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Abstract—Choosing a good grasp is fundamental for accomplish-
ing robotic grasping and manipulation tasks. Typically, the grasp
synthesis is addressed separately from the planning phase, which
can lead to failures during the execution of the task. In addition,
most of the current grasping approaches privilege stability met-
rics, providing unsuitable grasps for executing subsequent tasks.
The proposed work presents a framework for high-level reasoning
to select the best-suited grasp depending on the task. The best
grasp is chosen among a set of grasp candidates by solving an
optimization problem, considering the environmental constraints,
and guaranteeing the end-state comfort and the confidence effects
for the task, similar to human behavior. The framework leverages
Generalized Bender Decomposition to decouple the main non-linear
optimization problem into sub-problems, thus presenting a modu-
lar structure. The method is validated with an experimental cam-
paign using three different state-of-the-art grasping algorithms and
three low-level motion planners in three different types of tasks:
pick-and-place in a constrained environment, handover/tool-use,
and object re-orientation. The experiments show that the proposed
approach is able to find the best grasp, or at least one feasible,
among the provided candidates for each task.

Index Terms—Grasping, manipulation planning, task and
motion planning.

I. INTRODUCTION

S INCE the first years of life, human children learn by ex-
perience how to grasp objects of different shapes and in

different scenarios. Thanks to that, for adult human beings,
pick-and-place becomes a mechanical movement, and it is quite
easy to understand how to grab an object never seen before
thanks to their baggage of experience [1]. Psychologists have
demonstrated that humans are driven primarily by safety and
comfort considerations when moving in constrained environ-
ments [2]. The two principal metrics considered are the end-state
comfort effect [3] and the clearance from obstacles during the
motion [4], [5], which hereafter is referred to as confidence
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Fig. 1. Top-ranked grasps according to quality metrics are not always suited
to task-oriented grasping tasks in constrained environments. The proposed
approach still leveraging the same grasp synthesis method enables it to task-
oriented setting with high-level reasoning.

effect. The end-state comfort effect is a well-known phe-
nomenon that involves choosing an initial configuration that is
apparently unusual for grasping the object per se but maximizes
the comfort of the final pose. For example, waiters grab inverted
glasses to be filled with water holding each upside-down glass
with an unusual thumb-down grasp rather than a more usual
thump-up grasp to increase the comfort of the final posture. In
addition, obstacles on the direct path toward the goal position
influence human behavior during task execution [4]. Indeed,
humans tend to maintain a safe distance from obstacles on their
path, even if that means following longer routes to reach the des-
tination (confidence effect) [4]. Recently, both hypotheses have
been consolidated by demonstrating that humans usually choose
overall comfort - manipulability and distance from obstacles -
preferring longer but safer and more comfortable trajectories in
the presence of obstacles [2]. In the recent literature, the problem
of grasping objects is typically faced through a hierarchical
approach that involves two distinct phases: the grasp synthesis
and the task execution. The grasp synthesis often provides one
or multiple grasp candidates ranked by some quality metrics [6],
[7] or heuristics, either with classical [8] and data-driven tech-
niques [9], [10], [11], that are sent afterward to the low-level
planner to be executed. Since there is no flow of information
between the high-level grasp strategy and the low-level planner,
it could happen that the selected grasp is not suitable, and
a different grasp should be tested, increasing the cycle time.
Additionally, not all stable grasps are suitable for the subsequent
manipulation tasks since they do not consider the comfort and
the safeness of the task execution. Handing a screwdriver to
a human collaborator implies grasping the metallic part of the
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screwdriver close to the sharp tip, which is not a good location
in terms of stability or for using the screwdriver as a tool to
tighten a screw. In recent years, some novel approaches have
emerged that provide suitable grasping for tool use or handover
in human-robot [12], [13] collaboration scenarios. However,
these methods can still be seen as grasp-synthesis techniques
and are limited to a few tasks and scenarios.

