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Abstract 

Background Juvenile sudden cardiac death (SCD) remains unexplained in approximately 40% of cases, leading 
to a significant emotional burden for the victims’ families and society. Comprehensive investigations are essential 
to uncover its elusive causes and enable cascade family screening. This study aimed to enhance the identification 
of likely causative variants in juvenile SCD cases (age ≤ 50 years), particularly when autopsy findings are inconclusive.

Results Autopsy revealed diagnostic structural abnormalities in 46%, non-diagnostic findings in 23%, and structur-
ally normal hearts in 31% of cases. Whole-exome sequencing (WES), refined through a customized virtual gene panel 
was used to identify variants. These variants were then evaluated using a multidisciplinary approach and a structured 
variant prioritization scheme. Our extended approach identified likely causative variants in 69% of cases, outper-
forming the diagnostic yields of both the cardio panel and standard susceptibility gene analysis (50% and 16%, 
respectively). The extended cardio panel achieved an 80% diagnostic yield in cases with structurally normal hearts, 
demonstrating its efficacy in challenging scenarios. Notably, half of the positive cases harboured a single variant, 
while the remainder had two or more variants.

Conclusion This study highlights the efficacy of a multidisciplinary approach employing WES and a tailored virtual 
gene panel to elucidate the aetiology of juvenile SCD. The findings support the expansion of genetic testing using 
tailored gene panels and prioritization schemes as part of routine autopsy evaluations to improve the identification 
of causative variants and potentially facilitate early diagnosis in first-degree relatives.
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Background
Sudden cardiac death (SCD) represents a dramatic 
event and a significant public health concern account-
ing for 15–20% of all deaths in the general population, 
with an estimated incidence of 1.3–2.8 per 100,000 
person-years in individuals under the age of 50 [1, 2]. 
By definition, sudden natural death is presumed to be 
of cardiac cause when it  occurs within 1  h from the 
onset of symptoms in witnessed cases, and within 24 h 
from the last time the subject was seen alive when it is 
unwitnessed [1, 2].

The aetiology of SCD is still largely unknown and 
varies with age. In individuals below the age of 50, 
SCD often stems from inherited disorders that induce 
structural and/or functional abnormalities triggering 
fatal arrhythmias [3, 4]. Such disorders encompass car-
diomyopathies (CMP), heart structural abnormalities 
like hypertrophic cardiomyopathy (HCM), dilated car-
diomyopathy (DCM), and arrhythmogenic cardiomyo-
pathy (AC), and primary electrical disorders including 
Brugada syndrome (BrS), long QT syndrome (LQTS), 
short QT syndrome (SQTS), and catecholaminergic 
polymorphic ventricular tachyarrhythmias (CPVT) [4–
6]. These conditions involve various genetic and clinical 
characteristics. HCM is characterized by unexplained 
left ventricular (LV) hypertrophy, myocyte disarray, and 
fibrosis. Hypertrophic cardiomyopathy (HCM) is typi-
cally associated with mutations in sarcomere and sar-
comere-associated genes (e.g., Myosin Binding Protein 
C3  -  MYBPC3 and Myosin Heavy Chain 7 -  MYH7). 
Notably, non-sarcomere HCM and phenocopies are 
also reported, as well as digenic and polygenic risk fac-
tors [4, 5]. DCM features LV enlargement and fibrotic 
substitution, leading to systolic dysfunction and 
increased arrhythmic risk; common associated genes 
coding for cytoskeletal proteins among which  Lamin 
A/C (LMNA) and Desmin (DES) are associated with a 
particularly arrhythmogenic phenotype [4, 5]. ACM is 
characterized by fibro-fatty replacement of the myocar-
dium, usually due to genetic defects affecting cardiac 
desmosomes (e.g.,  Plakophilin-2 -  PKP2 and  Desmo-
plakin -  DSP). Primary electrical diseases increase 
the risk of ventricular arrhythmias and SCD without 
apparent structural abnormalities. These include LQTS 
(often due to mutations in Potassium Voltage-Gated 
Channel Subfamily Q Member 1 -  KCNQ1, Potas-
sium Voltage-Gated Channel Subfamily H Member 2 
-  KCNH2, or Sodium Voltage-Gated Channel Alpha 
Subunit 5 - SCN5A), SQTS (associated with potassium 
channel gene mutations), BrS (often linked to SCN5A 
mutations), and CPVT (commonly caused by Ryano-
dine Receptor 2 - RYR2 and Calsequestrin 2 - CASQ2 
mutations) [1, 3, 4]. Notably, all these cardiac disorders 

exhibit autosomal dominant pattern of inheritance with 
incomplete penetrance and variable expressivity mak-
ing genetic assessment even more complex [1, 3–5, 7]. 
Other involved disorders are represented by myocardi-
tis, congenital heart defects, including coronary artery 
anomalies and  valve diseases, and storage cardiomyo-
pathies. In the older individuals, coronary artery dis-
eases and valve diseases represents the main cause  of 
SCD [7, 8].

