuola Superiore Sant’Anna, Pisa, Italy
bDepartment of Electrical and Information Engineering, Polytechnic University of Bari, Bari, BA, Italy
cApulian Bioengineering s.r.l., Via delle Violette n�14, Modugno, BA, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 April 2020
Revised 14 August 2020
Accepted 31 August 2020
Available online 19 December 2020

Keywords:
Myocontrol
Muscle synergies
Clustering
Upper limb
Exoskeleton
Prostheses
The development of a functional myoelectric control represents a big challenge within the researchers
community, due to the complexity of mapping the user’s movement intention onto the control signals.
It is continuously gaining attention since it could be useful for building natural, intuitive and tailored
human–machine interfaces. In this context, muscle synergies-based approaches are playing an important
role since they may be useful to exploit the modular organization of the musculoskeletal system.
Muscle synergies-based myo-control schemes have shown promising results when they are trained

and validated at the same limb pose. However, dealing with a muscle-to-force mapping variability across
multiple limb poses remains an open challenge, thus keeping these techniques unusable in several real
application scenarios, e.g. rehabilitation contexts.
In this paper, the authors propose a method able to compute the synergies-to-force mapping of a new

limb pose by interpolation, with the knowledge of the synergies-to-force mapping related to a limited set
of limb poses. The proposed interpolation-based approach has been evaluated on three different kind of
mappings: muscle-to-force, ‘‘Pose-Shared” synergies-to-force and ‘‘Pose-Related” synergies-to-force. The
muscle-to-force mapping considers a direct map between muscles and hand force. Both synergies-to-
force approaches consider a map between muscle synergies and hand force, but, the ‘‘Pose-Shared” map-
ping assumes that the muscle patterns can be factorized using data coming from different limb poses,
whereas the ‘‘Pose-Related” one assumes that each pose has its own set of muscle primitives that can
be clustered together. The generalization capability of the proposed approach has been evaluated by
comparing performances obtained in untrained conditions with the ones obtained in trained upper limb
poses. Results showed that synergies-based approach substantially reduce the performance loss when
tested on untrained upper-limb’s poses, demonstrating that muscle synergies may be suitable to be
shared across different working conditions. Moreover, the feasibility of the proposed approach has been
preliminary tested in an online condition, demonstrating that the subject was able to accomplish the
force task by controlling a virtual cursor with his muscular activations.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction itive and tailored human–machine interface. Myoelectric control,
In the era of the human-centered design, myoelectric control is
continuously gaining attention since it allows for a natural, intu-
or myo-control, consists in decoding the human motor intention,
through the analysis of electromyographic signals (EMG), and com-
puting a set of control signals that drive the machine the human is
interacting with. The scientific research in EMG-based control has
been mainly driven by the need for more intuitive prosthetic
devices [23]. However, myo-electric schemes have also showed
promising results when applied in different scenarios, featuring
the simultaneous control of multiple degrees of freedom (DoF),
e.g. the control of orthoses and exoskeletons [8,6,7].

Although the neuro-muscular theory behind the EMG signals
generation hypothesizes the existence of applicable schemes
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[14], still no robust and reliable solutions appeared among both
scientific literature and commercial devices [1]. In the last decades,
the biological inspired approaches have earned an increasing
approval by the scientific community even though how the human
central nervous system (CNS) copes with a complex neuromuscu-
loskeletal system is not fully understood yet [12,28].

The bio-inspired myo-control paradigms could be mainly cate-
gorized in model-based and synergies-based approaches. The for-
mer relies on the mathematical modeling of all physiological and
mechanical processes that are involved in the human movement
generation and it is usually used to accurately estimate the articu-
lations torque at the expense of both a long lasting calibration
phase and high computational cost [7]. The latter aims at minimiz-
ing the computational cost by mimicking the CNS through the
identification of specific muscle activation patterns, also called
muscle synergies, exploited during task-related movements [3].

In the last decade, some researchers have focused their atten-
tion on the development of muscle synergies-based approaches
for the human motor activity detection, that represents the basis
for an effective myoelectric control [17]. For the sake of brevity,
the two most representative papers are reported and described.

Denise Berger et al. [2] demonstrated that muscle synergies
represented a valid technique to continuously estimate isometric
forces generated by the hand in real-time through the surface
EMG acquired from upper limb muscles. The setup proposed by
Berger et al. considered a single arm pose and isometric forces
applied at the hand in multiple directions on the horizontal plane.
The authors demonstrated that the proposed synergies-based
myo-controller was able to ensure the same level of accuracy
achieved using the force sensor during online tasks. Ning Jiang
et al. [19] successfully developed a strategy for achieving an accu-
rate simultaneous and proportional control of a 2-Degrees of Free-
dom (DoF) wrist prostheses by concurrently extracting synergies-
based control signals from each independent DoF. However, they
documented a substantial decrease of the performance when intro-
ducing the 3rd DoF. In both the above mentioned works, the pro-
posed setups for the experimental validation were based on a
single arm/wrist pose and considered isometric multi-DOF forces
generated at the hand/wrist. It is worth noting that the two cited
works successfully proposed synergies-based myo-controllers that
are able to estimate the human motor intention during tasks
involving few DoFs and a fixed arm pose. However, to the best of
the authors’ knowledge, how such approaches might be extended
for setups featuring a high number of limb poses has been not
studied yet. In fact, the already proposed paradigms rely on a
specific synergies-to-force mapping that has been computed in a
pre-defined limb pose.

