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A B S T R A C T

This paper provides a direct understanding of the labour-saving threats embedded in decarbonisation pathways.
It starts with a mapping of the technological innovations characterised by both climate change mitigation/
adaptation (green) and labour-saving attributes. To accomplish this, we draw on the universe of patent grants in
the USPTO since 1976 to 2021 reporting the Y02-Y04S tagging scheme and we identify those patents embedding
an explicit labour-saving heuristic via a dependency parsing algorithm. We characterise their technological,
sectoral and time evolution. Finally, after constructing an index of sectoral penetration of LS and non-LS green
patents, we explore its correlation with employment share growth at the state level in the US. Our evidence
shows that employment shares in sectors characterised by a higher exposure to LS (non-LS) technologies present
an overall negative (positive) growth dynamics.

1. Introduction

An increasing consensus, which encompasses also international
financial institutions such as the IMF (International Monetary Fund,
2022), is emerging on the urgency to tackle the climate crisis thorough
the mitigation of global warming, in particular with a substantial
reduction in greenhouse gas (GHG) emissions. The transition to a green
economy is defined by UN Environment Programme as (emphasis ours)
“[…] low carbon, resource efficient and socially inclusive. In a green econ-
omy, growth in employment and income are driven by public and private
investment into such economic activities, infrastructure and assets that allow
reduced carbon emissions and pollution, enhanced energy and resource ef-
ficiency, and prevention of the loss of biodiversity and ecosystem services”.1

It therefore entails the effort of a plurality of actors, both private and
public, in achieving a low or even null level of climate impacts in terms
of greenhouse emissions.2 Despite some serious limitations and draw-
backs that the green economy and green growth paradigms encompass,
highlighted by various research streams (D’Alessandro et al., 2020;
Hickel and Kallis, 2020; Unmußig et al., 2012; Van Vuuren et al., 2017),

they still represent the core in terms of both reflections for thë academic
community and implementation for policy makers and business actors.

More recently, in order to achieve a sustained green growth, policy
makers and particularly the European Union, are focusing on the so
called twin transition, defined as the conjunction between the digital
transition, aimed at increasing the overall productivity of the economy,
and the effort to foster environmental processes and technologies to
achieve climate sustainability. Such efforts are somehow even inter-
twined with the stated objective of promoting a just transition, according
to which “[…] A solid knowledge base is needed to interlink the digital and
green transitions with the social dimension of the just transition and to ensure
that ‘no one is left behind”’ (Stefan et al., 2022).

The two transformations entail a common threat: the possibility of
losing jobs in order to improve environmental sustainability on the one
hand, and productivity efficiency on the other. The costs of these tran-
sitions are going to be heterogeneous across sectors and countries,
especially according to the identification of most exposed sectors and
occupations. While the common understanding tends to identify the
green trajectory as mainly labour-augmenting (International Labour
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1 https://www.unep.org/regions/asia-and-pacific/regional-initiatives/supporting-resource-efficiency/green-economy (accessed 08/03/2023).
2 The Green Deal, presented by the European Commission on 11th December 2019, represents one of the most ambitious public plans in this respect: https://ec.
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Office, 2018), it is still lacking a clear mapping of the underlying heu-
ristics of innovators in the climate change domains in terms of labour-
efficiency processes. It might be the case that environmental in-
novations also come with lower labour input requirements, therefore
challenging the common wisdom of the green transition as net job
creator.

This paper intends to fill this gap providing a direct understanding of
the labour-saving threats embedded in decarbonisation pathways. It
starts with a technological mapping of innovations characterised by
both climate change mitigation/adaptation (green, thereafter) and
labour-saving attributes. To accomplish this task, we draw on the uni-
verse of patent grants by the USPTO from 1976 to 2021 with at least one
CPC code of either Class Y02 or Subclass Y04S, which refer to green
technologies.3 Currently a common understanding of the comprehensive
characteristics of eco-innovation is still elusive (for a discussion and
multi-dimension proposal see Kiefer et al., 2017). While we are aware of
the limitations of a similar approach in both identifying and analysing
“green technologies”, we rely on the Y02-Y04S classification for both the
explicit technological content of patents and for its widespread adoption
in the literature. In addition, we bundle together both adaptation and
mitigation technologies as they represent a unique macro-technological
category, while theoretically they could be potentially differently asso-
ciated with labour markets. We identify those patents embedding an
explicit labour-saving (LS thereafter) heuristic via a dependency parsing
algorithm. Next, we characterise their technological, sectoral and time
evolution. Finally, after constructing an index of sectoral penetration of
LS and non-LS green patents, we explore its association with employ-
ment share growth at state level in the US.

