
End-to-End Latency Optimization of Thread Chains
Under the DDS Publish/Subscribe Middleware

Gerlando Sciangula*⋄, Daniel Casini*, Alessandro Biondi*, Claudio Scordino⋄
*Scuola Superiore Sant’Anna, Pisa, Italy
⋄Huawei Research Center, Pisa, Italy

Abstract—Modern autonomous systems integrate diverse soft-
ware solutions to manage tightly communicating functionalities.
These applications commonly communicate using frameworks
implementing the publish/subscribe paradigm, such as the Data
Distribution Service (DDS). However, these frameworks are real-
ized with a multi-threaded software architecture and implement
internal policies for message dispatching, posing additional chal-
lenges for guaranteeing timing constraints.

This work addresses the problem of optimizing a DDS-based
interconnected real-time systems, proposing analysis-driven algo-
rithms to set a vast range of parameters, ranging from classical
thread priorities to other DDS-specific configurations. We evaluate
our approaches on the Autoware Reference System, a realistic
testbed from the Autoware autonomous driving framework.

I. INTRODUCTION

Nowadays, autonomous systems are characterized by inter-
connected and possibly distributed software components, which
need to seamlessly integrate and tightly cooperate as if they
were executed as a single one. This trend shapes differently in
various applications. A case in point is automotive, in which
advanced driver assistance systems (ADAS) functionalities,
ranging from lane-keeping adaptive cruise control to anti-lock
braking systems, are distributed across a number of electronic
control units (ECUs) and interconnected through in-vehicle
networks. All these applications are typically implemented as
chains of computations to be executed within timing con-
straints. Looking even further, the software components of
future autonomous cars will be distributed in the Edge-to-
Cloud continuum, where the vehicle can cooperate with the sur-
rounding infrastructure and leverage the massive computational
capacity offered by the Cloud to provide advanced functionality.
These developments are centralizing the role of data distribution
services, calling for efficient and time-predictable solutions.

Modern automotive applications are more and more on top of
frameworks such as AUTOSAR Adaptive [1], ROS 2 [2], and
Autoware [3]. All of them leverage the Data Distribution Ser-
vice (DDS) communication middleware [4], which established
as the most used solution for spreading data within distributed
components [5]. DDS frameworks implement internal policies
for message dispatching and are commonly realized with a
multi-threaded software architecture. These characteristics need
to be taken into account when aiming at guaranteeing timing
constraints for DDS-enabled applications, especially when fac-
ing with data dependencies between threads, which form the
so-called thread chains. Accurate system configurations, e.g.,
in terms of priorities and thread allocation, can significantly im-
prove the timing performance of a system; as such, systematic

approaches to set timing-relevant parameters of DDS-enabled
applications are a must-have for complex systems.

While previous work [6] proposed a DDS-specific real-
time analysis to assess whether a given configuration can
allow meeting a set of timing constraints upfront, i.e., without
requiring to deploy the application on the target platform,
designers are still left with the question of how to optimize
the vast set of parameters of DDS-enabled applications to meet
timing requirements at best.
Contribution. This paper addresses this open problem by
proposing a collection of analysis-driven optimization algo-
rithms leveraging the results from [6]. The FastDDS [7] im-
plementation of the DDS standard is considered. A simulated
annealing optimizer is also proposed as a baseline for compar-
ison. The proposed algorithms are evaluated on a case study
based on the Autoware Reference System [8] — a realistic
testbed from the Autoware autonomous driving framework.

II. ESSENTIAL BACKGROUND

DDS enables advanced communication and data-sharing ca-
pabilities for distributed and heterogeneous applications. It is a
middleware communication protocol standardized by the Object
Management Group that builds upon a publish-subscribe model,
which decouples data producers (publishers) from consumers
(subscribers). Publishers, subscribers, and topics are the main
entities of a DDS domain. A publisher can send information
over multiple topics; similarly, a subscriber can receive data
from different topics. One of the most popular and efficient
C++ implementations of DDS is FastDDS by eProsima [7],
which is currently the default DDS implementation in ROS 2.
FastDDS provides two modalities for message dispatching:
synchronous and asynchronous. Similarly to [6], we consider
the asynchronous mode, which provides more flexibility for
real-time messages by means of flow-controller threads, which
are in charge of the message delivery process. A flow-controller
thread is responsible for extracting data from a queue of
pending messages (sent by publishers) according to different
policies. A listener thread is associated with each subscriber
and manages the reception of user data. Subscribers can also
publish messages, thus originating chains of threads.