The proposed work presents a framework that, starting from
a set of grasp candidates provided by any off-the-shelf grasp
synthesis approaches and given the desired pose of the item
to be manipulated for the specific task, selects the best-suited
grasp by solving an optimization problem taking into account the
end-state comfort and confidence effects (fig. 1). The framework
is general as it can be used with any grasping methods and
low-level motion planners exploiting the novel shortcoming in
the field and can also be applied to multiple tasks not lim-
ited to handover and tool use only having the desired pose of
the target object, which is not uncommon in many industrial
scenarios. The grasping synthesis method and the low-level
motion planner can be chosen to satisfy the user’s needs. In
particular, the only requirement for the planner is to consider
the distance between the robot and the obstacles in the scene
in the computation, thus satisfying the end-state comfort and
confidence effects. The proposed approach provides a general
formulation and an example of implementation to embed these
aspects into high-level reasoning. The method is validated with
an experimental campaign using three different state-of-the-art
grasping algorithms and three low-level motion planners in three
different tasks: pick-and-place of objects in a constrained en-
vironment, object tool-use/handover, and object re-orientation.
The experiments show that using the grasp with the highest score
provided by the grasping methods is barely ever the best for
accomplishing the tasks or is even feasible to be executed by
the motion planner. In contrast, the proposed framework tends
to find from the grasp candidate set the most suitable one for
executing the task, provided that the low-level planner is able
to compute a feasible path within the obstacles in the scene.
The guarantees on the low-level motion planner depend on the
chosen algorithm.

The following list summarizes the contributions of the pro-
posed work:
� a high-level reasoning framework that can enable any

grasping method to task-oriented grasping;
� considering the end-state comfort and confidence effects

into the computation; and
� an optimal inverse kinematic solver for redundant robots

that exploits null space control actions.
The remainder of the work is organized as follows: Section II

introduces the works related to the field under discussion; Sec-
tion III formally describes the proposed framework; Section IV
presents the experimental setups, the validation procedures, and
discusses the results; Section V concludes the letter.

II. RELATED WORKS

The problem of task-oriented grasping is relevant to the
industry. The new concept of flexibility and human-robot
collaboration introduced by Industry 4.0 implies that robots are
not meant any more to repeat the same exact pre-programmed

movement but have to demonstrate the ability to adapt to the
changing and unpredictability of the environment. In many
industrial tasks, robots have to grasp an object to place it in
a specific pose [14], use it in a subsequent task [12], grasp the
target to re-orient it [15], or even to help a human operator [13].
However, such solutions are restricted to that given task and
are not versatile or easily adaptable to other situations, different
from the proposed method.

Humans select grasps to satisfy three main constraints: hands,
object, and task-based constraints [16]. Task requirements may
need a less optimal grasp in terms of stability in favor of
a higher ability to manipulate the object. The two principal
metrics considered by humans are the end-state comfort ef-
fect [3] and the clearance from obstacles during the motion [4].
Many recent approaches typically perform grasp synthesis and
planning separately [17]. The trend is to approach a target and
execute the grasp without considering what should be done
once the object is picked. However, by knowing the manipu-
lation trajectory, it can be exploited to impose checks on the
kinematic feasibility of grasps at the start and end poses and
considerably reduce the grasp space. In addition, given a desired
post-grasp trajectory of the object, different choices of grasp
will often determine whether or not collision-free post-grasp
motions of the arm can be found, which will deliver that
trajectory.

Methods developed to use task-specific constraints and re-
gions suitable for grasping an object for a given task learn
these regions from simulation trials, large numbers of labeled
images [18], or as abstract functions [19] that define task-specific
structures. Recently, some approaches have focused on the tasks
of handover and tool use, but they can still be considered grasp
synthesis techniques [20] as they do not connect the high-level
grasp with the low-level planner.

More recently, a few novel solutions specifically developed
for general task-oriented grasping try to exploit scene com-
prehension. The most promising ones propose approaches that
leverage deep neural networks and affordances theory [21],
sometimes even exploiting LLMs (Large Language Models) to
generalize the results to unknown tasks [22], to generate the best
grasp candidate according to the required task. However, even
if these recent approaches take into account the environment
to avoid collisions during the grasping phase, none of them
consider the path and final pose as constraints, and the task
itself often ends with the grasping action without planning.
Additionally, they cannot handle generic pick-and-place tasks
and cannot manage objects that do not present functional parts
and do not appear in the dataset the network has been trained on
for that task.