The research question faced in this paper is: do we need to com-
pute a synergies-to-DOF mapping for each potential pose the limb
might assume during the task? In particular, it is interesting under-
standing how to build new models that, after being trained in few
fixed upper-limb poses, are able to estimate the force from EMG
signals acquired in non-trained upper-limb poses (generalization
capabilities). The authors hypothesize a potential usage of a linear
interpolation on trained models, as a first and simple attempt to
solve the previous mentioned problems. Moreover, since synergies
represent a set of motor primitives, they might be suitable to be
shared across different upper limb poses, eventually leading to
interesting outcomes with respect to a full muscles-to-force map-
ping. In this work, the authors propose a method that, with the
knowledge of the synergies-to-force mapping related to few limb
poses, is able to compute the synergies-to-force mapping of a
new upper limb pose through the interpolation of regression
matrices. Upper-limb muscles activity and isometric hand forces
have been acquired during virtual planar reaching tasks in differ-
ent 3D points (or pose) of a large workspace (60cm� 30cm). Then,
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for each tested point in the workspace, the synergies-to-force map-
ping computed with the data acquired in that specific pose has
been compared with the synergies-to-force mapping computed
with the novel proposed method. More in detail, the proposed
interpolation-based approach has been evaluated with three differ-
ent kind of mappings: muscle-to-force, pose-shared synergies-to-
force and pose-related synergies-to-force. The muscle-to-force
mapping considers a direct map between muscles and hand force.
Both the synergies-to-force methods consider a map betweenmus-
cle synergies and hand force with the only difference that the
‘‘Pose-Shared” assumes that the muscle patterns can be factorized
using data coming from different points, whereas the ‘‘Pose-
Related” assumes that each point has its own set of muscle primi-
tives that can be clustered together with the synergies extracted in
the other points [5]. This work extends a previous paper [9] under
three main points: (I) the workspace in this study is three times
bigger than the previous one; (II) a larger number of subjects is
involved and (III) it also introduces a preliminary online evaluation
session.
2. Materials and methods

2.1. Participants

Five right-handed healthy subjects (four males, aged 27:6� 2:6
years, weight 74:6� 7:6 kg) were involved in the study. At the
moment of the experiment, they had not any previous experience
with myo-electric controlled applications. All the experiments
have been approved by the Ethical Review Board of Scuola Superi-
ore Sant’Anna (Approval Number: 1292) and conducted following
the World Medical Association (WMA) Declaration of Helsinki.
All subjects signed the written consent form before joining the
experiment.
2.2. Experimental setup

The experimental setup reported in Fig. 1 consisted of a) an
anthropomorphic robot (UR5, Universal Robots [26]) featuring six
DoFs, 50 N maximum payload and a cylindrical handle with a
ATI Gamma six-axis force/torque sensor, featuring 65 N maximum
payload on x/y axes and a 125 Hz sampling rate, b) an anti-gravity
support for the upper-limb (a 2 DoF passive structure used for
removing the tonic component from the EMG signals), c) an EMG
acquisition system, featuring two gtec 8-channels biosignal ampli-
fiers with customizable band-pass and notch built-in filters in a
master–slave configuration and d) an head mounted display (the
Oculus Rift HMD, Oculus [25]) to immerse the subject in a simple
virtual reality (VR) environment, composed by a wooden house
in the countryside and two fluctuating balls representing the con-
trolled cursor and the task target.

In order to move the robot end-effector (EE) to the selected
workspace positions, the reference robot joint angles have been
set using the provided API. The distance between the subject and
the robot was computed with respect to the base joint of the robot
in such a way that the central point of the workspace was reach-
able with an elbow angle equal to 90 degrees (see Fig. 1). The mus-
cular activations were acquired from 14 different muscles crossing
the elbow and shoulder articulations: biceps short head (BI SH),
biceps long head (BI LO), brachioradial (BRACH), triceps long head
(TRI LONG), triceps lateral head (TRI LAT), deltoid anterior head
(DELT A), deltoid medial head (DELT M), deltoid posterior head
(DELT P), trapezius (TRAP), pectoralis major (PECT M), teres major
(TER MAJ), infraspinatus (INFRASP), latissimus dorsi (LAT DORSI)
and rhomboid (ROMB). After a careful skin preparation, disposable
Ag/AgCl surface electrodes were placed by following the Surface