III. SYSTEM MODEL AND PROBLEM DEFINITION

Platform and Thread Model. We consider a distributed
system consisting of a set N of interconnected machines. Each
machine νy ∈ N comprises a set of homogeneous cores Cy , in
which each individual core is denoted with ck ∈ Cy . Symbol



P1 FC1 L1 S1 FC1 L1 S1

Chain 1

Chain 2

FC3 L3 S3

Subchain 1

Subchain 3

Subchain 2

Se
n

si
n

g

A
ct

u
at

io
n

A
ct

u
at

io
n

Fig. 1: Two chains activated by the same publisher thread.

C denotes the set of all cores of all machines. Following prior
work [6], we describe DDS-enabled real-time systems as a set
of application-level threads (i.e., publishers and subscribers)
and middleware-level threads (i.e., flow-controllers and listen-
ers). The set Γ denotes all the threads in the system, irrespective
of the type. Threads are grouped into two sets: (i) middleware-
level threads and (ii) application-level threads. The first set,
denoted with Γmw includes flow-controller and listener threads;
the second set, denoted with Γapp ≜ Γ \ Γmw, includes all
publishers and subscribers. The sets of middleware-level and
application-level threads allocated on core ck ∈ C are referred
to as Γk

mw and Γk
app, respectively. We consider a static DDS

system without threads joining or leaving the system at runtime.
Each application-level thread τi ∈ Γapp is characterized by

a worst-case execution time (WCET) ei. Each thread τi ∈ Γ
releases a sequence of instances (called jobs): its arrival curve
ηi(∆) bounds the number of release events in any interval
of length ∆. Threads are scheduled using a partitioned fixed-
priority scheduler, where each thread τi ∈ Γ is statically
allocated to a core ck ∈ C and assigned a unique fixed priority
Πi. As a DDS-specific allocation constraint, each publisher
(resp. subscriber) thread and the referred flow-controller (resp.,
listener) threads must be allocated to the same machine.

DDS-based Communication Model. The topics define the
logical communication channels between publishers and sub-
scribers. The set of all topics is referred to as Θ. Each topic
θj ∈ Θ is characterized by a unique priority πj . Publishers
publish messages on the topics: an arbitrary z-th message is
denoted by mz . Each instance of a message mz , published
by a thread τi ∈ Γapp over the topic θj , inherits the priority
assigned to the topic θj . Similarly to threads, messages are
also characterized by a derived arrival curve, which is inherited
by the producer thread using the arrival-curve propagation
process [9] recalled in Section III-A. An application-level
thread can be associated with multiple flow-controller threads
if it publishes to multiple topics. A subscriber thread is always
linked to one listener thread, handling messages from different
topics. A message is related to a single flow-controller and
a single listener thread. Listener threads manage messages in
first-in-first-out (FIFO) order. When a message mz is managed
by a thread τi ∈ Γk

mw, we say that mz ∈ τi.
Each flow-controller thread manages a queue of messages

to be dispatched according to either the HIGH_PRIORITY
FastDDS’s policy (HP for short), i.e., fixed-priority scheduling
according to the message priority [6], or FIFO (F for short).

The parameters δf(mz) and δl(mz) denote the worst-case
time required to process a message mz in flow-controller and
listener threads, respectively, without the interference of any
other message or thread. When distinguishing between flow-
controller and listener threads is irrelevant, we simply use
δ(mz). The symbol δνi,νj

net (mz) denotes the network propaga-
tion delay of a message mz that traverses from a machine νi
to a machine, with νj ̸= νi.

Thread chains. We denote by G the set of all thread chains.
A chain γi ∈ G is a sequence of communicating threads.
The first thread of a chain is always a publisher; the last is
always a subscriber. Within the chain, each publisher-subscriber
pair is separated, in order, by the flow-controller thread (FC)
associated with the publisher (P) and the listener (L) associated
with the subscriber (S), as shown in Fig. 1. The set of all chains
can be represented as a directed acyclic graph (DAG) composed
of threads (vertexes) and communications (edges). The DAG
can have multiple sources and multiple sinks.