Therefore, the idea is to enable some less recent grasping
strategies [9], [10], [11] based on geometric considerations for
pick-and-place tasks to the task-oriented setting. This work
demonstrates that the best grasp according to traditional quality
metrics used by most grasping strategies is not always feasible
to accomplish the task and is also not optimal.

III. PROPOSED APPROACH

The proposed task-oriented grasping pipeline (Fig. 2) takes
as input the set of grasp candidates from an off-the-shelf grasp
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Fig. 2. Schematic overview of the proposed task-oriented grasp pipeline. The framework takes as input a set of grasp candidates provided by any grasp synthesis
method, the task to be executed as the desired pose of the target object, and the environmental constraints for collision-free path planning. The set of grasp
candidates is first evaluated to filter out unfeasible configurations that do not allow achieving the desired object pose by knowing the environmental constraints and
the kinematics of the robot. For the grasps suitable for the task, a trajectory is computed, and those grasps for which a collision-free trajectory does not exist are
discarded. The remaining grasps are scored using the optimization problem in (7), and the best grasp, along with a collision-free trajectory, is returned.

synthesis algorithm, the task to be executed as the desired pose of
the target object, and the environmental constraints. Therefore,
the pose of the object, the obstacles, and task constraints can
be assumed to be known in the inertial frame without limiting
the usability of the framework since the poses can be easily esti-
mated by existing approaches (like [23]). Grasps are represented
as a set of frames with translation and rotation expressed with
respect to the inertial frame. The task has to be executed in a
single movement thus, re-grasping and object re-orientation are
not allowed. In addition, whether re-picking had been allowed,
every grasp in the set could have been feasible as the object could
have been re-oriented to achieve the desired pose, increasing
execution time and control complexity. Therefore, once the
object has been picked using a certain grasp, the transformation
between the end effector frame and the object frame is fixed until
the object is placed.

The proposed method assigns a cost to each grasp that indi-
cates how suitable the grasp is to perform the task (end-state
comfort + confidence effects), considering the object attached to
the end-effector in the way it has been grasped. The costs are
obtained by solving a set of Non-Linear Optimization Problems
(NLOPs) in which the choice of the specific grasp represents
the boundary conditions, each returning the optimal path P ∗ =
{q∗0, . . . , q∗N} to achieve the task, where q∗i is the optimal arm
configuration of the i-th waypoint of the path and N is arbitrary.
Every NLOP in the set can be expressed as:

min
Q

C(Q)

s.t. FK(q0) = EEpick

FK(qN ) = EEplace (1)

where Q = {q0, . . . , qN} is the set of configurations to be
optimized, C(·) is an arbitrary nonlinear convex cost func-
tion, FK(·) is the forward kinematic of the robotic arm, and
EEpick/place ∈ SE(3) is the pick/place end-effector pose re-
quired for grasping, which is fixed.

Fig. 3. Flowchart of the optimization process.

By splitting the set of optimization variables Q into two
subsets y = {q0, qN}, x = {q1, . . . , qN−1}, and exploiting the
Generalized Benders Decomposition [24], problem (1) can be
written as two sub-problems:

min
y

C0(y) + v(y) [Master ] (2a)

v(ȳ) = min
x

Ct(ȳ, x) [Primal ]

s.t. FK(ȳ) = [EEpick, EEplace] (2b)

where ȳ is arbitrary and fixed in the primal sub-problem (2b), and
the constraints are the same as problem (1), written in compact
form. The functions C0 and Ct are both nonlinear convex cost
functions.

In the literature, this particular category of NLOPs is typically
solved by an iterative procedure in which the two sub-problems
are solved repeatedly until convergence is achieved: primal
problem is solved first, starting with an initial guess of the fixed
variables in the subset ȳ and then, whether a feasible solution is
obtained, the procedure switches to the master problem, and so
on.

In contrast, this work follows a different strategy to solve the
optimization problem. The approach is to evaluate the optimal
pick and place configurations ȳ∗ that minimize the first term of
the Master problem (2a). Subsequently, the Primal problem is
solved by initializing it with the optimal value ȳ∗. If a solution for
the Primal problem can be found, solving the Master problem is
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straightforward, as the sub-problems are decoupled and similar
convex functions are used during optimization. This way of
proceeding helps to prematurely exit the optimization problem
if no solution for the optimal pick and place configuration can
be found, indicating that the robotic arm is unable to place the
end-effector in the desired pick/place pose. The whole procedure
with premature exits is displayed as a flowchart in Fig. 3.