Autopsy plays a crucial role in identifying the cause of 
death, which is particularly relevant for risk prediction 
in family members. However, establishing a post mor-
tem diagnosis remains challenging despite standardized 
autopsy guidelines [9, 10]. In particular, differentiating 
non-diagnostic findings from pathological abnormali-
ties can be difficult, with up to 40% of SCD victims below 
the  age of  50  remaining undiagnosed   after a  compre-
hensive autopsy [7, 8, 11]. Cases are classified as unex-
plained when autopsy reveals either non-diagnostic 
structural findings or no cardiac abnormalities, a sce-
nario named sudden arrhythmic death (SAD) [1, 11, 12]. 
Notably, in 88% of autopsied SCD cases, the fatal event 
represents the first manifestation of an underlying, often 
asymptomatic and undiagnosed, life-threatening cardiac 
condition [3, 4]. Moreover, the concept of "concealed car-
diomyopathy" has recently emerged, describing poten-
tially fatal arrhythmias in inherited heart disorders that 
occur before visible structural changes. This highlights 
the complex interplay between genetic predisposition 
and phenotypic expression in SCD cases [11, 13, 14].

Consequently, a thorough investigation of young SCD 
victims is essential and post-mortem genetic testing 
may prove beneficial [12, 13, 15]. However, genetic test-
ing has been limited for decades to four major suscep-
tibility genes (KCNQ1, KCNH2, SCN5A, and RYR2), 
typically sequenced with the  Sanger method [15, 16]. 
The advent of Next Generation Sequencing (NGS) has 
slightly enhanced diagnostic accuracy. The diagnostic 
yield increases by 25–40% with NGS, when a wider spec-
trum of genes linked to cardiomyopathies or channelopa-
thies are included, analysing 40–200 genes depending on 
the method and panel used for sequencing. For instance, 
the TruSight Cardio Panel (Illumina, San Diego, Califor-
nia, U.S.) include 174 genes currently analysed for inher-
ited heart disease (https:// emea. illum ina. com/ produ cts/ 
by- type/ clini cal- resea rch- produ cts/ trusi ght- cardio. html) 
[17, 18]. Current guidelines advocate for genetic test-
ing in SCD cases with a probable genetic origin [1] but 
caution is advised against examining genes without a 
definitive link to the clinical phenotype [1]. This broader 
approach often results in the more frequent identifica-
tion of variants of unknown significance (VUS), whit 
subsequent problems in interpreting the results [19–21]. 

https://emea.illumina.com/products/by-type/clinical-research-products/trusight-cardio.html
https://emea.illumina.com/products/by-type/clinical-research-products/trusight-cardio.html
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American College of Medical Genetics (ACMG) guide-
lines for variant interpretation state that VUS are not 
clinically actionable but stress the importance of make 
an effort to reclassify VUS as either "pathogenic" or 
"benign [22]. In addition to globally standardized guide-
lines, diagnostic genetics laboratories often adopt sup-
plementary practical guidelines, especially for managing 
VUS (https:// www. acgs. uk. com/; https:// sigu. net/). These 
laboratory-specific protocols guide practice and provide 
clarifications based on user experiences.

In light of these challenges and evolving practices, 
our study hypothesizes that employing whole exome 
sequencing (WES), refined through a bespoke virtual 
gene panel and a structured scheme for prioritizing 
variants (particularly VUS), coupled with a meticulous, 
case-specific variant evaluation using a multidisciplinary 
approach, could substantially increase the diagnostic per-
formance of post-mortem genetic testing in SCD cases.

Methods
Study cohort
Our study is part of the "JUvenile Sudden cardiac deaTh: 
JUST know and treat" (JUST) project, which started in 
2016 and involved both retrospective evaluation of old 
cases and prospective evaluations of new cases of juve-
nile SCD  (age ≤ 50 years). In the former, young  indi-
viduals were scrutinized from the Forensic Medicine 
Department of University Hospital of Pisa (1995–2016), 
while in the latter also cases from the Forensic Medi-
cine Department of Lucca were included (2017–2023). 
In both cases, exclusion criteria were: non-cardiac death 
causes; ischemic heart and/or coronary disease; positive 
toxicology tests. According to forensic reports, all indi-
viduals were either completely asymptomatic or exhib-
ited only nonspecific symptoms. Report of previously 
cardiological investigations with inconclusive results was 
reported for two subjects. None of the individuals had 
been diagnosed with a specific cardiac disorder prior to 
death (Supplemental Table  1). We secured consent for 
genetic testing and research use of data from the relatives 
of the deceased. This study was conducted in agreement 
with the Helsinki Declaration and received approval from 
the Ethic Committee of the Tuscany Region, Area Vasta 
Nord-Ovest (no. 14870).