Fig. 1. Experimental setup. (Left) A Subject wearing VR glasses and the arm support. (Right-up) Positions of the nine evaluated 3D points/poses. (Right-bottom) Diagram of
the forces patterns applied on each point.
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EMG for Non-Invasive Assessment of Muscles (SENIAM) recom-
mendations. Ground electrode was placed on the right elbow.
The surface EMG signals were acquired using two bio-signals
amplifiers (g.USBamp, gTec, Austria [15]) with a sampling fre-
quency equal to 1200 Hz. All signals were filtered with a 5–
600 Hz band-pass filter and a 50 Hz notch filter. The virtual engine
and the force/torque sensor readings ran on a game-ready PC,
whereas the EMG measurements and the acquisition routine ran
in a host PC running Microsoft Windows 10 64 bit, Intel i7
1.73 GHz, 16 GB RAM and Matlab 2018b [24]. The synchronization
of the force and EMG signals was achieved with a User Datagram
Protocol (UDP) connection between the two PCs.
2.3. Data acquisition protocol

At the beginning of the experiment, after the EMG electrodes
positioning, the subjects were invited to sit on a chair and the ver-
tical position of the robot base was adjusted in order to place the
EE handle by the sternum. The distance between the chair and
the robot base was also adjusted such that the subjects were able
to reach the central point E of the experimental workspace area
with a elbow angle equal to 90 degrees (see Fig. 1). This distance,
together with the low inter-subjects biometrical features variabil-
ity (arm lenghts 33:6� 1:95, forearm lengths 28:6� 0:55) made
the workspace suitable for all the subjects, avoiding arm singular-
ities on the furthest points.

The evaluated area was delimited by a rectangle (60–30 cm2)
and included nine different 3D points (or arm poses) lying on the
horizontal plane as shown in Fig. 1. For each of the nine points,
subjects were asked to perform 16 reaching tasks along 8 direc-
tions (two trials per direction) equally spaced at 45 degrees and
randomly sorted. Muscle contractions were performed isometri-
cally by keeping the pose of the robot fixed with a position control.
Once all 16 trials were completed, the robot automatically moved
to another workspace point that was randomly selected. Each vir-
tual reaching task consisted in 1) positioning the cursor, repre-
sented as a red sphere, inside the target, a blue sphere, 2)
holding it in place for 2 s and then 3) relaxing, in order to move
the cursor back to the rest position, for 2 more seconds. The posi-
tion of the cursor was computed using a spring model Pc ¼ K � FEE,
as shown in the work of Berger and D’Avella [2], where Pc is the 3D
cursor position, FEE is the applied isometric force vector and K is the
elastic constant of the virtual spring. Considering this model, the
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rest position corresponded to a zero-force input. The target sphere
had a bigger radius than the cursor radius such that a tolerance of
7 N was admitted.The force vector FEE corresponded either to the
measured force during the data acquisition phase or the force esti-
mated by the EMG signals, during the online validation. Each trial
started when the target sphere appears and ended when the target
sphere disappeared.

2.4. Data analysis

The goal of this study is to build an EMG-to-Force model which,
after being trained in few points placed at the vertexes of the pre-
defined workspace, it is able to estimate the force inside the whole
workspace. In the next paragraphs the words ‘model’ and ‘regres-
sor’ (or ‘regression matrix’) are used as synonyms since the training
phases are based on a linear regression on the collected datasets.
Raw EMG signals were processed before feeding the training phase.
They were rectified and filtered using a 4 Hz 2nd order Butter-
worth low-pass filter and then normalized using the maximum
voluntary contraction (MVC) among all the channels within the
whole dataset. Three different implementedmyocontrol approaches
have been called:

� Multi-variate linear regression (MVLR)
� Linear regression and ‘‘Pose-Shared” synergies (PSS)
� Linear regression and ‘‘Pose-Related” synergies (PRS)

A detailed description of the implemented approaches is pro-
vided in Section 3. The performance of each method have been
compared in two different conditions:

� Specific condition: it consisted in estimating the hand-force on a
workspace point using a regression model trained on the same
point but using a different set of contractions. In particular,
being each task composed by 2 contractions per direction (16
total), the dataset collected in a specific point was randomly
split into 2 different datasets containing one contraction per
direction each: one used for training the regressor and the other
for testing the model.