Our empirical strategy, adopting the Y02-Y04S tagging scheme
(Veefkind et al., 2012) allows us also to include two subsets presenting
an explicit digital dimensions, namely category Y02D, which includes
“climate change mitigation technologies in information and communi-
cation technologies [ict], i.e. information and communication technol-
ogies aiming at the reduction of their own energy use”, and category
Y04S “Systems integrating technologies related to power network
operation, communication or information technologies for improving
the electrical power generation, transmission, distribution, management
or usage, i.e. smart grids”. These subclasses of the green tagging scheme
are specifically devoted to digital technologies. In this respect, we also
incidentally, although in a limited manner, include those technologies
more closely connected to the twin transition. Secondly, and at a deeper
level, all technologies characterised by LS heuristics are by definition
technologies that intend to automate the underlying processes, reducing
labour input requirements by leveraging automation and digitalisation
architectures. Therefore, starting from decarbonisation patents and
restricting to the set of LS ones, we intend to isolate those embedding a
dual attribute.

Our core contribution puts forth a methodological advancement in
studying and detecting labour-saving heuristics in decarbonisation
technologies via the patenting domain, providing a new data-driven
toolbox and constructing a sectoral-level indicator relevant to map the
exposure of regions to LS green patents. The scope of the paper is
therefore to advance the investigation of labour market exposure to
decarbonisation technologies exhibiting a labour-saving threat. In this
work we depart from the task-based approach: while we acknowledge its
relevance and contribution to the topic, it is mostly restricted to account
for the task-based dimension of green tasks, and more suitable to address
the green transition as a carrier of product innovation. Our approach
instead mostly delves with the decarbonisation transition from the

perspective of process innovation. We therefore move to a method based
on patents full-texts, able to construct a direct measure of technological
penetration. Our methodological approach, which relies upon advanced
semantic analysis and natural language processing (Montobbio et al.,
2022), allows us to investigate the inventors’ heuristics embedded in
green patents and detect the extent to which they incorporate a true LS
trait and scope. Our method of analysis allows therefore to move from
the technological domain to the labour market domain, providing a
multi-layer and integrated interface of analysis.

Our results detect, first, a rapid increase in LS heuristics in the ma-
jority of green technological domains considered, and, second, a nega-
tive significant association with employment shares growth in the
sectors more exposed to the use of these technologies, therefore vali-
dating ex-post the penetration of such heuristics. In a nutshell, our
findings challenge the common understanding of the “green transition”
as only labour augmenting. Potentially, the capacity of the “green”
segment as a net labour-absorber might be weaker than commonly ex-
pected. Direct policy interventions are therefore necessary beyond
adaptation policies to “green skills” currently envisaged by institutions.

The paper is organised as follows. Section 2 discusses the extant
literature, while section 3 presents the relevant data sources. Our
methodology is outlined in section 4, where we describe the steps to
identify LS heuristics in green related patents, including the novel use of
the spaCy neural network model (Honnibal and Montani, 2017). After
the identification of two sets of green related patents (either associated
to LS heuristics or not), we present our results in section 5, which in-
cludes descriptive statistics emerging from our identification strategy
(5.1) and the dynamics of employment related to the penetration of
labour-saving heuristics into different industrial sectors (5.2). Our con-
clusions are presented in section 6.

2. Technologies, labour markets, and the green transition: State
of the art and open research questions

In order to analyse potential labour-saving threats in the adoption
and diffusion of decarbonisation technologies, we mobilise four main
research streams: the first line studies the effects of technical change on
labour markets, with specific attention to digital and automation tech-
nologies, inside the classic debate on technical change and employment;
the second studies the so-called green technologies and capabilities, and
their complementarity with brown knowledge; the third addresses the
characteristics of green jobs; finally, the fourth employs advanced nat-
ural language processing techniques to single out explicit textual con-
tents in patents, in order to construct a direct measure of occupational
exposure to technical change, rather than indirectly assessing the rou-
tinised content of an occupation.