Autopsy examinations
Autopsy examinations were conducted according to the 
latest guidelines [10]. The heart and lungs were removed 
"en bloc" and the pulmonary vessels were explored. Sub-
sequently, an analysis of the right and left sections of the 
heart (atrial and ventricular) and the valve planes was 
carried out. Multiple transverse cuts at 3-mm intervals 
along the course of the main epicardial arteries, including 

branches, such as the diagonal and obtuse marginal, were 
performed to check patency. Finally, cuts were made 
along the short axis of the heart to obtain slices about 
1  cm thick. Wall thickness was then verified: the endo-
cardium was carefully inspected, and the thickness of the 
mid-cavity free wall of the left ventricle (LV), right ven-
tricle (RV), and interventricular septum (IVS) (exclud-
ing trabeculae) was measured. At the end, we compared 
the measurements against tables of normal thickness by 
age, gender, and body weight [23]. The forensic experts 
(M.D.P., D.B.) retrospectively reviewed all the reports 
of macroscopic and histopathology examinations, and 
classified the cases into three categories: “diagnostic 
structural abnormalities”, if the macroscopic and/or his-
topathological alterations fell within the diagnostic cri-
teria for a specific cardiomyopathy; “non-diagnostic 
autopsy findings”, if the macroscopic and/or histopatho-
logical alterations were subtler, such as non-diagnostic 
small areas of fibrosis, inflammation or fatty replacement; 
“structurally normal heart”, if no relevant cardiac altera-
tions were found.

DNA extraction and whole exome sequencing
For retrospective cases, formalin-fixed, paraffin-embed-
ded (FFPE) samples of the heart, kidney, or spleen were 
used. Conversely, for prospective cases, 5 to 10  mL of 
whole blood using a hypodermic syringe from either 
the femoral or inferior vena cava were collected, sub-
sequently storing it in ethylenediaminetetraacetic acid 
(EDTA). The blood was refrigerated at 2 to 8 °C for analy-
ses within 4 weeks, or frozen at −  20  °C or −  80  °C for 
later examinations.

DNA extraction from FFPE samples was performed 
using Promega’s Maxwell 16 LEV DNA FFPE Purification 
Kit (Promega, Madison, Wisconsin U.S.). In prospective 
cases, DNA extraction from whole blood was done using 
the Maxwell® 16 LEV Blood DNA Kit (Promega, Madi-
son, Wisconsin U.S.). Whole exome library preparation 
followed the manufacturer’s guidelines for the Illumina 
DNA Prep with Enrichment Kit (Illumina, San Diego, 
California, U.S.). Sequencing was conducted using Illu-
mina’s NextSeq™ 500 instrument (Illumina, San Diego, 
California, U.S.).

Bioinformatic analysis and extended cardio panel
Primary exome data analysis was executed using the 
SeqMule pipeline [24]. FastQC and FastqScreen Qual-
ity Control (QC) systems identified and rectified errors, 
trimmed low-quality reads, and removed adaptors [25]. 
The reads were aligned to the reference human genome 
(GRCh37/hg19) using BWA-MEM software (https:// 
github. com/ MGPC- Nantes/ MEM). Variant calling was 
conducted using the Genome Analysis Toolkit (GATK) 

https://www.acgs.uk.com/
https://sigu.net/
https://github.com/MGPC-Nantes/MEM
https://github.com/MGPC-Nantes/MEM
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[26], annotating only variants in genetic regions with 
a quality score ≥ 30 and a read depth ≥ 20 at the altered 
position [27]. VarAFT [28] and BaseSpace Variant Inter-
preter software (Illumina Inc., San Diego, CA, USA) were 
used to filter annotated variants, excluding those with a 
minor allele frequency (MAF) > 0.01 (1%) in GnomAD 
(http:// gnomad. broad institute.org) and including only 
missense, nonsense, frameshift, and splice site variants. 
WES data were filtered to create a virtual panel specifi-
cally constructed from selected genes associated with 
cardiac diseases to expand the possible associations with 
SCD. Genes were first selected exploiting two databases:

1. Human Phenotype Ontology (HPO): this provides a 
standardized vocabulary of phenotypic abnormali-
ties encountered in human disease. We searched for 
"Abnormal Myocardium Morphology" (HP:0001637), 
identifying 689 diseases and 565 associated genes, 
and "Abnormality of Cardiovascular System Electro-
physiology" (HP:0030956), identifying 750 diseases 
and 524 associated genes.