� General condition: it was focused on understanding the quality
of the estimations in a non-trained point by building the model
out of the A-B-C-D training points and test it on the E-F-G-H-I
points. For each of the three proposed methods, the model
(i.e. the regression matrix) has been computed by linearly
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interpolating the regression matrices trained in A-B-C-D. Conse-
quently, the obtained regression matrix has been used to esti-
mate the forces using EMG signals in the test points. The
reason behind the use of A-B-C-D points only, in the training
phase, lies on the possibility of building a linear space, i.e. a
5 � 5 points grid, on which those points could have been
exploited as boundaries in the linear interpolation and, concur-
rently, choosing the smallest number of points, minimizing the
required training data.

Data processing and conducted analysis always took into account
the time window of a single virtual reaching trial, as described in
the previous section, from the appearance of the target until the
end of the rest phase. A summary of the analysis work-flow is
showed in Fig. 2.

2.5. Online experiment

The aim of the online experiment was to assess and compare
the performances of the proposed approaches in a real-time appli-
cation in which the subject was involved in the control loop (re-
ceiving the feedback of the EMG-driven force estimation). Thus,
pointing towards the actual usage of the myoelectric control, a
pilot study has been conducted for evaluating the real-time esti-
mation capabilities of the best offline algorithms. Starting from
the same acquisition protocol (see Sub-Section 2.3), the online ses-
sion has been performed by one subject, on a single point (i.e. point
E): in this case, the cursor in the VR was driven by the online esti-
mations, giving a direct visual feedback to the subject. Also the
data processing replicated the same operations flow of the offline
session. In this online study, the PRS method and the MVLRmethod
have been evaluated both in Specific and General conditions.

2.6. Data analysis: performance indexes and statistics

Three different indexes have been used for assessing the perfor-
mance of each method in each condition: Root Mean Square Error,
Initial Angle Error and the Coefficient of Determination.

[A. Root Mean Square Error (RMSE)]
It is used to measure the difference between the measured and
the estimated forces and it is calculated as follows:
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
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Fig. 2. Block diagram of the inv
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where xi is the 2D measured force sample, made by its x and y com-
ponent (xx;i and xy;i), x̂i is the 2D estimated output sample, made by
its x and y component (x̂x;i and x̂y;i) and N is the number of samples.
Being the RMSE an error computation, the lower it is, the closer the
estimation gets to the measured signal, in terms of signal
amplitude.

[B. Initial Angle Error (IAE)]
The IAE index computes the difference between the measured
and estimated 2D force angles using the last 70% of the rising
edge of the signal after the contraction activation. It gives an
indication about the correctness of the estimated force direc-
tion with respect to the measured one (IAE equal to zero means
a perfect force components overlapping): although an high
RMSE value could denote a bad estimation, a low IAE value
denotes a correct force direction estimation, thus, varying the
output gain could eventually lead to a good prediction.
[C. The coefficient of determination (R2)]
The R2 is used to highlight a signal total variation explained by
the estimates. The R2 is computed as follows:
estigate
R2 ¼ 1� SSres
SStot

¼ 1�
PN

i¼1 xi � x̂ið Þ2PN
i¼1 xi � xið Þ2

; ð2Þ
where xi is the measured force sample and x̂2i is the estimated out-
put sample. N is the number of samples. The index ranges from
minus infinite to 1 (equal to 1 in case of perfect estimation with
an error equal to zero).

In order to assess differences between the two experimental
conditions (Specific and General), a 2-way ANOVA analysis, using
as factors the Conditions (Specific, General) and Methods (MVLR,
PRS, PSS), has been conducted for each performance index in each
test point. In case of significant main effects, Bonferroni corrected
post hoc analysis was conducted.
3. Theory

In this section, all the developed algorithms are described from
a mathematical point of view, highlighting the main difference in
including or not muscle synergies in the estimation process. More-
over the basis for comparisons are stated, detailing how the perfor-
mance indexes are computed. Referring to the training and the test
phases in the Specific condition, the related EMG datasets, used for
the force estimations process, involve either the first or the second
contraction (see acquisition protocol). Thus, different signals are
d control schemes.
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always used even if the same point is used for both training and
test phase.

3.1. Synergies extraction

Muscles synergies can be extracted from the electromyograph-
ical signals. Since a negative muscle activation has no physiological
meaning, the Non-Negative Matrix Factorization (NNMF) [22] has
been extensively used in order to separate the fundamental com-
ponents from the input. According to the NNMF algorithm, muscle
synergies can be expressed as following:

m ¼ W � c þ em; ð3Þ
where m is the input signal (M-N matrix, being M the number of
muscles and N the number of samples), W is the synergy matrix
(M-s matrix, being s the number of synergies), c is the synergy acti-
vations matrix (s-N matrix) and em is the muscle activations factor-
ization residuals, dimensionally equal to the input.

Depending on the input of the NNMF, two different approaches,
namely ‘‘Pose-Shared” and ‘‘Pose-Related”, have been analyzed. The
‘‘Pose-Shared” synergies are extracted running the NNMF once on
the EMG data acquired on all training arm poses (i.e. Points A, B,
C and D) as follows:

mT ¼ Wg � cT þ em; ð4Þ
where mT is the union of the signals at the boundaries
mT ¼ mA [mB [mC [mD½ � and Wg is the ‘‘Pose-Shared” synergy
matrix.