The end-to-end (E2E) latency of a thread chain γi is defined
as the longest time span elapsed between the release of the first
thread of the chain to when the sink subscriber of γi completes.
Symbol Li denotes an upper bound on the end-to-end latency.
The end-to-end timing requirement of a chain γi is specified
as a deadline Di and is satisfied if Li ≤ Di. In this case, we
say that the chain is schedulable.

Each chain γi comprises one or more subchains. Each
subchain is defined as a tuple of four threads: a publisher, a
flow-controller, a listener, and a subscriber. Two consecutive
subchains of a chain are linked by the subscriber of the first
one acting as publisher for the second one, as shown in Fig. 1.

Definitions. The density σ(τi, γh) of an application-level thread
τi ∈ Γapp that is part of a chain γi ∈ G is defined as the
ratio between the WCET of the thread and the deadline of
the chain, i.e., σ(τi, γh) ≜ ei/Dh. Similarly, the density of a
message mz processed in a flow-controller thread being part
of a chain γh is defined as the ratio between the WCET of
the message and the deadline of the chain, i.e., σ(mz, Dh) ≜
δ(mz)/Dh. Finally, we define the load of an application-level
thread τi and a message mz as load(τi,∆) ≜ ηi(∆) ·ei/∆ and
load(mz,∆) ≜ ηi(∆) · δ(mz)/∆, respectively.

A. Data-Delivery Latency Analysis under FastDDS

We briefly recall the most important highlights of the analysis
in [6], which bounds the latency of a message between an
arbitrary pair of publishers and a subscriber as the sum of
the individual worst-case response times (WCRT) experienced
by the flow-controller and listener threads, also adding the
network delay. The WCRTs are subject to different sources
of interference: (i) thread-level interference, which depends
on higher-priority application threads, (ii) inter-thread message
interference, which is due to the processing of messages han-
dled in other middleware threads, (iii) intra-thread interference
due to the processing of messages in the same middleware
thread, and (iv) self-interference caused by previously-released
instances of the same message or thread. Following Composi-
tional Performance Analysis (CPA) [9], the approach in [6] is



extended by adding the WCRT of publishers and subscribers
to quantify the individual latency of subchains, which, in turn,
can be summed up to bound the overall end-to-end latency of
a thread chain [9].

Arrival curves are externally provided (see Section III)
only for source threads; instead, the analysis requires arrival
curves for all threads and messages. Arrival curves are derived
following the CPA-based propagation process, which uses the
activation delays of predecessor threads in a chain as release
jitter for the follower threads. This jitter consists of the network
propagation delay and the WCRT bound of predecessor threads.
This creates a cyclic dependency: to bound WCRTs, arrival
curves for all threads and messages are required, but they also
require the WCRT bounds. The cycle is broken [6], [9] by
initially setting the jitter to zero and computing WCRT bounds
iteratively until convergence is reached.

B. Problem Statement

We consider the analysis-based optimization of DDS-based
real-time applications with the following objective function:

minimize max
γi∈G

Li. (1)

The system configuration consists of the values assigned to
all tunable parameters decided by the proposed optimization
algorithms. We consider the following tunable parameters:

T1 Threads-to-machines and threads-to-core mapping.
T2 Number of flow-controllers threads.
T3 Messages-to-flow-controllers partitioning.
T4 Scheduling policy of flow controllers.
T5 Priority of threads.
T6 Priority of topics (inherited by the messages).

IV. OPTIMIZATION ALGORITHMS

This section presents the three approaches we propose to
optimize DDS-enabled real-time systems. First, we present
an optimization meta-algorithm that can be employed with
different combinations of heuristics, which are agnostic on any
DDS-specific real-time analysis aspect. Second, we present a
specialized algorithm that takes into account the peculiarities
of the FastDDS real-time analysis [6]. Finally, we present a
simulated annealing optimization algorithm. It is worth noting
that this work faces with a complex non-convex optimiza-
tion problem originating from convoluted real-time analysis
equations and algorithms [6]. Although the problem could be
linearized to be solved with Mixed-Integer Linear Programming
(MILP), since the analysis includes several circular dependen-
cies (see Section III-A), this would require introducing a series
of pessimistic overestimation of response-time bounds and a
high number of auxiliary variables that would affect both the
quality of the solution and the runtime required to find it. For
these reasons, we did not consider the use of MILP.