2. Human Protein Atlas: this integrates various omics 
technologies to map all the human proteins in cells, 
tissues and organs. We searched for “heart-specific 
proteome” and selected the 419 genes with elevated 
expression in the heart compared to other tissue 
types. We have also checked genes used in previ-
ous NGS studies (13–36), such as those included 
in TruSight Cardio Panel (Illumina) (Supplemen-
tal Table 1). The final virtual panel used to filter the 
annotated variants thus included 1304 genes (Supple-
mental Table 2).

Variant interpretation
We prioritized filtered variants based on pathogenicity 
through VarSome (https:// varso me. com) and Franklin by 
Genoox  (https:// frank lin. genoox. com), which automati-
cally classify variants according to the ACMG guidelines 
[22]. We also reconsidered the PM2 criterion, fulfilled for 
ACMG if the MAF was ≤ 0.01% (ultra-rare variants): after 
looking for a possible pathogenic variant among the rare 
variants (MAF < 1% during filtration), we evaluated the var-
iants considering, together with the other ACMG criteria, 
the frequency of the different pathologies underlying SCD 
(e.g., HCM 1:625–1:344, MAF ⁓0.2%; DCM 1:250–400, 
MAF ⁓0.2 up to 1:2000, MAF ⁓0.005%; AC and channelo-
pathies ⁓1/2000, MAF 0.005%). Splicing and frameshift 
variants’ functional impacts were further examined using 
Human Splicing Finder (https:// hsf. genom nis. com) and 
Regulation Spotter (https:// www. regul ation spott er. org/) 
[29, 30]. We have sub-classified the VUS identified from 
VCF after excluding pathogenic (P) or likely pathogenic 

(LP). VUS that met specific criteria were classified as highly 
suspicious of pathogenicity and defined as VUS/LP:

1. Each ACMG criterion describing the variant falls 
within the pathogenic criteria set. This ensures that 
we do not include variants classified as VUS by 
ACMG solely due to conflicting evidence, even if 
some criteria suggest them as benign.

2. Franklin’s aggregated prediction, which combines 
results from various prediction tools, based on latest 
recommendations for PP3/BP4 rules [25], indicates 
a high likelihood of pathogenicity. If this criterion 
was not fully met, we considered whether the vari-
ants were in a recognised hot spot and/or in a critical 
functional domain (PM1).

3. The variant resides in a gene whose functional path-
way aligns with the structural and/or functional car-
diac alterations probably responsible for the SCD in 
the cases examined.

Using these prioritization schemes, variant reported 
as VUS based only on the PM2 criterion, when all other 
evidence suggests that it is benign, were considered VUS/
likely to be benign and were not reported, in line with 
recent practical guidelines (https:// www. acgs. uk. com/; 
https:// sigu. net/). Variants reported underwent further 
scrutiny for clinically relevant information via ClinVar 
(https:// www. ncbi. nlm. nih. gov/ clinv), OMIM (https:// 
www. omim. org/), ClinGen (https:// clini calge nome. org/), 
and PubMed (https:// pubmed. ncbi. nlm. nih. gov), along 
with an evaluation of the variants’ presence in pertinent 
regions (e.g., protein functional domains, binding sites) 
via UniProt (https:// www. unipr ot. org/). Genotype asso-
ciations were determined based on OMIM and ClinGen 
for genes already recognized in association with car-
diomyopathy/channelopathies. For genes not previously 
linked, we considered whether the gene was reported in 
ClinGen as "challenged" or "limited" in association with 
the cardiac phenotype, previously published studies on 
cardiac involvement, the reported phenotype, and/or the 
pathway involved in cardiac function found on Human 
Phenotype Ontology and GeneCard (https:// genec ards. 
org/). The phenotype and/or pathway were retrieved from 
the Human Phenotype Ontology (HPO) and GeneCard 
(https:// genec ards. org/) databases. Globally, all informa-
tion on identified variants and genes were interpreted by 
a  multidisciplinary team, including geneticists,  bioinfor-
maticians, cardiologists and forensic medicine specialists.

We refer to the 4 main susceptibility genes as “Core 
genes”, the 174 genes from the TruSight Cardio Panel 
(Illumina, San Diego, California, USA) as “Cardio panel”, 
and the 1304 genes examined in this study as “Extended 
panel”.

http://gnomad.broad
https://varsome.com
https://franklin.genoox.com
https://hsf.genomnis.com
https://www.regulationspotter.org/
https://www.acgs.uk.com/
https://sigu.net/
https://www.ncbi.nlm.nih.gov/clinv
https://www.omim.org/
https://www.omim.org/
https://clinicalgenome.org/
https://pubmed.ncbi.nlm.nih.gov
https://www.uniprot.org/
https://genecards.org/
https://genecards.org/
https://genecards.org/
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Table 1 Characteristics of sudden cardiac death cases

Sample ID Gender Age Event at death Symptoms at death Weight (kg) × 
height (cm)

Heart 
weight 
(g)