The ‘‘Pose-Related” synergies are computed with a three steps
procedure:

1. the NNMF factorization is independently applied on the EMG
data recorded at each training arm pose producing four syn-
ergies matrices (Wi with i = 1:P, where P is the number of
arm poses) with (3).

2. all the extracted synergies vectors are clustered using the K-
means algorithm with cosine distance. For instance, given s
the number of synergies and Wi ¼ Wi;1;Wi;2; . . . ;Wi;s

� �
the syn-

ergies matrix extracted on the i-th upper-limb pose andWi;s the
s-th synergy (i.e. a vector) in the matrix, the k-means algorithm
is used as follows:
Wc;i ¼ kmeans W1;i;W2;i; . . . ;WP;i
� �� �

; i 2 1; s½ � ð5Þ

where the output Wc;i corresponds to the ith element of Wc

matrix, as the ith centroid of the clustered synergies vectors.
3. The ‘‘Pose-Related” synergies matrix, Wc , can be computed as

the union of all the s centroids:
Wc ¼ Wc;1 [Wc;2[; . . . ;[Wc;s½ � ð6Þ

3.2. Force estimation

The performances of the proposed algorithms have been evalu-
ated in terms of force estimation capabilities at both training and
test upper-limb poses. The synergies-based methods have been
compared with the state-of-art most common algorithm, i.e. linear
regression using all the muscles activations. In this section an over-
view of the three approaches is presented. It is important to men-
tion that muscles activations are always lower than the 20% of the
value reached during the MVC and in each workspace position the
arm’s pose is fixed: following this, the relation between the force
exerted at the hand and the EMG measured on the elbow and
shoulder muscles is approximately linear [4,2,7]. For this reason,
a linear regression has been used for each method.
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[A. Multi-variate linear regression (MVLR)]
The algorithm that involves a direct relation between muscles
activations and hand-force exertion has been used as a gold
standard for the next comparisons, currently being the most
used in the state of art. Under the linear condition previously
mentioned, the force estimation can be computed using the fol-
lowing model:

Fest tð Þ ¼ Hm �m tð Þ; ð7Þ
where Fest tð Þ is the estimated 2-dimensional force, m tð Þ is the pro-
cessed EMG signal (made by all the channels) and Hm is the regres-
sion matrix calculated as:
Hm ¼ reg mt ; Ftð Þ ð8Þ

wheremt is the training EMG data matrix (M-Nwhere N is the num-
ber of samples) and Ft is the training forces data matrix (2-N
matrix): thus, the Hm will be a 2-M matrix.

[B. Linear regression and ‘‘Pose-Shared” synergies (PSS)]
The concept of the ‘‘Pose-Shared” synergies is based on the dif-
ference in applying the factorization algorithm, i.e. NNMF,
either on a pose-specific EMG dataset or on the data resulting
from the union of more pose-specific datasets, as stated above.
In the first case, the extracted synergies will suffer such an over-
fitting problem, testing them on points different from the train-
ing ones. In order to overcome the signal variability introduced
by the joint angles differences in the new position, the second
procedure has been used computing the ‘‘Pose-Shared” synergy
matrix. The force estimation, thus, proceeds as follows:
Fest tð Þ ¼ Hg � cg tð Þ; ð9Þ

where Fest tð Þ is the estimated 2-dimensional force, Hg is the regres-
sion matrix (2-s matrix, where s is the number of synergies) and
cg tð Þ is the synergies activations matrix computed using 3 and
neglecting the muscle residuals:
cg ¼ Wþ
g �m; ð10Þ
where Wþ
g is the pseudo-inverse of Wg ‘‘Pose-Shared” synergy

matrix seen in (4) and m is the filtered EMG signals matrix. Regard-
ing the Hg regression matrix, it has been calculated as:
Hg ¼ reg cg;t; Ft
� � ð11Þ
where cg;t is the cg signal, computed using mt , training EMG data
matrix, as input of (10), and Ft is the training forces data matrix
(matrices dimensions explained in paragraph A).