Reflections and concerns about possible negative effects of technical
change on the labour market can be traced back to the dawn of the
history of capitalism (Staccioli and Virgillito, 2021), where the vast
introduction of capital machines, at the beginning of the First Industrial
Revolution, generated awareness among workers of the possible perni-
cious impact on labour, with the Luddites movement representing a
paradigmatic example (Nuvolari et al., 2002). The challenging rela-
tionship between technical change and labour persisted across the XX
century (L. Barbieri et al., 2019), along with the adoption of the steam
engine and later with the ICT revolution (Noble, 1986; Zuboff, 1988). In
the past decade, those worries involved specifically the new techno-
logical trend dubbed Industry 4.0, spurring debates on the effects of
automated processes and industrial robots upon employment (Acemoglu
and Restrepo, 2020; Brynjolfsson and McAfee, 2014; Frey and Osborne,
2017). Results are however quite inconclusive and mostly depend on the
level of aggregation considered and the type of technological proxy used
in the study. This stream of literature is currently delving into the new
effects deriving from AI applications, but it becomes progressively clear
that patterns of labour creation are essentially linked to market and
demand dynamics, while patterns of labour destruction emerge when

3 In particular, Y02 includes “Technologies or applications for mitigation or
adaptation against climate change”, while Y04S refers to “Systems integrating
technologies related to power network operation, communication or informa-
tion technologies for improving the electrical power generation, transmission,
distribution, management or usage, i.e. smart grids”.
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the industry/firm is under restructuring. Ultimately, the most recurrent
pattern has been task reallocation and change in the quality of work
(Montobbio et al., 2024a). This stream of literature is useful for our work
since it allows to place our expectations in terms of labour market im-
plications of decarbonisation vis-a-vis consolidated evidence` deriving
from the technology-labour market nexus.

The efforts to decarbonise economic products and processes, in order
to achieve better environmental sustainability, have gained increasing
traction among scholars as an object of study. Empirical attempts
devoted both to analyse the characteristics and knowledge base of green
technologies and the related labour market have been rising. Green
technologies and their characteristics have been largely studied at the
regional level (N. Barbieri et al., 2023; N. Barbieri et al., 2021; Corra-
dini, 2019; Montresor and Quatraro, 2020; Quatraro and Scandura,
2019; Santoalha et al., 2021; Tanner, 2014) and micro level (N. Barbieri
et al., 2020). Overall, these studies mobilise the concept of geographical
capabilities by using patents at the regional level and find complemen-
tarity between brown and green domains. More recent studies at the
firm level tend to confirm the finding, suggesting that green leadership,
if anything, tends to coexist with previous brown leadership, at least
with reference to the automotive industry (Mazzei et al., 2023). In
addition, at the firm level it is possible to identify the emergence of
diversification practices, with big players trying to locate themselves in
both trajectories, given the deep uncertainty at stake. With reference to
our work, this stream of literature is relevant insofar as it tends to
confirm that a clear distinction between brown and green knowledge
base is not clearly identifiable, and the border is quite blurred and
overlapping in terms of products and sectors of specialisation.

To study green labour markets, numerous empirical methods concur
(Bowen and Kuralbayeva, 2015), but analyses which originate from the
seminal works of Autor et al., 2003 and Acemoglu and Autor, 2011 draw
upon the Routine-Biased Technical Change theory and the related task-
based approach, in line with the literature on inequality and technology,
have so far met the most widespread adoption (Curtis and Marinescu,
2022; Dierdorff et al., 2009; International Monetary Fund, 2022; Vona
et al., 2021; Vona et al., 2018). Contributions are increasingly providing
new evidence, especially from the O*NET-SOC database (Dierdorff et al.,
2009). Vona et al., 2018 and Vona et al., 2021 develop a method, based
on task contents and their level of greenness, to measure and define
green employment. Adopting the same approach, the IMF has recently
dedicated a chapter to the green transition (International Monetary
Fund, 2022), documenting that the most green and most pollution-
intensive jobs are concentrated in terms of workforce and sectors,
even if environmental characteristics of jobs are widely dispersed, both
across and within sectors, leaving scope for reallocation of workers.
Second, green intensive occupations tend to be associated with high
skills and urban workers, as opposed to brown occupations; therefore,
green jobs seem to show a higher degree of complexity. Third, tran-
sitioning from brown or neutral to green jobs seems less likely than
languishing in similar types of occupations. Finally, environmental po-
lices might prove effective in greening jobs, but only if well tailored.

Curtis and Marinescu, 2022 move beyond the O*NET-SOC dataset
and employ online vacancy data in the US collected by Burning Glass
Technologies (BGT). In defining green jobs, the paper looks specifically
at open positions in the wind and solar sectors between 2010 and 2019.
Both sub-sectors exhibit substantial growth rates, especially since 2013.
A relevant share of solar jobs (approximately one third) is in sales, while
a similar share is scattered across installation and maintenance: coher-
ently with these results, the most common industry for wind jobs is
manufacturing (29 %), while utilities play an important although less
relevant role for both categories of green jobs (about 15–16 %). With
regard to the pay premium, it is higher for green jobs even when con-
trolling for the educational level, and for jobs that require lower edu-
cation. Finally, in the US, green jobs tend to be localised in specific areas
characterised by a high share of oil and gas sectoral employment. Other
applications using BGT data are in Saussay et al., 2022, focusing on

employment reallocation across so called low-carbon and high-carbon
jobs, and the ensuing cost of transition for affected workers.