Therefore, in this work, the decomposed problem (2) is
interpreted as a one-shot two-step procedure that returns the
optimal path to perform the required task using a specific grasp,
which involves solving two decoupled optimization problems:
first finding the best pick and place configuration (end-state
comfort effect), and then finding the best path that connects these
two configurations guaranteeing a safe distance to the obstacles
in the scene (confidence effect). The following subsection first
introduces the principal paradigm for the cost functions that
the low-level planners have to embed for being applied within
this framework, then gives more details on the sub-problems
implementations.

A. Cost Function Formulation

An appropriate convex nonlinear cost function based on the
distance between the robotic arm having the target attached to the
end-effector and the obstacles in the scene needs to be employed
in both the optimization sub-problems (see box A and B in Fig. 3)
to respect the end-state comfort and the confidence effect. In
general, the convex cost function can be expressed as:

C(q) = C( d(R(q),O), η(q)) (3)

where d(R,O) is a generic term that takes into account the
distance between the robot R and the set of obstacles O in the
scene, and η is an optional term that could consider other aspects
like the smoothness of the trajectory, joint velocities or any other,
depending on the user needs. Indeed, many individuals account
for secondary metrics (η(q)) with different extents in addition to
the end-state comfort and confidence effect [4]. This also allows
the proposed framework to be flexible to work with multiple
optimizers and planners, returning the best path by considering
the distance from obstacles and other relevant metrics.

We propose in the following an example of implementation
for the cost function that has been designed to be as general as
possible to meet the level of abstraction of a generic planning
scene, which can be composed of multiple entities. The obstacles
and the robot are modeled as volumetric shapes that can be
composed of discrete parts: the robot can be composed of several
links and some obstacles decomposed into simpler shapes. Given
an arbitrary pair of elements in the scenario, named A and B,
formed by n and m parts, respectively (Fig. 4), the matrix of
distances between every part of A and B can be written as:

D(A,B) =

⎡
⎢⎢⎣
d(a1, b1) . . . d(an, b1)

...
. . .

...

d(a1, bm) . . . d(an, bm)

⎤
⎥⎥⎦ ∈ Rn×m (4)

Minimizing (4) along the rows yields the column vector of
minimum distances between each part of A and the element B,

Fig. 4. Sketch example for the distance matrix computation. The dotted lines
represent the distances between the robotic arm (composed of several links
a1, . . . , a5) and the object B (formed by two parts b1 and b2, for generality).

shown in (5):

Dmin(A,B) =

⎡
⎢⎢⎣
dmin(a1, B)

...

dmin(an, B)

⎤
⎥⎥⎦ ∈ Rn×1 (5)

Finally, the cost component for the generic pair (A,B) can be
expressed as:

C(A,B) =

n∑
i=1

1

dmin(ai, B)2 + δ
(6)

where the squared reciprocal of distances weighs less the large
distances, not affecting much the total cost. The introduction of
the machine precision δ avoids division by zero in case of contact
and also preserves the convexity of the function. In addition, to
prevent the optimal problem from converging on configurations
in which one link of the robot goes much closer to an obstacle
than all the others, a minimum safety distance is used to penalize
such configurations. The radius of the safety spheres ρ can be
set as a hyperparameter depending on the user requirement and
has been put equal to 2.5 cm for the experimental campaign. The
total cost associated with each robot configuration is obtained
by summing multiple terms similar to (6), weighing the distance
between the robotic arm and each obstacle in the scene:

C(q) =
∑
o∈O

C(R, o)

=

{∑
o∈O

∑
l∈R

1
dmin(l,o)2+δ , if dmin(l, o) ≥ ρ

∞, otherwise
(7)

where R is the robot composed by a set of links l and O is the
set of obstacles o.