[C. Linear regression and ‘‘Pose-Related” synergies (PRS)]
The authors observed that in an extended region of the upper-
limb workspace, point-specific muscle synergies capture in a
better way the variation of the relative muscle weights, with
respect to the points-shared ones [9]. A cluster analysis (k-
means of all the point-specific synergies matrices, as done in
paragraph 2.4) has been performed in order to obtain a resul-
tant matrix which is supposed to have a better generalization
capability with respect to the single ones. Eventually the esti-
mation can be computed using the following formula:
Fest tð Þ ¼ Hc � cc tð Þ; ð12Þ

where Fest tð Þ is the computed 2-dimensional force, Hc is the regres-
sion matrix (2-s matrix, where s is the number of synergies) and
cc tð Þ is the synergies activations matrix computed using the inverse
formula of (3) and neglecting the muscle residuals:
cc ¼ Wþ
c �m; ð13Þ
whereWþ
c is the pseudo-inverse ofWc clustered synergies matrix as

stated in (5) and m is the filtered EMG signals matrix. Also in this



Table 1
Algorithms and experiments summary. In ‘Lin.Reg.’ and ’Test’ columns, 1st and 2nd stand for first contraction and second contraction of point-specific dataset. The table does not
show the training performance extraction process (first column of Fig. 3).

Method Condition Lin:Reg:matrix Hð Þ Syn:matrix Wð Þ Test

MVLR Specific Calc. in EFGHI points (1st) Not used Est. in EFGHI (2nd)
MVLR General Calc. in ABCD points and interp. Not used Est. in EFGHI
PSS Specific Calc. in EFGHI points (1st) Calc. in [A[B[C[D] Est. in EFGHI (2nd)
PSS General Calc. in ABCD points and interp. Calc. in [A[B[C[D] Est. in EFGHI
PRS Specific Calc. in EFGHI points (1st) Calc. in ABCD and clustered Est. in EFGHI (2nd)
PRS General Calc. in ABCD points and interp. Calc. in ABCD and clustered Est. in EFGHI
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case, the Hc regression matrix computation follows the same
procedure:
Hc ¼ reg cc;t; Ftð Þ ð14Þ
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where cc;t is the cc signal, computed using mt , training EMG data
matrix, as input of (13), and Ft is the training forces data matrix.

3.3. Algorithms summary

In the previous paragraphs, all the proposed methods have been
detailed from a mathematical and conceptual point of view. For the
sake of clearness, the computation process is listed below with a
step-by-step procedure, starting from the raw EMG signals pro-
cessing, up to the force estimation, for each method.

Algorithm 1: Algorithms operations list. Once processed all
the signals and extracted all the synergies matrices (Wi),
‘‘Pose-Shared” synergies (Wg) are extracted using all the
training EMG signals and ‘‘Pose-Related” synergies (Wc)
clustering all the Wi, as explained previously. Finally all the
models (H) are trained and used in the estimation phase. It is
important specifying that there are no distinctions between
Specific and General conditions herein (see Table 1).
A summary of the proposed algorithms logic and how the have
been used in this study is reported in Algorithm 1.
4. Results

As reported in author’s previous works [9,5], and in line with
the works of D’Avella et al. [2,13], the authors found that a small
number of synergies, with respect to the number of acquired mus-
cles, was sufficient for building a functional subset of grouped
muscles. In this work, five synergies have been selected for recon-
structing the muscle activations, as found to be enough for repre-
senting more than the 90% of the variance of the EMG signals in
a similar task [9,5]. Regarding the generalization capabilities of
the proposed approaches, our initial hypothesis was that
synergies-based techniques could have flattened the difference
with MVLR, passing from Specific to General condition, since the
extracted primitives could have been shared across different upper
limb poses in a better way, with respect to a point specific
muscles-to-force mapping. Fig. 3 reports the comparison between
the performance obtained by the three explored methods (MVLR,
PSS, PRS) under the two analyzed conditions (Specific (S) and Gen-
eral (G)). Each row is related to a different performance index. For
the sake of completeness, the first column (‘‘Training Points”)
shows the test performance in the training points (A B C D) under
the Specific condition, i.e. the models have been trained on one half
of the contractions and tested in the remaining ones. Each of the
remaining columns (”Point X”) reports the performance obtained
in the test points (E F G H I) in both the Specific condition and the
General condition, in which the models have been trained using
datasets coming from the training points (A B C D) and tested in
the specific column-point. An important note is that, differently
from the regression matrix, that varied across conditions, the syn-
ergies used for the PSS and PRS methods were extracted once from
the training points (see algorithms operation list) and never chan-
ged across the test points (E F G H I). In the upper part of each
graph, statistical significances are reported. The gray long lines
with asterisks show the significance of the 2-way ANOVA for the
Condition factor (the significance of the Methods factor is not
reported). In order to report graphically the differences between
methods, black lines show the multiple comparisons between once
the ‘‘Conditions” factor was fixed. In all the test points and for all
the evaluated performance indexes (except for the IAE in points F
and I), a significant difference has been found between the Specific
and General conditions (RMSE: F 1;24ð Þ > 17; p < 0:001;
R2 : F 1;24ð Þ > 10; p < 0:01).