Autoptic diagnosis Sample type

SCD01 M 26 Sport Syncope 85 × 175 700 HCM FFPET

SCD02 M 29 Sleep Dyspnoea 71 × 174 n/a SAD n/a

SCD03 M 22 Sport Syncope 87 × 171 365 HCM FFPET

SCD04 M 36 Light activity n/a n/a n/a SAD n/a

SCD05 M 29 Sleep None 70 × 177 340 SAD FFPET

SCD06 M 37 Rest None 63 × 172 350 SAD FFPET

SCD07 M 20 Sport Syncope n/a × 175 500 AC (RV, LV) FFPET

SCD08 M 25 Sleep None 77 × n/a 370 SAD FFPET

SCD09 F 25 n/a n/a n/a n/a Non-diagnostic autopsy findings
(MVP)

n/a

SCD10 M 21 Sport Syncope 90 × 187 520 DCM FFPET

SCD11 M 37 Sleep None n/a × 168 360 AC (RV) FFPET

SCD12 M 25 Rest Dyspnoea n/a 360 AC (RV) FFPET

SCD13 F 14 Sleep None n/a 260 AC (RV, LV) n/a

SCD14 F 21 Light activity none n/a × 160 310 HCM FFPET

SCD15 F 22 Sleep n/a n/a 220 HCM n/a

SCD16 F 35 Rest n/a 87 × 171 365 HCM n/a

SCD17 F 45 Rest Dyspnoea n/a 290 AC (RV) FFPET

SCD18 M 20 Rest None n/a × 178 360 HCM FFPET

SCD19 M 40 n/a n/a n/a × 180 530 Non-diagnostic autopsy findings
(foci of fatty replacement of the myo-
cardium, RV)

Autoptic blood

SCD20 F 50 Rest n/a n/a × 164 300 AC (RV) Autoptic blood

SCD21 F 29 Light activity Syncope n/a n/a MVP (Myxomatous degeneration 
of the mitral valve leaflets)

Autoptic blood

SCD22 M 42 Sleep None n/a n/a SAD Autoptic blood

SCD23 M 34 Light activity Syncope n/a n/a Non-diagnostic autopsy findings
(small foci of fibrosis)

Autoptic blood

SCD24 M 31 Rest Fever n/a × 188 415 Non-diagnostic autopsy findings
(foci of fatty replacement of the myo-
cardium, LV)

Autoptic blood

SCD25 F 37 Light activity n/a n/a 530 SAD Autoptic blood

SCD26 M 23 Rest n/a n/a × 190 565 Non-diagnostic autopsy findings
(mild fatty replacement, RV, LV)

Autoptic blood

SCD27 M 50 Light activity None n/a 630 HCM Autoptic blood

SCD28 M 29 Sport Syncope n/a 380 SAD Autoptic blood

SCD29 M 42 Light activity None n/a 540 Non-diagnostic autopsy findings 
(slightly dilated chambers and mild 
fatty replacement of the myocardium)

Autoptic blood

SCD30 M 40 Rest Chest pain n/a 450 Non-diagnostic autopsy findings
(small foci of fibrosis)

Autoptic blood

SCD31 F 45 Rest Chest pain n/a 286 SAD Autoptic blood

SCD32 M 29 Sport n/a n/a × 184 315 AC (RV, LV) Autoptic blood

SCD33 M 50 Sport n/a n/a 510 Non-diagnostic autopsy findings
(mild fatty replacement, RV, LV)

Autoptic blood

SCD34 M 45 n/a n/a n/a n/a SAD Autoptic blood

SCD35 M 39 Light activity Palpitations 175 × n/a 575 HCM Autoptic blood

SCD36 F 50 Sport n/a 173 × 70 300 HCM Autoptic blood

SCD37 M 42 Sleep None 185 × 90 610 HCM Autoptic blood

SCD38 F 50 Rest None 160 × 80 400 SAD Autoptic blood

SCD39 F 45 Rest None 160 × 60 200 SAD Autoptic blood

AC arrhythmogenic cardiomyopathy, HCM hypertrophic cardiomyopathy, DCM dilated cardiomyopathy, SAD sudden arrhythmic death, MVP mitral valve prolapse, LV 
left ventricle, RV right ventricle, FFPET formalin-fixed and paraffin-embedded tissue, n/a not available
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Results
The final study cohort included 39 subjects (18 from the 
retrospective cohort and 21 from the prospective cohort; 
Table 1). Subjects were mainly male (n = 26, 67%), with an 
age of 33 ± 10 years. Autopsy results revealed a diagnostic 
structural abnormality in 18 cases (46%), which could be 
classified as HCM in 10 (56%), AC in 7 (39%), and DCM 
in 1 (6%). Additionally, 9 cases (23%) displayed non-
diagnostic autopsy findings including fatty replacement 
(n = 4), mitral valve prolapse (n = 2), myocardial fibro-
sis (n = 2), and mild left ventricular dilation (n = 1). The 
remaining 12 cases (31%) displayed structurally normal 
hearts. Overall, 21 cases (54%) displayed non-diagnostic 
autopsy findings or structurally normal hearts.