B. Optimal Pick/Place Confs. Sub-Problem

The framework is meant for redundant manipulators thus, the
optimal arm configuration for the pick and place pose (box A
in Fig. 3) can be found by solving an optimization problem
iteratively through the exploration of the null space of the end
effector. Therefore, the optimization problem is tackled as shown
in (8): it starts from a configuration obtained through inverse
kinematics, constraining the end effector pose to be the one
required for pick or place, and then the state vector is varied
with control actions in the null-space of the positioning task of
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the end effector, perturbing the robot configuration with a fixed
amount at each iteration.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

q0 = IK(ITEE,des) −→ C(q0)

q1 = q0 +Δq0 −→ C(q1)
... until qi � q0

qk = qk−1 +Δqk−1 −→ C(qk)
...

C(q∗) = min(C(q0), C(q1), . . . , C(qk), . . . ) (8)

where q is a configuration of the robot R, q∗ represents the config-
uration that minimizes the cost, and Δq is the discrete increment
in the null space direction that is added to the configuration at
each iteration of the process. The initial configuration is obtained
by solving the inverse kinematic at the desired pose of the end
effector. The procedure terminates when the configuration at a
given iteration i is similar to the initial one, and the update step
depends on the control action in the null space as follows:

Δqk−1 = (I − J+
k−1Jk−1)v (9)

where J+ is the right pseudo-inverse of the jacobian evaluated at
the corresponding step, v ∈ Rr×1 is a gain vector that determines
the amount of perturbation at each iteration of the process and
r represents the number of joints of the manipulator. In this
way, the optimization problem in (8) aims to find the best arm
configuration among the solutions of the inverse kinematic of
the end effector (end-state comfort effect).

C. Optimal Path b/w Optimal Pick/Place Confs. Sub-Problem

Once the optimal boundary configurations are generated, the
Primal (planning) problem (box B in Fig. 3) can be solved using
an optimal planner, either distance-based or embedded with the
custom cost (7) to reflect the confidence effect. Therefore, any
low-level motion planner implementing a cost function that can
be expressed as (3) can be used. This modularity and flexibility
of the framework derive from the main intuition of the proposed
approach, which is connecting the high-level grasp synthesis
method to the low-level motion planner through a distance-based
cost. This connection enables including path and target position
constraints into the grasp decision and represents the high-level
reasoning process demanded by complex arbitrary tasks.

It is worth noticing that some considerations about the com-
pleteness and optimality properties of the overall framework,
which is a combination of two algorithms, can be made. The
completeness and the optimality of the null-space iterative
search procedure are guaranteed since it is an optimal brute-force
approach that can fully explore the space of solutions with the
norm of step Δq going to 0. Therefore, the framework inherits
the properties of the embedded low-level planner.

IV. EXPERIMENTAL VALIDATION AND DISCUSSION

The proposed framework has been tested on three different
types of tasks: two pick-and-place tasks in constrained static
environments in which a target object has to be grasped and
placed in a desired pose inside a container, avoiding obstacles

Fig. 5. Simulated scenario (left) resembling the real one (right). The object to
be manipulated is the violet cross-shaped item that has to be moved inside the
blue container in the orange pose, avoiding collision with the yellow obstacles
and the container itself.

along the path; a handover/tool-use task where the robot has to
understand where to grasp a screwdriver or a hammer depending
if the tool has to be used or passed to a human operator; and an
object re-orientation task where the target needs to be picked
and placed with a different orientation. The framework has been
developed in ROS Noetic and tested first in simulation using
Gazebo and then in the real world on the Franka Emika Panda
robot equipped with a Realsense D435 camera.

The procedure involves performing the required task using
the best grasp selected by the proposed framework and a naif
approach - just employing the top-scoring grasp outputted by the
selected grasp synthesis methods, i.e., the works presented in [9],
[10], [11] that are task-agnostic methods that generate grasp
candidate without considering the subsequent task. The baseline
algorithms are not adversarial methods but serve as proof of
the effectiveness of the framework, showing that the proposed
methodology can enable task-agnostic grasping algorithms into
task-oriented ones where choosing a good grasp is mandatory for
the execution of the task. The inverse kinematic of the manipu-
lator is obtained using the Trac-IK algorithm [25]. After finding
the optimal grasping and placing robot configuration with the
problem formulated in (8), the planning is performed through
three different low-level motion planners: RRTConnect∗ from
OMPL [26], which is a sample-based planner, endowed with the
proposed functional cost (7) to respect the requirement of the
presented framework, CHOMP [27], and TrajOpt [28] which
are two optimal planners that embed convex cost functions,
and in addition, RRTConnect with CHOMP as post-processing
adapter step. The experiments have been executed in a docker
machine with Ubuntu 20.04 LTS running ROS-Noetic on a
laptop intel-core i7 (11th gen) with 16 GB of RAM and NVIDIA
MX450 graphic card with 2 GB of vRAM.