The approach to green occupations is based on Dierdorff et al., 2009,
who define the Green Economy program of O*NET that groups green
jobs in (i) existing occupations that are expected to experience signifi-
cant employment growth due to the greening of the economy (Green
Demand), (ii) existing occupations that are expected to undergo signif-
icant changes in terms of task content (Green Enhanced Skills), (iii) new
occupations that emerge as a response to specific needs of the green
economy (Green Emerging). Although this approach has potential in
mapping green occupations, it is from the very inception a framework of
analysis that conceives the green economy as a net creator of new jobs, e.
g. a new growing sector. While the employment absorption patterns of
new green products require to be properly addressed, decarbonisation is
essentially an energy-saving, and in that labour-saving, heuristics.
Therefore, what if decarbonisation does not simply induce the creation
of new products/sectors, but it also implies energy-saving/labour-saving
technical progress? What if the greening of a given existing sector
essentially requires efficiency-enhancing processes, reducing input ab-
sorption, and labour thereof? What if green technologies are not linked
only to a new emerging economy but rather to more efficient energy-
efficient processes? And what happens to sectoral employment if pro-
duction processes become at the same time net saver of emissions and
labour inputs? After all, to a larger extent, decarbonisation processes are
essentially productivity-enhancing input combinations, and as such they
might incorporate a LS trait (Dosi, 1988; Rosenberg, 1976; von Tun-
zelmann, 1995).

Recent studies have mobilised the use of natural language processing
(NLPs) in order to single out the content of inventors’ heuristics, in
particular their labour-saving traits. The scope of this research stream is
to construct direct measures of occupational exposure to technical
change. Adopting an evolutionary perspective on technical change,
Montobbio et al., 2022 develop a NLP algorithm leveraging keyword
search to identify the presence of LS heuristics. They scour patent full-
texts, sentence by sentence, to look for triplets of words comprising
predefined verbal predicates, direct objects, and other attributes. The
toolbox is well suited for analysing texts with a standardised format like
patents, which represent a viable proxy of codified technological
knowledge, and thus constitute a powerful source to understand the
heuristics and ensuing rate and direction of innovative activities (Pavitt,
1985). Patent-data analyses using NLPs have been conducted by other
scholars, e.g. (Webb, 2019), who however solely focuses on patent titles
and abstracts to investigate the employment impact of robotics and AI.
Within the same stream of literature, Mann and Puttmann, 2023
establish a training sample of patents via manual validation and then
extend the identification̈ using a machine learning algorithm to classify
a larger population of patents. Dechezlepretre et al., 2019 construct â
composite identification strategy which involves both patent classifi-
cation and keyword search. Industry 4.0 patents are also investigated
through NLPs in Meindl and Mendonc¸a, 2021.

Contributing to the aforementioned streams of literature, our will-
ingness to focus on LS heuristics derives from the possibility of exploring
new dimensions of analysis and to put under scrutiny the boundaries of
the very notion of “green” skills. In particular, we cast some doubts on
the existence of processes, and ensuing human skills, uniquely con-
nected to the development of green products. To complement the extant
literature, we focus on the greenness of processes, rather than products.
In addition, our research question, differently from incumbent studies
devoted to understanding the development of new occupations within
sectors, concerns the extent to which existing efforts in developing green
technologies are coupled with efforts in reducing labour inputs, via
efficiency-enhancing processes. Should the coupled transition, defined
as the intersection of the two trajectories, present a limited capability in
the development of labour-friendly products, and, on the contrary, un-
fold especially towards labour-saving green processes, we shall argue
that LS effects may prevail in the realisation of less polluting new
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processes, also requiring less manpower. In this respect, our contribu-
tion complements existing studies on green as a product and ensuing
green skills, and revolves around green as a process.