WES was performed in 32 cases (7 HCM, 6 AC, 1 
DCM, 10 SAD, 8 with non-diagnostic autopsy find-
ings),  due to FFPE unavailability  in 6 samples and bac-
terial DNA contamination in 1 FFPE sample, precluding 
the completion of the remaining retrospective cases. 
Likely causative variants were found in 22 cases, trans-
lating to a detection rate of 69%, outperforming both the 
Cardio panel and standard susceptibility gene analysis 
(50% and 16%, respectively, as shown in Fig. 1).

Detailed variant descriptions are provided in Tables 2, 
3 and 4. All identified variants were heterozygous. Half of 
positive cases (n = 11) harboured a single variant, while 
the remainder had ≥ 2 variants. P/LP and VUS/LP vari-
ants were distributed in the different autopsy groups  as 
follows: SCD with diagnostic structural abnormalities, 
8 out of 14 (57%; 6/7 in HCM, 2/6 in AC, 0/1 DCM); 
non-diagnostic autopsy findings, 6 out of 8 (75%); struc-
turally normal heart, 8 out of 10 (80%; Fig.  2). Overall, 
78% of cases with non-diagnostic autopsy findings or 

structurally normal heart had a positive genetic test with 
the extended cardio panel.

P/LP variants were found in 12 cases (38%): 7 in genes 
affecting myocardial structure/morphology and 4 in 
genes related to cardiac electrical function. VUS/LP 
variants were identified in 10 cases (31%): 6 in structural 
protein genes and 10 in ion channel-related genes. Fifty 
percent of sudden cardiac death (SCD) cases, whether 
they exhibit diagnostic structural abnormalities or have 
non-diagnostic autopsy findings, showed variants in 
cardiomyopathy genes. In contrast, 80% of cases with 
structurally normal hearts (SAD) presented variants in 
channelopathy genes (Fig.  3). Fifteen genes recognized 
for their association with cardiac disease were identi-
fied: 3 (RYR2, SCN5A, KCNH2) from the primary sus-
ceptibility panel and 12 (TTN, MYH7, MYBPC3, TGFB2, 
CACNA2D1, CALM1, LAMA4, DSP, CACNA1C, FBN1, 
SNTA1 BAG3) from the Cardio panel. Three cases 
with variants in Cardio panel genes had causative vari-
ants exclusively identified in the extended panel. Nine 
genes uniquely included in our extensive panel (HCN1, 
KCNJ14, SCN9A, SLC4A3, PSEN2, SCN10A, KCNMA1, 
ATP1A2, CDH2) were found to have a disease associa-
tion labeled as “disputed” or “limited” (ClinGen) and/or 
cardiac-related pathways (GeneCards). No significant dif-
ferences were found in the diagnostic yield across the dif-
ferent age groups (p = 1 for each age class; Fig. 4).

Discussion
Juvenile SCD remains unexplained in approximately 
40% of cases, despite forensic and molecular autopsy. 
This highlights  the need for a more in-depth search for 
gene variants. Our study employed a multidisciplinary 
approach involving geneticists, cardiologists, bioinfor-
maticians, and forensic medicine specialists. The exper-
tise of this team was exploited in a stepwise manner: (1) 
review of macroscopic and microscopic findings from 
SCD cases, (2) comprehensive assessment of available 
guidelines and relevant literature to develop a robust var-
iant prioritization scheme, (3) analysis of variants iden-
tified through WES. A multidisciplinary discussion was 
crucial to sub-classify VUS and evaluate prioritized vari-
ants in the context of individual case characteristics. This 
integrated approach enabled a thorough and nuanced 
interpretation of genetic findings in relation to the clini-
cal and pathological features of each SCD case, identify-
ing likely causative variants in 22 out of 32 cases (69%), 
compared to 16 cases (50%) when using the standard car-
diac panel.

Our diagnostic yield is higher than previous studies. 
Among 26 other NGS studies that adhered to ACMG 
guidelines and with a sample size comparable to ours, 
reported diagnostic yields ranged from 6 to 44% [15, 17, 