Finally, since the properties of the overall framework are
inherited from the low-level planner, using optimal sample-
based planners, like RRTConnect∗, enables the pipeline to be
probabilistically complete and optimal, ensuring that a feasible
solution does not exist if the pipeline cannot find it in an
unlimited amount of time. The same way of reasoning applies
to CHOMP and TrajOpt.

A. Pick-and-Place in Constrained Environment

The scenario consists of a target object that has an asymmetric
shape, which can be placed anywhere on the working table, two
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TABLE I
RESULTS OF THE STATISTICAL ANALYSIS (SIMULATION) ON THE

PICK-AND-PLACE TASK IN CONSTRAINED ENVIRONMENT

obstacles that hinder the trajectory from the picking configura-
tions to the placing configuration, and a box container in which
the target object has to be placed in a precise pose having wall
constraints. Fig. 5 shows the scenario realized in Gazebo and
in the real world. The use of the asymmetric object is meant to
stress the fact that only some grasps are suitable to accomplish
the task. In addition, the generalizability of the framework is not
limited to objects presenting such a similar shape since the grasp
set is provided by off-the-shelf grasp synthesis algorithms.

Several experiments have been done comparing the results
obtained using the grasping configuration selected through the
presented optimization problem in the case of the proposed
framework and as the top-scoring grasp for the other three grasp
synthesis methods with different low-level motion planning
algorithms (RRTConnect∗, CHOMP, and TrajOpt). During the
experiments, the pose of the target object is varied at each
run, keeping the same pose for each method to guarantee a
fair comparison. In particular, the object has been placed into
five different positions rotating by steps of 45 degrees in each
position until a complete rotation is reached for a total of 40
trials per method. Each baseline has been configured to provide
10 grasp candidates, and each run consists of comparing the
result of the best grasp candidate selected by the baseline and
the best grasp chosen by the proposed framework using the set
of grasps given by the baseline to vary the low-level motion
planner.

It has been noticed that if the proposed method fails to
complete the task it is due to the fact that the baseline does
not provide any feasible grasp of the set of candidates or that
the low-level motion planner does not find a feasible path (in
case of TrajOpt, which is not able to plan in tight constrained
environments). When this behavior occurs, i.e., if neither the
proposed procedure nor the baseline can accomplish the task,
the whole run is repeated, up to a maximum number of ten
times equal. After the 10th attempt without any success, the next
object pose is considered by registering a failure. Table I reports
the results of the statistical analysis giving a comparison of the
grasping success rate and then a breakdown of some detail of

Fig. 6. Some examples of grasp candidates generated by the three base-
lines [9], [10], [11] during tests. The first two columns compare the whole set of
grasp candidates and the best grasp, i.e., the one with the highest score obtained
in a run, where the proposed procedure registers a success and the compared
baseline failed. The third column presents the grasp sets obtained in cases both
procedures have failed.

the procedure providing the failure rate ascribable to the absence
of a feasible grasp in the set of the grasp candidate (Pick/Place
confs failure rate column) and to the low-level planner (Planning
failure rate column), and the time required to accomplish the
whole task and computing the trajectory for connecting the
pick and the place configurations. It is worth noticing that the
task completion time is averaged on the number of experiments
accounting for the total number of grasps in the grasp candidates
set (N = 10). Instead, the planning time is averaged only on
the experiments in which the planning can actually take place
as there are valid pick-and-place configurations. The average
time required by our framework to determine a pick or place
configuration is 0.75 s, while [9], [11], and [10] require on
average 4.36, 1.31, and 1.91 s, respectively. Such experiments
demonstrated how the grasp with the highest score returned by
the baselines is rarely the best grasp to use to execute the task
in a constrained scenario, getting even no success for [11]. On
the contrary, the proposed procedure manages to find a feasible
grasp in most cases. Some examples of the grasp candidates
generated by baseline algorithms during the tests are shown in
Fig. 6.