3. Data description

The technological dataset is represented by USPTO patents full-texts.
We first retrieve from PatentsView4 all granted patents published be-
tween 1976 and 2021 associated with at least one CPC code of either
Class Y02 or Subclass Y04S, which are intended to encompass green
technologies (Angelucci et al., 2018; Veefkind et al., 2012). A total of
475,597 patents are found in this step, whose temporal evolution is
depicted in Fig. 1. Given this set, we will devise and apply a procedure to
identify LS patents therein.5

The second dataset moves from technology to sectors and to state
level labour markets, in order to evaluate the industrial penetration of LS
technologies and their employment in US states. In particular, we
leverage on:

• IPC-NACE concordance table: in order to match each patent to a
given industrial sector (NACE)6 we adopt the concordance table
provided by the European Patent Office, at the 6-digit level.7

• Sectoral employment data (US): for sectoral employment data we
adopt the Statistics for US Business (SUSB) data, collected and made
available by the United States Census Bureau.8 We retrieve state level
data for three years, namely 1999, 2009, and 2019. Data are shown
in Fig. 2, plotting employment share change over twenty years.
Remarkable differences emerge already at this stage in terms of the
geography of employment, with net losing and net gaining states.
The map signals the inner structural change in terms of
manufacturing (Rust Belt) versus the coastal and southern areas
linked to both high-end (California and Washington) and low-end
(Texas and Florida) services.

NAICS-NACE concordance table: made available by the European
Commission at the 6-digit level. Last available edition dates 2017.9

• NAICS classification: made available by the United States Census
Bureau, we track the evolution of economic activities over time using
multiple editions.10

More details on concordance tables and our data matching strategy is
provided in Appendix C.

4. Methodology

In order to identify LS heuristics inside green patents, we leverage
natural language processing techniques. Text mining is getting
increasingly applied to economics, while in other social sciences the
sophistication and usage of NLP algorithm is still in its infancy (Do et al.,
2022). While some methodological improvements and empirical appli-
cation to specific sectors have appeared in the literature (Hain et al.,
2022; Hain et al., 2020), few contributions, to the best of our knowledge,
are comparable to ours.

Our empirical strategy entails, first, the focus on a semantic pro-
cedure, rather than simple keyword search; second, the implementation
of an unsupervised validation technique to filter away potential false
positives; third, the extension to alternative semantic constructs in order
to enlarge the scope of identification of true positives. Therefore, with
our multi-step approach we are able to single out specific LS heuristics
within green patents texts, representing a (conservative) picture of
patents involved in the decarbonisation transition explicitly embedding
LS traits.

In subsection 4.1 we briefly describe the approach that leads to the
identification of potential LS green patents, applying the textual
approach developed in Montobbio et al., 2022 to Y02-Y04S patents
(Angelucci et al., 2018; Veefkind et al., 2012). Then, we face a complex
methodological challenge, namely the identification of true labour-
saving patents therein. Indeed, the validation procedure on which we
leverage upon, described in subsection 4.2, represents an advancement
and novelty in the analysis of patent full-texts. A notable exception is
Meindl and Mendonc¸a, 2021, which relies, as we do, on the spaCy NLP
library (Honnibal and Montani, 2017), which they apply to Industry 4.0
patents. In Fig. 3 we present a synthetic flowchart of our methodology.

4.1. Identification of the patent set: Potential LS green patents

We first retrieve from PatentsView all patent grants between 1976
and 2021 associated to at least one CPC code of the Y02-Y04S type, of
which there exist 475,597. Then, in order to analyse the potential LS
effects embedded into these patents, we adopte the textual algorithm
and procedure described in Montobbio et al., 2022. While we refer the
reader to the paper for a full description of the methodology, in Fig. 4 we
show the structure of triplets used to identify the LS content. The algo-
rithm receives the preprocessed full-text of each green patent, after
tokenisation, removal of stop words, and stemming,11 and looks for the
joint occurrence of a triplets of words which, differently from trigrams,
does not impose a certain order or adjacency of the predefined words,
and flags the patent as potentially LS if at least one sentence contains at
least one of the k × j × m triplets.

The preliminary step of the identification strategy returns a total of
10,430 potential green LS patents. However, a quick manual validation
of a sample of these highlights the presence of numerous false positives.
Two examples follow:

“The sHASEGPs or a soluble human hyaluronidase domain thereof or
pharmaceutically acceptable derivatives can be prepared with carriers that
protect the soluble glycoprotein against rapid elimination from the body, such
as time release formulations or coatings” [US9562223B2].

“[…] for human consumption, soybean cultivar can be used to produce
edible protein ingredients which offer a healthier, less expensive replacement
for animal protein in meats, as well as in dairy-type products”
[US8076545B2].

It is apparent that despite the highlighted words broadly belong to
the semantic domain of LS technologies, the overall meaning of these
sentences does not. In order to avoid false positives, we initially attempt
to restrict the starting patent set by excluding patents associated to
pharmaceutical and biotech technologies (based on co-occurring CPC
codes), in line with Mann and Puttmann, 2023 who determines that
most of chemical and pharma patents are unrelated tö automation.
However, we find that the distribution of false positives in our dataset
does not cluster around specific technological classes. This prompted a
change of strategy that led us to leverage the semantic structure of the
sentences under study, by means of a dependency parsing algorithm. In
the present study we neglect the issue of false negatives, which could be
seen as a limitation. However, the quest for including more LS patents

4 https://patentsview.org/.
5 The USPTO is known to constitute a preferred patenting outlet for both

domestic and international applicants and previous analyses have confirmed a
substantial degree of overlap between USPTO patents and other patent offices’.