A. Optimize Latency Meta-Algorithm

The Optimize Latency Meta-Algorithm (OL-Alg for short)
considers the aforementioned optimization objectives. For sim-
plicity, the number of flow-controller threads is considered to

Algorithm 1 Pseudo-code for OL-Alg
1: APm: Allocation policy of messages ← (WF, BF, FF)
2: APt: Allocation policy of threads ← (WF, BF, FF)
3: SPm: Sorting policy of messages ← (DW, IW, DL, IL, DD, ID)
4: SPt: Sorting policy of threads ← (DW, IW, DL, IL, DD, ID)
5: SSP: Sending scheduling policy ← (HP, F)
6: PAPθ : Priority policy of topics ← (DMW, IMW, DML, IML)
7: function OL-ALG(APm, APt, PAPθ , SPm, SPt, SPP)
8: SetSendingPolicy(SSP)
9: SetTopicsPriority(PAPθ )

10: AllocateFCsToMachines()
11: if AllocateAppThreads(APt, SPt) then
12: if AllocateMessagesToFCs(APm, SPm) then
13: if AllocateListeners(APt, SPt) then
14: if ThreadPrioAssign( SPt) then
15: PerformAnalysis()
16: else Cannot find a schedulable threads priorities
17: else Cannot allocate Listener threads
18: else Cannot allocate Messages
19: else Cannot allocate Application threads

be a constant in input to the problem. OL-Alg is presented in
Algorithm 1 and exposes the following configurations:

1) the allocation policy used for messages and threads,
managed by the set of allocation policies APm and APt

of the algorithm (lines 1 and 2), for messages (topics)
and threads, respectively.

2) the order in which the algorithm considers the messages
and threads, managed by the set of sorting policies SPm

and SPt of the algorithm (lines 3 and 4), for messages
(topics) and threads, respectively.

3) the scheduling policy used in flow-controller threads; it
can be assigned either to HP (fixed-priority scheduling)
or FIFO (line 5).

4) the priority-assignment policies for the topics, managed
by the set PAPθ of priority-assignment policies for topics
of the algorithm (line 6).

For 1), we consider three popular partitioning heuristics: first-
fit, best-fit, and worst-fit. When using first-fit, each thread or
message is placed in the first core ck ∈ C that can host it
according to a test of the overall load of the core, i.e.,

Uk(∆) ≜
∑

τi∈Γk
app

load(τi,∆) +
∑

τj∈Γk
mw

∑
mz∈τj

load(mz,∆) ≤ 1.

(2)
In the above equation, ∆ is a parameter of the test, typically set
to a large value [10]. Best-fit and worst-fit perform the same
check, but after sorting the cores ck ∈ C based on the smallest
and largest value of 1− Uk(∆), respectively.

For 2), we consider six ordering for threads and mes-
sages, namely increasing/decreasing WCET (IW/DW), increas-
ing/decreasing density (ID/DD), and increasing/decreasing
load (IL/DL). In the case of messages, the IW/DW poli-
cies consider the parameter δf(mz) as the message WCET.
For 4), we similarly consider increasing/decreasing message
WCET (IMW/DMW) and increasing/decreasing message load
(IML/DML).

The algorithm works as follows. First, function
SetSendingPolicy() sets the sending scheduling policy of
all flow-controllers of the system equal to the sending policy



passed to the function (chosen from SSP: HP or F). Then,
SetTopicsPriority() sets the priority of topics according
to the selected priority assignment policies, chosen from the
set PAPθ (IMW/DMW/IML/DML, line 6).

The various steps of the allocation process are then per-
formed: first, flow-controller threads are allocated to machines
(line 10) in a round-robin manner; application-level threads
are then allocated to cores (using a pair of sorting poli-
cies/partitioning heuristics in sets SPt/APt, line 11); messages
are mapped to flow-controller threads using policies in the
sets SPm/APm and considering that messages need to be
allocated on a flow-controller that is within the same machine
of the publishers that publish them (line 12); finally, listeners
are allocated, following a sorting policy and a partitioning
heuristics in sets SPt/APt (line 13).

Priorities for threads are managed similarly to Audsley’s
Optimal Priority Assignment (OPA) [11]: threads are processed
according to the first one assigned to the lowest possible prior-
ity, checking whether the corresponding chains are schedulable.
If not, the priority is raised. This is implemented in function
ThreadPrioAssign(). Finally, since the load-based test of
Eq. (2) does not guarantee schedulability per se, the function
PerformAnalysis() performs the actual analysis and re-
trieves the end-to-end latency bound of each chain, if all chains
are schedulable (line 15).