B. Handhover/Tool-Use

The scenario consists of an object (a screwdriver or a hammer)
placed on the working table without environmental constraints.
The robot should understand where it is better to grasp the
tool to use it or to give it to the human operator. Fig. 7 shows
graphically the setup, where the green box region represents the
human-robot collaboration sharing area. Exploiting the same
three baselines used in the previous scenario, the proposed
framework can determine the best grasp to discriminate between
the tool use or the handover depending on the presence of
the human operator in the scene represented as an obstacle
for the pipeline. Ten runs have been executed with the three
baselines, also varying the low-level motion planner, comparing
each approach with the presented method mimicking the tool
use or the handover. Table II summarizes the obtained results.
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Fig. 7. First two: example of a tool use task with a screwdriver tightening a
screw (left) and with a hummer humming a nail (right). Second two: example
of handover in a human-robot collaboration scenario where the robot gives the
tool (the screwdriver on the left and the hammer on the right) to the operator in
the green area demanded to the interaction.

TABLE II
RESULTS OF THE STATISTICAL ANALYSIS (SIMULATION) ON THE

TOOL-USE/HANDOVER WITH SCREWDRIVER AND HAMMER

In this case, a breakdown is not provided since the choice of the
low-level motion planners does not affect much the performance
of the overall task since the environment is not as complex as the
previous one, and the grasp selection and planning times reflect
the outcomes presented in the previous experiments.

Depending on the geometry of the object, the three baselines
work well for one of the two tasks. For example, GQ-CNN [10]
can quite successfully perform the tool-use with the hammer
but not with the screwdriver at all, and, on the contrary, perform
quite well in the handover with the screwdriver and poorly with
the hammer. The same reasoning can be applied to the other
two baseline methods because, in general, neural network-based
approaches are biased by the dataset on which they have been
trained. In addition, the grasp candidates are mostly concentrated
in some regions of the object and not distributed on all its
surfaces, limiting in some circumstances the proposed approach,
like in the case of tool-use with a screwdriver using GPD [9].
However, the proposed solution can accomplish both tasks re-
markably, highlighting the versatility of the method. For the sake
of simplicity, the action of tightening a screw or hammering
a nail has not to be performed since it is out of the scope of
the presented work and would have required implementing a
sequence of actions to complete the task that are only technical.
However, the results consider if such an action could have been
executed with the given grasp, no matter the required time.

C. Real World Experiments

1) Pick-and-Place Tasks: The same pick-and-place experi-
ments run in simulation have been performed on the real robot
in the world, using a setup similar to the virtual one. We selected
RRTConnect∗ endowed with the proposed functional cost as the
low-level motion planner since it provided the best performance
in simulation on average.

In addition, a more daily life task, i.e., picking a book and
placing it on a shelf has been performed using a box in place
of the book. It is worth noticing that the box has been selected
on purpose such that only grasps on one side were suitable to
complete the task of inserting the box into the shelf. If the naif
approaches selected the proper side randomly (depending on
their scoring criteria), the proposed method could always choose
the correct one.

2) Object Re-Orientation: To further highlight the flexibility
of the proposed method, an object re-orientation task in which a
mug has to be stored in a cupboard has been executed. The same
shelf has been used in place of the cupboard for practical reasons.
Similarly to the other cases, the naif approaches barely ever
choose a correct grasping configuration that allows storing the
mug on the shelf in the desired pose, in contrast to our approach.

The results obtained during the real experiments reflect the
outcome of the statistical analysis. Figs. 1 and 8 show a few
runs.