6 Nomenclature statistique des Activités economiques dans la Communauté
Européenne

7 https://forums.epo.org/concordance-table-between-ipc-and-nace2-9756.
8 Details, descriptions and limitations of dataset can be found online at https

://www.census.gov/programs-surveys/susb/technicaldocumentation/methodo
logy.html.

9 https://ec.europa.eu/eurostat/web/metadata/classifications.
10 https://www.census.gov/naics/?68967.

11 In order: tokenisation is obtained by means of a punctuation regular
expression; the list of stop-words is taken from the nltk Python library; from the
same library we adopt an advanced version of the Porter, 1980 stemmer.

T. Rughi et al. Ecological Economics 230 (2025) 108497 

4 

https://patentsview.org/
https://forums.epo.org/concordance-table-between-ipc-and-nace2-9756
https://www.census.gov/programs-surveys/susb/technical-documentation/methodology.html
https://www.census.gov/programs-surveys/susb/technical-documentation/methodology.html
https://www.census.gov/programs-surveys/susb/technical-documentation/methodology.html
https://www.census.gov/programs-surveys/susb/technical-documentation/methodology.html
https://ec.europa.eu/eurostat/web/metadata/classifications
https://www.census.gov/naics/?68967


(the signal) has the potential of attracting spurious elements (the noise).
Therefore, at the present stage we opt for a more conservative approach,
trying to minimise the occurrence of false positive and accepting an
unknown number of false negative. As will become clear in sections 5
and following, our cautious approach still allows to detect important and
significant results.

We leave potential methodological refinements to further research.

4.2. Identification of true LS green patents: Dependency parsing analysis

Dependency parsing belongs to a family of grammar formalisms
whereby “[…] phrasal constituents and phrasestructure rules do not play a
direct role. Instead, the syntactic structure of a sentence is described solely in
terms of the words (or lemmas) in a sentence and an associated set of directed

binary grammatical relations that hold among the words” (Jurafsky and
Martin, 2020,pag. 280). We employ the spaCy library12 developed by
Honnibal and Montani, 2017, a specialised NLP tool that leverages on
neural networks. The library is increasingly used both in industrial and
academic applications: it is the case of Meindl and Mendonc¸a, 2021,
who however focus on a different research question, namely mapping
Industry 4.0 technology for which they use Named Entity Recognition
routines. spaCy’s document model represents texts through dependency
parsing, which reconstructs the grammar relationship between words
and the overall hierarchical structure of sentences.13 This allows to
perform sophisticated text queries which go beyond the simple co-
occurrence of keywords. One of the very interesting features of the

Fig. 1. Number of green patents per year. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Employment share difference 2019 vs. 1999.

12 https://spacy.io/.
13 A more technical discussion on the various dependency types is offered in

De Marneffe et al., 2014.
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spaCy library is the possibility to deploy such grammatical structures
through graphical representation of dependency trees, as we do in
Figs. 13, 14, 15, 16, 17, 18, where the arrows describe both the de-
pendency type (grammatical nature of a word in a specific phrase, e.g.
adjectival modifiers) and the relationship between words (how nouns
are related to one another through an adjective or verb, for instance).
The usage of ex-ante defined grammatical structure enables to omit false
positives like the examples provided in section 4.1.

Two “ingredients” are therefore necessary for the algorithm to work:
a dictionary of target keywords and a specified dependency structure.
We extend the keyword lists used in Montobbio et al., 2022 according to
Fig. 5.

Together with the dictionary of target keywords, we require the
relevant sentences of potential LS green patents (previously identified

based on the triplets in Fig. 5) to exhibit either of the following de-
pendency structures:

• Baseline pattern: predicate → attribute → object
• Pattern I: predicate ← attribute → object
• Pattern II: predicate → object → attribute
• Pattern III: object → attribute → predicate
• Pattern IV: object → predicate → attribute

Fig. 3. Flow chart of the methodology.

Fig. 4. Structure of the labour-saving textual query.