Fig. 1 Added diagnostic value of the extended cardio panel. The 
variant detection rate (%) found using different virtual panels in all 
autopsy cases: core genes 16%, cardio panel 50%, extended cardio 
panel 69%. “Core genes” represent the 4 main susceptibility genes, 
“Cardio panel” includes the 174 genes from the TruSight Cardio 
Panel (Illumina, San Diego, California, USA) and the “extended panel” 
includes the 1304 genes selected in this study
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Fig. 2 Variants diagnostic detection rate (%) in each autopsy 
group. The cohort of “SCD with diagnostic structural abnormalities” 
(A) (macroscopic and/or histopathological alterations fell 
within the diagnostic criteria for a specific cardiomyopathy) shows 
a detection rate of 14% (2/14) with the major susceptibility genes 
(core genes), 43% (6/14) with the cardio panel and 57% (8/14) 
with the extended cardio panel; the core genes have a detection rate 
of 0% in the group of “SCD with non-diagnostic autopsy findings” 
(B) (macroscopic and/or histopathological alterations were subtler) 
(0/8) and of 30% in the group of “SCD with structurally normal heart 
(SAD)” (3/10); the increase in the detection rate of likely causative 
variants ranges from 63% (5/8) with the cardio panel to 75% (6/8) 
with the extended panel for “SCD cases with inconclusive autopsy 
findings” (C) and from 60% (6/10) to 80% (8/10) for the SAD group

21, 31–33], as detailed in Supplemental Table  1. Several 
studies do not include VUS in the diagnostic yield report-
ing only their detection percentage [17, 21, 34–36]. Con-
versely, other studies have found that including VUSs in 
genetic evaluation increases the variant detection rates to 
approximately 50–80% [18, 31, 37]. However, these stud-
ies did not further categorize VUSs based on their prob-
abilities of being benign or pathogenic, unlike our study. 
Some variants were classified as VUS based solely on the 
PM2 criterion, even when other criteria suggested benig-
nity, or when the PP3 criterion was not fully satisfied. 

In our prioritization scheme, such VUS are considered 
’cold,’ which excludes variants that are more likely to be 
reclassified as benign over time. VUS are considered “not 
clinically actionable” and cannot be used directly for diag-
nostic purposes [22]. However, recent publications [38, 
39] and practice guidelines (https:// www. acgs. uk. com/; 
https:// sigu. net/) advocate for a more nuanced approach 
to manage VUS, rather than simply categorizing them as 
uncertain. Multidisciplinary discussions to evaluate VUS 
in specific cases can help to determine which VUS should 
be reported to clinicians, particularly when there is high 
level of evidence supporting pathogenicity and potential 
for obtaining additional evidence [40]. Further studies are 
necessary to validate variants we have classified as VUS/
LP and achieve final reclassification. However, our results 
underscore the importance of expanding genetic testing 
through tailored gene panels and specific prioritization, 
with variant assessment conducted in a multidisciplinary 
setting that considers the case context. Integrating this 
approach into laboratory practice facilitates comprehen-
sive reporting to clinicians and enables further variant 
studies and patient follow-up. The data collected may 
contribute to future reclassification of the VUS/LP identi-
fied in this study. Furthermore, the stored raw exome data 
can be re-evaluated in future trio-family analyses.

All cases with positive genetic results exhibited het-
erozygous variants, and 27% had 2 or more variants, 
highlighting the complexity of the SCD phenotype. These 
observations support the theory that SCD might result 
from interactions among common variants with moder-
ate impacts or clusters of rarer variants with more pro-
nounced effects. Distinguishing pathogenic from benign 
variants is particularly challenging, given the potential for 
incomplete penetrance, variable expressivity, and pheno-
typic overlap in channelopathies and cardiomyopathies, 
which typically follow an autosomal dominant inherit-
ance pattern. Combinations of known and unknown 
genetic and environmental factors may contribute to 
incomplete penetrance and variable expressivity [41–44].

In our study, 9 altered genes would not have been 
identified in the standard cardiac panel. Some of these 
genes—  Solute Carrier Family 4 Member 3  -  SLC4A3, 
Presenilin 2 -  PSEN2,  Sodium Voltage-Gated Channel 
Alpha Subunit 10 - SCN10A, and Cadherin 2 - CDH2—
are currently under investigation, but are likely to be 
associated with SQTS, DCM, BrS and AC, respectively. 
The remaining genes are implicated in ion homeostasis 
and cardiac conditions. For instance, Hyperpolarization-
Activated Cyclic Nucleotide-Gated Channel 1  (HCN1), 
highly expressed in human sinoatrial node, could have 
a key role in pacemaker current [45–47]. ATPase Na+/
K+ Transporting Subunit Alpha 2 (ATP1A2) had “car-
diac conduction” among its related pathways, with a role 

https://www.acgs.uk.com/
https://sigu.net/
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in ion homeostasis and ion transport by P-type ATPases 
and recently, Staehr et  al., suggesting its potential role 
in cardiac function and metabolism through the Src/
Ras/Erk1/2 pathway [48]. Most variants in these genes 
are classified as VUS/LP, given the absence of definitive 
gene/disease associations. Current guidelines advocate 
genetic testing in SCD cases with a probable genetic 
basis, but also advice caution against analysing genes not 

definitively associated with the clinical phenotype [1]. 
This is a significant issue, particularly in cases with non-
diagnostic autopsy findings or structurally normal hearts, 
when clinical and family histories are unavailable to 
guide post-mortem genetic testing. We propose a com-
bined approach extending the search for genetic variants 
beyond specific panels, while limiting the likelihood of 
casual results from broad screenings.