As can be observed, the error for the MVLR increases by almost
2 N when passing from the Specific condition to the General one,
whereas the error increment for the synergy-based methods
(PSS, PRS) is about 1 N. In particular, for both error-related perfor-
mance (RMSE and IAE), the ratios of the errors in the General con-
dition on the Specific condition are approximately 1.8 for the MVLR
and 1.3 for both the PRS and PSS methods.



Fig. 3. Offline analysis performance. The three rows represent the computed performance (RMSE, R2, IAE). The three colors represent the experimental methods. First
columns graphs report the performance obtained in the training points (Specific condition only). The remaining columns report the performance in the test points both in the
Specific condition (model trained in the same point) and in the General condition (model trained in A,B,C,D points and interpolated). Gray horizontal lines with asterisks over
the bars report a significant difference between the Specific and General conditions. Black horizontal lines with asterisks report significant difference between methods inside
each condition.
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Interestingly, observing the statistical comparison between
methods inside each condition (black lines in Fig. 3), it can be
noted that significant differences between the MVLR and the
synergy-based methods occur in almost all the cases in the Specific
condition (RMSE: F 1;12ð Þ > 10; p < 0:01), whereas they never
occur in the General condition (RMSE: F 1;12ð Þ < 3; p > 0:05). In
fact, as outlined before, the decrement in performance between
the Specific condition and General condition is higher when using
all the muscles as input for the linear regressor (MVLR method)
than when grouping muscles in synergies (PSS and PRS methods).

When comparing the synergies-based methods, although not
really significant, it can be noted from Fig. 3 that the PRS method,
which was computed by clustering the synergies extracted in each
of the training point, always outperforms the PSS method, which
was based on extracting synergies from the whole set of training
points. The difference between the two synergistic methods is even
more appreciable in the General condition. The difference between
the two methods in terms of interpolated regression matrices can
be observed in Fig. 4. It can be noted that, even if the two set of
synergies are very similar, the generated force-fields show differ-
ent behaviours on the workspace.
4.1. Online preliminary results

As mentioned above, an online session has been performed by
one subject in the central point E, using both PRS and MVLR meth-
ods, and in the Specific and General conditions. A representative
real-time force reconstruction is shown in Fig. 5. More in detail,
the left panel of the figure shows the actual trajectories (the reach-
ing phase only) of the measured force (force sensor, blue) and the
online estimations (EMG-driven, red), and the force targets,
depicted as green balls with the predefined force tolerance. It has
to be considered that the subject could only see the EMG-
estimated force during the online experiment. The right panel
shows the whole ongoing EMG-estimated force and the measured
774
force, split for the horizontal and vertical component, for eight con-
secutive contractions (reaching and back phases are included).

Table 2 reports the overall online performance, computed over
the whole trajectories, based on the same indexes used for the off-
line analysis. The preliminary results showed that, even if there is a
slight performance loss switching to the online usage, the subject
was able to accomplish the task and control the EMG-driven force
cursor. Obviously, in order to get more significant results, a higher
number of subject is needed. Both methods allowed the user to
reach 6 out of 8 total targets, without reporting a substantial differ-
ence switching from one method to the other. However, it can be
observed that, whereas the error increasing on the synergies-
based method remains the same as the offline analysis, when pass-
ing from the Specific condition to the General condition, this is not
true for the MVLR method in which the error is almost the same
in the two conditions.

5. Discussion and conclusions

This work presents an extended study (with respect to a previ-
ous work [9]) on the generalization abilities of different myoelec-
tric control methods in a large upper-limb workspace
(60 cm� 30 cm). The aim of the study was building a myoelectric
control scheme that, after being trained on a reduced set of points
placed at the vertexes of a rectangle drawn on the horizontal plane,
was able to estimate the force at the hand in untrained points
placed inside the rectangle. The offline results obtained in the
study demonstrated the potentiality of synergies-based methods
to be more robust against working conditions other than the train-
ing ones. Furthermore, this study also reports preliminary results
of a real-time virtual control, in which the subject received the
feedback of the EMG-driven estimations through the virtual envi-
ronment, confirming the feasibility of the proposed approach.

As expected, the performance obtained in the same points the
models were trained on (Specific condition) were significantly
higher than performance obtained outside of the trained points



Fig. 4. Force fields and synergies for the two proposed methods. The force fields represent the interpolated regression matrices for each synergy. The color of the synergies
match the color of the arrows in the force field.

Fig. 5. Online representative force trajectory. The 2-D and the ongoing force profiles are depicted for the MVLR method (General condition) on the upper figure and for the PRS
method (General condition) on the lower figure. The subject could see only effect of the EMG-estimated force (online feedback).
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(General condition). Interestingly, concerning the comparison
between the proposed force-estimation methods, significant differ-
ences were found in the Specific condition whereas no differences
emerged in the General condition. More in detail, the MVLRmethod,
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which took as input the whole muscle space, always outperformed
the synergy-based methods when tested in the Specific condition
(same training point) but no significant differences between meth-
ods have been found when testing in out-of-training points (Gen-



Table 2
Online performance obtained by one subject in the four experimental conditions.