Fig. 5. Dictionary lists for the dependency parsing model.
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With the symbol → or ← we indicate the relationship between key-
words and their semantic order within the dependency tree. According
to the baseline pattern (predicate → attribute → object), we ask the al-
gorithm to look for a semantic structure that starts with a predicate
which connects to an attribute, and further to an object. In order to read
dependency trees, presented in Appendix B, we recall that the algorithm
assigns two types of tagging. Firstly, for each single word in the patent
text, the algorithm assigns a tag identifying the core part-of-speech
category, that is, its grammar definition (e.g. a noun, an adjective, a
verb, etc.). Such tag is called Universal Point of Speech (POS) tagging
and is provided below each word represented in the figures. The second
tag instead characterises the grammatical relationship between words
(dependency) and is depicted along the connecting arrows; for instance,
“attr” means that the word upon which the arrows land is an attribute
with respect to the word from which the arrow starts. In particular, the
algorithm adopts the Universal Dependency (Dep) in terms of nomen-
clature. The POS tagging list is described in more detail in Appendix G,
where we also provide the appropriate source to the interested reader
concerning the Dep nomenclature and description.

4.3. A snapshot of true LS green patents subset

Repeated random samples were hand-validated in order to gain an
insight on the magnitude of algorithm accuracy, which shows a level
superior to 85 %. To study the underlying technological content of the
subset of true LS green patents, we map CPC codes associated to climate
change-related, distinguishing between LS and non-LS ones. Tables 3
and 4 show, respectively, the top 20 CPC at the 4-digit level14 in terms of
frequency for LS and non-LS green patents. The frequency is computed
as the number of times a certain code is specified across all patents and
considers the fact that the same 4-digit code may appear more than once
in each patent. Common CPC codes between LS and non-LS green pat-
ents are shown in gray, while other colours identify codes appearing in
either but not the other (green for LS, orange for non-LS): the majority of
codes are shared, which signals pervasiveness of green technology both
in LS and non-LS patents and also the lack of specific LS applications in
some circumscribed domains.

In Table 4 we notice specific non-LS CPC associated with medical/
therapeutic domains (A61P, A61K), automotive with a focus on com-
bustion engines (F02D, F01N, B60W), and chemistry (B01J, C01B). LS
green patents instead show more heterogeneous fields, which include
control systems (G05B), data processing for administrative purposes
(G60Q), heating system (H05B, F24S), telephonic communication
(H04M), in line with the digital content of this set. The very fact the LS
patents are not limited to a small set of CPC codes but are rather
widespread signals that LS heuristics are not a restricted phenomenon.
However, this pervasiveness also highlights the complexity of their
identification, which cannot be comprehensive, should the analysis
concentrate ex-ante on few specific CPCs.

Notably, the algorithm correctly pinpoints technological applica-
tions related to human treatments as false positive (non-LS); in addition,
climate-change related innovations in automotive are concentrated in
non-LS patents rather than in LS ones. The latter evidence might hint at
the fact that more innovative efforts in the automotive sector are
currently focussing on product, rather than process innovation, such as
the electric engine, batteries, and other internal components.

It is useful to assess our algorithm’s ability to detect patents
embedding both decarbonisation pathways and a labour-saving attri-
bute in their scope. To this purpose, we report CPC co-occurrences
among the set of identified codes, distinguishing by sub-categories.

Tables 1 and 2 present the co-occurrence matrix between the CPCs of the
two sets of patents, expressed in terms of cosine similarity.15 Higher
values indicate the presence of multiple CPCs associated to each patent
document, meaning that the technology presents a multi-purpose scope.
Notable, LS patents present a higher co-occurrence with the digital
dimension. In fact, the digital CPC (Y02D) tends to appear together with
transport CPCs (Y02T), energy (Y02E) and building (Y02B), while in the
case of non-LS patents high values of cosine similarity with digital CPC
occurs with smart grids (Y04S) and adaptation (Y02A). The higher
concentration for LS patents between digital and the remaining appli-
cations is informative of the embeddedness of the digital component into
this set.

5. Results

In the following, we discuss the time evolution and technological
composition of LS and non-LS patents (subsection 5.1). Then, we move
to the analysis of sectoral penetration and employment dynamics in US
labour markets (subsection 5.2).

5.1. Time evolution and technological composition

This section presents the time evolution and technological compo-
sition of patents retrieved at various stages of the algorithm, as shown in
Table 6. Applying the identification procedure developed in Montobbio
et al., 2022, we end up with 10,430 potential LS patents out of 475,597
(about 2.29 %). At the end of the validation procedure via dependency
parsing described in section 4.2, 3901 true LS patents are retained
(about 0.8 % of all green patents).

In terms of temporal trends, shown in Fig. 6, both sets present a
steady increase up to 2008–2010, with a fierce acceleration afterwards.
The third panel shows the relative share of LS patents over time, in order
to compare the relative trend of the two categories: notably, until the
‘80s LS green patents exhibit a steeper increase with respect to overall
green patents, while afterwards the share fluctuates around 0.8 %.