V. CONCLUSION

Grasping is a long-studied field in robotics. Many works
have focused on how to grasp an object to maximize stability.
However, such grasps may not be suitable to accomplish the
subsequent task after the grasping, and the high-level grasping
algorithm often does not communicate with the low-level path
planner that takes into account the environmental constraints of
the scene. Humans have this high-level reasoning ability and
often prioritize end-state comfort and confidence effects over
stability during manipulation tasks. Based on this insight, the
proposed work presents a general framework for task-oriented
grasp planning based on an optimization problem. The frame-
work is general and can be used in different scenarios as it is
agnostic to the identity of the objects exploiting the grasping can-
didates set provided by off-the-shelf grasp synthesis methods.
The purpose of the framework is not to generate grasp candidates
but to connect the high-level grasping with the low-level planner
through a grasp score, taking into account the environmental
constraints and the task to be executed. Compared to recent
approaches, the presented framework is not limited to tool use
or handover tasks but can interface with other tasks.

The framework has been validated in three different tasks and
compared with naif baselines grasp algorithms using diverse
low-level motion planners. The experimental campaign high-
lighted the inadequacy of traditional grasping algorithms that
do not take into account the subsequent task to be accomplished
in highly constrained environments.

The limitation of the proposed method is that the success of
the task is constrained to the existence of at least a feasible grasp
in the set of candidates provided by the grasp synthesis method
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Fig. 8. Example of a run in the real world. Left: pick the crossed-shaped object and place it inside the box. Right: store a mug in a cupboard.

and to the ability of the low-level planner to find a collision-free
trajectory, which is not trivial in tightly constrained environ-
ments. Future work will involve including more proper grasp
synthesis algorithms and improving the planners’ performance,
as well as reducing the planning time. However, the pipeline
is modular, and the new shortcomings in the two fields can be
applied.

REFERENCES

[1] J. Konczak, M. Borutta, H. Topka, and J. Dichgans, “The development
of goal-directed reaching in infants: Hand trajectory formation and joint
torque control,” Exp. Brain Res., vol. 106, no. 1, pp. 156–168, 1995.

[2] F. Iwane, A. Billard, and J. d. R. Millán, “Inferring individual evalua-
tion criteria for reaching trajectories with obstacle avoidance from EEG
signals,” Sci. Rep., vol. 13, no. 1, 2023, Art. no. 20163.

[3] C. J. Coelho, B. E. Studenka, and D. A. Rosenbaum, “End-state comfort
trumps handedness in object manipulation,” J. Exp. Psychol.: Hum. Percep.
Perform., vol. 40, no. 2, 2014, Art. no. 718.

[4] I. T. Garzorz, A. G. Knorr, R. Gilster, and H. Deubel, “The influence of
obstacles on grasp planning,” Exp. Brain Res., vol. 236, pp. 2639–2648,
2018.

[5] M. Mon-Williams, J. R. Tresilian, V. L. Coppard, and R. G. Carson, “The
effect of obstacle position on reach-to-grasp movements,” Exp. Brain Res.,
vol. 137, pp. 497–501, 2001.

[6] C. Ferrari and J. F. Canny, “Planning optimal grasps,” in Proc. IEEE Int.
Conf. Robot. Automat., 1992, vol. 3, pp. 2290–2295.

[7] Z. Li and S. S. Sastry, “Task-oriented optimal grasping by multifingered
robot hands,” IEEE J. Robot. Autom., vol. 4, no. 1, pp. 32–44, Feb. 1988.

[8] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis—A survey,” IEEE Trans. Robot., vol. 30, no. 2, pp. 289–309,
Apr. 2014, doi: 10.1109/TRO.2013.2289018.

[9] A. Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp pose detection in
point clouds,” Int. J. Robot. Res., vol. 36, no. 13/14, pp. 1455–1473, 2017.

[10] J. Mahler et al., “Learning ambidextrous robot grasping policies,” Sci.
Robot., vol. 4, no. 26, 2019, Art. no. eaau4984.

[11] H.-S. Fang, C. Wang, M. Gou, and C. Lu, “GraspNet-1billion: A large-
scale benchmark for general object grasping,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 11444–11453.

[12] M. Sun and Y. Gao, “GATER: Learning grasp-action-target embeddings
and relations for task-specific grasping,” IEEE Robot. Automat. Lett.,
vol. 7, no. 1, pp. 618–625, Jan. 2022.

[13] V. Ortenzi, A. Cosgun, T. Pardi, W. P. Chan, E. Croft, and D. Kulić, “Object
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