B. Analysis-Aided DDS Meta-Algorithm

This second optimization approach, called Analysis-Aided
DDS Meta-Algorithm (AA-Alg for short), extends the previous
one by leveraging DDS-specific analysis considerations to as-
sign priorities. In essence, the AA-Alg replaces the threads and
topics priority assignments with the following four heuristics.
The first one targets the priority assignment of threads within a
chain (intra-chain priority assignment). The second and third
ones are two alternatives for the priority assignment of chains
(inter-chain priority assignment). The last heuristic targets
the priority assignment of topics, privileging latency-critical
communications.
Intra-Chain Priority Assignment. As discussed in Sec-
tion III-A, the analysis in [6] leverages arrival-curve prop-
agation to derive the arrival curves of non-source threads,
accounting for the delays introduced by predecessor threads
in the chain as release jitter. At the same time, release jitter
is known to significantly penalize schedulability. Therefore,
we make the following key observation: the less the threads
occurring earlier in a chain are interfered with, the less release
jitter is propagated to the follower threads, hence tending to
reduce their worst-case interference.

Following this observation, we start assigning the highest
priority in the chain to the source thread, and we proceed
sequentially in the order they appear in the chain by assigning
decreasing priorities. The sink thread is assigned the lowest
priority of the chain.
Load-Based Inter-Chain Priority Assignment. This second
heuristic uses the following observation: threads with smaller
loads have a lower impact on the WCRT of higher-load threads.
Following this idea and considering threads from different

Types

Rear Lidar  
Driver

Front Lidar  
Driver

Point Cloud  
Map

Visualizer

Lanelet2  
Map

Front Points
Transformer

Lanelet2 Global
Planner

Lanelet2 Map
Loader

Point Cloud
Fusion

NDT  
Localizer

Euclidean
ClusterDetector

Parking
Planner

Behavior
Planner (Sub)

Lane  
Planner

Vehicle
Interface

Vehicle DBW
System

Front Points
Transf

Rear Points
Transf

Voxel Grid
Downsampler

Point Cloud Map 
Loader

Ray Ground
Filter

Object Collision
Estimator

MPC
Controller

FLD

RLD

PCM

Vis

L2M

FrontPoints

PCML

PCF

PCF

VGD

NDTL

L2GP

L2ML

RGF

NDTL

L2GP

PP

LP

ECD

OCE

BP

MPCC

VI
Behavior Planner 
(Pub)

RearPoints

Sensor Node
Transform

Node
Fusion Node Reactor Node Command100ms Sensor Transform Fusion Reactor

Fig. 2: Overview of the Autoware Reference System. Incoming edges represent
the topics subscribed by a thread, while outgoing edges represent the topic on
which it publishes. The label attached to each edge represents the topic’s name.

chains, we assign priorities to threads inverse-proportionally
to the thread load (i.e., lower load, higher priority) while
maintaining the relative-priority order chosen according to the
intra-chain rule. This procedure aims at limiting the end-to-end
latency of all chains since low-load threads have less impact
on the response time than high-load threads and, in general, on
the jitter propagated by the chains. Nevertheless, this heuristic
does not consider the deadline of each chain; therefore, it could
lead to an unschedulable solution in some cases.
Deadline-Based Inter-Chain Priority Assignment. The dead-
line is instead considered by the deadline-based inter-chain
priority assignment heuristic, which prioritizes the threads that
are part of a chain with tight deadlines. Hence, the priority
assignment is inversely proportional to the chain deadline.
Internally to each chain, the intra-chain priority assignment
rule is used.
Prioritizing Critical Communications. Finally, the last
heuristic prioritizes communications that involve high-priority
application-level threads. The priority of a topic is consequently
chosen according to the highest priority of any application-level
thread using it. Furthermore, high-priority topics are mapped
to higher-priority flow-controllers. The prioritization of critical
communications avoids priority inversion due to the processing
of low-priority messages by higher-priority flow-controllers.