The diagnostic yield found in SCD with diagnostic 
structural abnormalities (57%) aligns with results from 
earlier studies on inherited cardiomyopathies [49]. Ion 
channel-related genes were found in 4 cases revealed a 
potential overlapping phenotype. This result is consist-
ent with previous studies that have detected variants in 
cardiac conduction-related genes in cases of SCD with 
autopsy diagnosis of cardiomyopathy [50, 51]. This could 
derive from the use of a broader gene panel including 
classical “channelopathies” genes to test subjects with 
structural alteration. On the other hand, structural and 
conduction alterations might coexist, and CPVT, LQTS, 
and SQTS can present as asymptomatic, but still lead to 
cardiac arrest as its first manifestation, as in our cohort.

Our results underscore the efficacy of a multidisci-
plinary approach to elucidate the aetiology of juvenile 
SCD, particularly in unexplained cases. We identi-
fied probable causative variants in 14 cases with either 
non-diagnostic autopsy findings or structurally normal 
hearts, achieving a yield of 78%. This approach reduced 

Fig. 3 Cardiomyopathy versus channelopathy genes in different autopsy groups. Probable causative variants in genes associated 
with cardiomyopathy (orange) are observed more frequently in cases of SCD with diagnostic structural abnormalities (50%) (A) 
and with non-diagnostic autopsy findings (50%) (B), compared to those with structurally normal hearts (SAD) (25%) (C). Bars are marked 
with the same symbol when represent the same subject; genes marked with an asterisk present (P/LP) variant

Fig. 4 Diagnostic yield percentages across age groups. Waffle 
charts depicting diagnostic yield percentages for three age groups: 
20–29 years (58%), 30–39 years (67%), and 40–50 years (71%). 
Each square represents 1% of the total sample. Despite apparent 
differences, statistical analysis revealed no significant variation 
in diagnostic yield across age groups (p = 1 for each age class)
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the proportion of unexplained cases from conventional 
autopsy to molecular autopsy. Variants in genes associ-
ated with channelopathies were found in 50% of cases, 
supporting previous findings [18, 44]. Notably, RYR2 
VUS/LP variants were identified in 9% of SAD cases, 
aligning with previous reports that observed a preva-
lence of 5–10% [52, 53]. However, all three cases in our 
cohort also harboured additional probable causative 
variants, underscoring the importance of comprehen-
sive genetic analysis. Conversely, variants in cardiomy-
opathy-associated genes were found in 28% of cases, 
supporting the hypothesis that variants in structural 
proteins can trigger functional abnormalities in cardio-
myocytes before any macroscopic or histopathologi-
cal changes are evident [11, 14, 44]. Sudden death in 
these individuals, who carry a likely causative variant 
in a cardiomyopathy-associated gene, could be attrib-
uted to a "concealed cardiomyopathy," where malig-
nant arrhythmias occur in the absence of overt clinical 
disease. As instance, case [SCD29] had slightly dilated 
chambers found at autopsy and carried the splicing LP 
LAMA4:c.719-2A > G already found in a DCM patient 
[54], while case [SCD31] with structurally normal heart 
carried a frameshift LP variant in TTN. Therefore, 
these results support recent recommendations sug-
gesting that genes linked to cardiomyopathy should be 
included in the molecular autopsy [1].

The co-segregation of the variant with the disease in 
family members is a powerful tool for identify the causa-
tive variant as well as for reclassification of VUSs. Func-
tional validation studies of genetic variants represent 
another effective approach, though their expense and 
time-consuming nature limit their routine use, especially 
considering the vast number of variants uncovered by 
NGS. We did not perform either co-segregation or func-
tional validation studies, and the small sample size and 
the limited information about previously clinical data 
and family history did not allow searching for associa-
tions between specific variants with clinical data. These 
limitations have led to a lack of definitive confirmation 
of the pathogenicity of the variants considered VUS/LP. 
However, we have tried to address this limitation through 
the specific VUS prioritization scheme and careful case-
specific variant assessments by multidisciplinary team.

In conclusion, WES optimized  with a customized vir-
tual gene panel, a structured variant prioritization scheme 
and a multidisciplinary approach for case-specific variant 
evaluation can significantly improve the identification of 
likely causative variants in juvenile SCD cases, particularly 
when autopsy findings are inconclusive. This approach 
should be considered as a routine basis in this setting for 
achieving a thorough autopsy diagnosis and potentially 
facilitating early diagnosis in first-degree relatives.
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