Method Condition RMSE N½ � R2 IAE deg½ �

MVLR Specific 3.58 0.77 22.05
MVLR General 3.30 0.79 16.54
PRS Specific 5.70 0.61 18.36
PRS General 7.34 0.57 29.66
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eral condition). The authors thus hypothesize that the possibility to
build a functional low-dimensional myoelectric controller, exploit-
ing muscle synergies, strongly depends on the availability or not of
a wide training set. In fact, as reflected in Fig. 3, having many train-
ing points spread across the upper-limb workspace, inevitably
leads to better performances when using a point-specific algorithm
without the reduction of the muscle space than when grouping
muscles through synergies. Then, the results of this study have
demonstrated that, when the training points are limited, the use
of synergies-based approach leads to similar myo-control perfor-
mance than using the whole set of muscles.

Among the proposed synergy-based algorithms, the ‘‘Pose
Related” approach outperforms the ‘‘Pose Shared” one in all the
points and conditions. Looking at the synergies force fields (see
Fig. 4), although the PSS and PRS patterns share the same structure,
for the PSS, the interpolation output appears more regular. This
could be due to the fact that the ‘‘Pose Shared” synergies extraction
took into account the overall variations of muscles activations in
the whole training set. The ‘‘Pose Related” synergies may instead
capture those point-specific features of electromyographical sig-
nals that eventually have led to a better force reconstruction.

The obtained results also demonstrated that a limited training
set could be sufficient in order to obtain a model with good gener-
alization capabilities outside the trained upper-limb configuration.
This fact is of particular importance for real myocontrol applica-
tion, since decreasing the time required to train the system is
desirable in all human-interface systems and especially crucial in
rehabilitation scenarios, where a shorter training phase results in
more time for the effective therapy. Moreover, the application of
muscle synergies has gained particular attention in the robot-
assisted rehabilitative setting [11], in which they can provide the
basis for developing and promoting targeted therapies for reinforc-
ing neural plasticity: the customization of therapies, such that the
abnormal muscles synergies can be detected and treated in favor of
restoring the physiological structure and recruitment, is still an
ongoing open challenge [10,27,18]. However, even though the
use of synergies appears to be a promising solution, further inves-
tigations are needed especially in terms of real time applications.

The aim of the preliminary online experiment was to test the
feasibility of the proposed approach in a real-time application
and make a direct comparison between offline and online perfor-
mances. Looking at the example trajectories (see Fig. 5), it can be
noted that using MVLR in the General condition has led to a myo-
electric control with performance comparable to the state-of-art.
The methods used in this phase were the MVLR and PRS, the ones
with the best performance according to the offline outcome.
Observing Table 2, it can be noted that, while the RMSE differs
between offline and online performances in the point E, the IAE
does not. This means that the direction of the force is detected in
the same way but the amplitude needs a custom adjustment. How-
ever, a deeper online testing is needed since only one subject has
tried it. Moreover, being the online phase a feasibility test, no accu-
rate analysis on the best online input signal filtering has been con-
ducted. One well-known problem in myo-control applications
concerns the delay between the user input and the control signal,
that requires a dedicated study on the best trade-off between the
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amount of noise in the output and the delay that results from
the filtering. In this preliminary study, the signal processing fol-
lowed standard operations in the state-of-art, within similar con-
texts (i.e. myo-control).

Regarding the EMG-to-force mapping, the linear regressor has
been selected as the last stage of the force estimation process. In
fact, in the last years, efforts have been also put in investigating
whether more complex regressor models (such as non-linear ker-
nel ridge regressor, KRR), could overcome the most commonly
used linear approach. Hahne et al. [16] systematically compared
linear and non-linear regression techniques for a simultaneous
and proportional myoelectric control of 2-DOF wrist movements.
In their offline evaluation they have found that the non-linear
methods outperformed the linear one. Similarly, Krasoulis et al.
[21], in the context of fingers myo-control, showed in an offline
analysis a superior performance in predicting trained finger move-
ments with the non-linear KRR over the linear ridge regression.
However, they also reported that, when generalizing to novel
movements, the performance of the two regressors types were
comparable. It is important to note that all these studies were per-
formed offline, and, as it has been demonstrated by Jiang et al. [20],
these findings do not necessarily mean that real-time performance
will be effectively different. In fact, the quality of an online myo-
electric control depends more on the continuous interaction and
adaptation of the user with the myoelectric controller rather than
on the high accuracy in the offline mapping between actual and
estimated force. In conclusion this work sets the stage for a poten-
tially functional synergies-based myo-control and opens the doors
to future analysis on more complete real-time performance tests,
trying to include also a true man-in-the-loop experiment with a
robotic-assistive device.
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