C. Simulated Annealing Optimizer

To assess the quality of the solutions found by the proposed
heuristics, we also developed a Simulated Annealing (SA)
optimizer as a baseline for comparison. The SA algorithm is
implemented without any constraints, allowing the optimizer
to evaluate and consider even unfeasible or unschedulable
solutions. This is necessary to ensure the exploration of all
solutions within the whole design space to avoid sticking to
local optima. Restricting the search to only feasible and schedu-
lable solutions may let the algorithm focus on a sub-region of
the space, potentially causing the algorithm to miss the global
optimum (which, instead, needs to be a feasible solution).
The probability of selecting such solutions is minimized by



SA-Max SA-Sum OL-Alg AA-Alg
0

25

50

75

100

Pe
rc

en
ta

ge
 In

cr
ea

se
 %

60.59 66.71 71.17
60.81

a) Max E2E Latency

0 17 22

0 18 22

SA-Max SA-Sum OL-Alg AA-Alg

60.59

51.8
56.62

49.8

65.39
64.12

63.88
66.71

71.17

68.1

64.07
61.66

60.81
56.12

58.67
54.12

b) Max E2E LiDARs Chains

0 17 22

0 18 22

1 17 22

1 18 22

OL-Alg AA-Alg

77.5

88.94

0

69.05

70.87
90.97

c) Threads Allocation Policies

WF
BF
FF

OL-Alg AA-Alg
0

25
50
75

100

Pe
rc

en
ta

ge
 In

cr
ea

se
 %

0 0 0

77.5

0
90.76

97.64

78.49

0

69.05
81.24

78.14

d) Threads Sorting Policies
ID
DD
IL
DL
IW
DW

80 85 90 95 100 105 110 115 120
Period (ms)

e) Periodicity 0

OL-ALG
AA-ALG

80 85 90 95 100 105 110 115 120
Period (ms)

f) Periodicity 1

OL-ALG
AA-ALG

Fig. 3: Percentage-increase to a lower-bound on the end-to-end latency of some representative chains under different algorithms. (a) and (b) try configurations
for all optimization parameters. (c) evaluates thread allocation policies for SPm = DD, SPt = DL, APm = WF, PAPθ = DML, SSP = HP. (d) evaluates thread
sorting policies for SPm = DD, APm = WF, APt = WF, PAPθ = DML, SSP = HP. (e) and (f) show the effect when the periodicity of the source threads is
varied while fixing other parameters at SPm = DD, SPt = DL, APm = WF, APt = WF, PAPθ = DML, SSP = HP.

introducing a penalty factor to inflate the cost value of the
system configuration. Nevertheless, the final solution provided
in output by the SA is always schedulable (if any is found).

The schedulability of a solution is then checked by using the
analysis reviewed in Section III-A. For the design space explo-
ration, we defined transition operators for randomly choosing
thread and message assignments and priorities.

V. EXPERIMENTAL EVALUATION

Autoware Reference System. We evaluated our approaches on
a case study based on the Autoware Reference System (ARS) [8],
which includes a computation graph from Autoware, a ROS 2-
based autonomous driving framework [3]. The application is
shown in Fig. 2. We consider a system configuration with
one machine νi and ten cores. A flow controller is added to
each core. The ARS comprises five types of threads: sensor,
transform, fusion, reactor, and command threads, with WCETs
equal to 0.1ms, 50ms, 25ms, 1ms, and 0.2ms, respectively.
All source threads are triggered with a period of 100ms. All
publishers publish messages of the same size (4Kb). Parameters
δf(mz) and δl(mz) are set as in [6]. The ARS defines the end-
to-end latency of the LiDAR chains, starting from τ0 and τ1
(LiDAR threads) and ending with τ22 as one of the leading KPIs
to evaluate the performance of the system. Chain deadlines are
not included in ARS and are obtained by leveraging a lower
bound on the end-to-end latency of each chain γi in an ideal
configuration in which each thread is allocated exclusively to
a core, and each message is in a dedicated flow-controller.
This eliminates any interference (see Section III-A), except for
the self-interference. The deadline of each chain is assigned
proportionally to each chain latency lower bound.
Results. Fig. 3(a) illustrates the results, in which OL-Alg, AA-
Alg, and SA are compared. The graph shows the percentage
increment (y-axis) of the end-to-end latency w.r.t. the lower-
bound delay found for a specific chain. For the SA algorithm,
we considered two different variants: one uses the objective

function in Eq. (1) (SA-Max) and the other minimizes the sum
of the latencies

∑
γi∈G Li (SA-Sum).

According to SA-Max, OL-Alg, and AA-Alg, the chain τ0-
τ17-τ22 results to be the chain with the maximum end-to-end
latency within the system. SA-Sum found a different chain,
i.e., τ0-τ18-τ22. From Fig. 3(a), we can observe that the best
solution was found by SA-Max, with a maximum end-to-end
latency 60.59% higher than the lower-bound. Notably, AA-Alg
is almost as good as (in terms of maximum latency) SA-Max
(60.81% of increment). SA-Sum tried to balance the latency
of all the chains but at the expense of the maximum latency,
which has a higher increment of 66.71%. The best configuration
found by OL-Alg leads to an increment of 71.17%. Such a clear
difference between OL-Alg and AA-Alg lies in the fact that
the second algorithm is driven by analysis-related observations,
thus trying to prioritize latency-critical communications and
minimize the jitter propagated in the chains. Fig. 3(b) shows the
percentage increment of the end-to-end latency of the chains
highlighted in Fig. 2, i.e., τ0-τ17-τ22, τ0-τ18-τ22, τ1-τ17-τ22,
and τ1-τ18-τ22. Again, in terms of latencies, AA-Alg behaves
similarly to SA-Max.

Fig. 3(c) and (d) report the performance of different parti-
tioning heuristics and sorting policies for the threads applied
to OL-Alg and AA-Alg, while keeping other parameters fixed
(reported in the caption of Fig. 3). In Fig. 3(c), for both
algorithms, the worst-fit policy results to be the best. Under
the first-fit policy, the OL-Alg could not find a schedulable
configuration (represented by a 0 value in the graph). We
observed the same trend by also varying the other parameters.
There are no observed cases in which OL-Alg can find a
schedulable configuration that AA-Alg cannot find.

Fig. 3(d) shows different behaviors for the algorithms. Under
several sorting policies (ID, DD, IL, IW), OL-Alg cannot find
a schedulable solution, while AA-Alg was not able to develop
a schedulable configuration only under the IL sorting policy.
This is mainly due to the robustness of AA-Alg in adapting



to any thread allocation or order of allocation since they do
not affect the intra-chain and inter-chain priority assignments.
Differently, the priority assignment of OL-Alg is completely
dependent on the sorting policy of the threads. Fig. 3(e) and
(f) show two scenarios in which the periodicity of τ0 and τ1
is varied in [80, 120] ms. The latency of chains τ0-τ17-τ22 and
τ1-τ17-τ22 is reported on the y-axis. As in the previous cases,
AA-Alg always performs better than OL-Alg, providing smaller
increases. When the frequency is higher (i.e., 80 ms), OL-Alg
cannot find a schedulable solution.
Runtimes. In Table I we reported the number of tested configu-
rations and the total running times, showing an important take-
away message: by leveraging analysis-related considerations
instead of blindly trying combinations of heuristics, AA-Alg
provides solutions that are almost as good as the simulated
annealing, but much faster, reducing the runtime required from
14 hours to 7 minutes for the considered scenarios.

TABLE I: Number of tested configurations and running times.

Algorithm Configurations Runtime (minutes)
SA-Max 7328000 846
SA-Sum 7328000 828
OL-Alg 2592 66
AA-Alg 648 7

VI. RELATED WORK

The literature related to this paper can be broadly classified
into two categories: optimization of real-time systems and real-
time analysis of middleware frameworks. Into the first category
fall numerous works, ranging from the optimization of hard
real-time time-triggered distributed systems [12] to the parti-
tioning and priority assignment of real-time applications with
hardware acceleration [13]. Different works leverage different
optimization strategies for different problems and optimization
objectives, such as simulated annealing [14], mixed-integer
linear programming formulations [15], and heuristics [16].
However, none of them targets DDS-based systems.

The second category of related papers, targeting the analysis
of real-time properties in middleware frameworks, is less popu-
lated but has received considerable attention in recent years. For
example, some of the studied frameworks are OpenMP [17],
TensorFlow [18], MQTT [19] and ROS 2 [20], [21]. Most
related to this paper is the work in [6] targeting a real-time
analysis under FastDDS, which, however, does not propose
optimization algorithms for DDS-enabled systems.

To the best of our knowledge, there have been no prior
attempts at introducing analysis-driven optimization algorithms
that can effectively optimize the temporal aspects of thread
chains in DDS-based systems.

VII. CONCLUSION

In this paper, we targeted the optimization of a DDS-enabled
real-time system. We tested our approaches on the Autoware
Reference System, showing that the solutions found by the
proposed algorithms are much faster to obtain and can compete
with those found by a simulated annealing optimizer, which is
able to find quality suboptimal solutions at the cost of higher

running times. Furthermore, we demonstrated the benefits of
analysis-aided optimization (AA-Alg) by leveraging analytical
observations in assigning priorities.

VIII. ACKNOWLEDGEMENTS

This work has been supported by the project SERICS
(PE00000014) under the MUR National Recovery and Re-
silience Plan funded by the European Union – NextGenera-
tionEU and the European Union’s Horizon Europe Framework
Programme project NANCY under the grant agreement No.
101096456.

REFERENCES

[1] AUTOSAR, “Specification of Communication Management,” 2022.
[2] “Robot operating system (ROS).” https://www.ros.org/.
[3] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kit-

sukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware
on board: Enabling autonomous vehicles with embedded systems,” in
2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS), pp. 287–296, 2018.

[4] OMG, “Data distribution service (DDS) version 1.4..”
[5] C. Scordino, A. G. Mariño, and F. Fons, “Hardware acceleration of data

distribution service (dds) for automotive communication and computing,”
IEEE Access, vol. 10, pp. 109626–109651, 2022.

[6] G. Sciangula, D. Casini, A. Biondi, C. Scordino, and M. Di Natale,
“Bounding the Data-Delivery Latency of DDS Messages in Real-Time
Applications,” in 35th ECRTS 2023, (LIPIcs), 2023.

[7] eProsima, “Fast-DDS,” 2023. https://fast-dds.docs.eprosima.com.
[8] https://github.com/ros-realtime/reference-system.
[9] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,

“System level performance analysis - the SymTA/S approach,” IEEE
Proceedings - Computers and Digital Techniques, March 2005.

[10] J. Diemer, P. Axer, and R. Ernst, “Compositional Performance Analysis
in Python with pyCPA,” in In Proceedings of WATERS’12, 2012.

[11] N. C. Audsley, “Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times,” Tech. Rep. YCS-164, Department
of Computer Science, University of York, 1991.

[12] Q. Zhu, H. Zeng, W. Zheng, M. D. Natale, and A. L. Sangiovanni-
Vincentelli, “Optimization of task allocation and priority assignment in
hard real-time distributed systems,” ACM Trans. Embed. Comput. Syst.

[13] D. Casini, P. Pazzaglia, A. Biondi, and M. Di Natale, “Optimized parti-
tioning and priority assignment of real-time applications on heterogeneous
platforms with hardware acceleration,” Journal of Systems Architecture,
2022.

[14] X. He, Z. Gu, and Y. Zhu, “Task allocation and optimization of distributed
embedded systems with simulated annealing and geometric program-
ming,” The Computer Journal, vol. 53, no. 7, pp. 1071–1091.

[15] P. Pazzaglia, A. Biondi, and M. Di Natale, “Optimizing the functional
deployment on multicore platforms with logical execution time,” in 2019
IEEE Real-Time Systems Symposium (RTSS), pp. 207–219, 2019.

[16] M. Saksena and Y. Wang, “Scalable real-time system design using
preemption thresholds,” in Proceedings 21st IEEE real-time systems
symposium, pp. 25–34, IEEE, 2000.

[17] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna, and
E. Quinones, “Timing characterization of OpenMP4 tasking model,” in
2015 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES), pp. 157–166, IEEE, 2015.

[18] D. Casini, “A theoretical approach to determine the optimal size of a
thread pool for real-time systems,” in 2022 IEEE Real-Time Systems
Symposium (RTSS), pp. 66–78, 2022.

[19] E. Shahri, P. Pedreiras, and L. Almeida, “End-to-end response time
analysis for rt-mqtt: Trajectory approach versus holistic approach,” in
2023 IEEE 19th International Conference on Factory Communication
Systems (WFCS), pp. 1–8, 2023.

[20] D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg, “Response-time
analysis of ROS 2 processing chains under reservation-based scheduling,”
in 31st ECRTS 2019, 2019.

[21] H. Teper, M. Günzel, N. Ueter, G. von der Brüggen, and J. Chen,
“End-to-end timing analysis in ROS2,” in 2022 IEEE Real-Time Systems
Symposium (RTSS), 2022.