In Table 7 we show the Y02-Y04S CPC tags frequency associated to
the identified patents. The bulk of patents is classified into nine scopes of
application, according to the USPTO definitions.16 The relative distri-
butions across categories appear coherent between LS and non-LS pat-
ents, with some notable exception. For instance, while Energy and CSSD
(“Climate Storage Sequestration or Disposal”) are, respectively, the most
and least frequent CPC tag in both groups, Digital shows a lower fre-
quency for LS green patents compared to non-LS. On the contrary, the
Smart grids CPC is relatively more prevalent in LS green patents with
respect to the totality of patents. Although all patents are inside the
climate-change related domain, these technologies are characterised by
different stages in their respective life cycles, meaning that some are still
in their infancy, while others are already reached maturity. Different
stages in the life cycle might manifest in heterogeneous trends over time.

In the following, we deepen the analysis of CPC tags, labelling CPCs
which do not belong to the Y02-Y04S classification as “complementary
green”, since they belong to “green patents”.17 Unsurprisingly, the bulk

14 In Appendix E we present similar tables but using full digits codes.

15 Cosine similarity, defined for two generic vectors A and B is computed as
follows: similarity (A, B) = (A ⋅ B) /(||A||⋅||B||) = cos(θ) ∈ [0,1], where θ
corresponds to the angle between the two vectors.
16 The official labels and descriptions can be found at https://worldwide.esp

acenet.com/classification?locale=en EP\#!/CPC=Y02.
17 To be more precise: on the one hand, all patents in the analysis are defined

as green since they possess one or more CPCs of type Y02-Y04S. On the other
hand, the majority of patents possess more than one CPC and therefore go
beyond the Y02-Y04S classification. We call these other CPC codes comple-
mentary green, since they belong, together with green CPCs, to patents labelled
as green. In other terms, they constitute “brown” CPCs that appear within green
patents, therefore complementing green CPCs.
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Table 1
Cosine similarity, co-occurrence of green CPCs, LS patents.

digital smart grids adaptation buildings capture energy process transport waste

digital 1
smart grids 0.2399 1
adaptation 0.2587 0.6382 1
buildings 0.5774 0.5007 0.4950 1
capture 0.1002 0.6353 0.7265 0.6022 1
energy 0.7054 0.6854 0.5686 0.3229 0.3789 1
process 0.3068 0.6661 0.6963 0.8896 0.6947 0.3036 1
transport 0.8798 0.3696 0.4151 0.8897 0.3568 0.5333 0.6709 1
waste 0.1734 0.3811 0.6038 0.3492 0.7473 0.4685 0.4368 0.2660 1

Table 2
Cosine similarity, co-occurrence of green CPCs, non-LS patents.

digital smart grids adaptation buildings capture energy process transport waste

digital 1
smart grids 0.6441 1
adaptation 0.6482 0.8805 1
buildings 0.5163 0.4221 0.4196 1
capture 0.1810 0.2785 0.5487 0.3620 1
energy 0.6013 0.5857 0.7579 0.3689 0.7069 1
process 0.2773 0.6018 0.5579 0.7200 0.3533 0.1123 1
transport 0.5302 0.4158 0.4299 0.9826 0.3819 0.3121 0.7843 1
waste 0.2189 0.3641 0.5596 0.5027 0.9505 0.6108 0.5385 0.5269 1

Table 3
TOP 20 CPC, true LS patents.

Top 20 TRUE LS
CPC 4-dig. Rank Freq.

H04L 1 3,323
H04W 2 2,966
G05B 3 2,132

systems or elements
B29C 4 1,994

-treatment of the shaped products, e.g. repairing
G06Q 5 1,744 Data processing systems or methods, specially adapted

Y02E 6 1,526

G06F 7 1,333 Electric digital data processing
Y02P 8 1,304
Y10T 9 1,154
H01L 10 1,097 Semiconductor devices; electric solid state devices not otherwise provided for
F24S 11 1,074 Solar heat collectors; solar heat systems

H01M 12 1,053 Processes or means, 
electrical energy

Y02T 13 1,003
H02J 14 971 systems 

for storing electric energy
Y02B 15 782

appliances or related end-
B60L 16 764 Propulsion of electrically-propelled vehicles [...]; supplying electric power for auxiliary 

equipment of electrically-propelled vehicles[...]; electrodynamic brake systems for 

ally-propelled vehicles; electric safety devices for 
electricallypropelled vehicles

C02F 17 745 Treatment of water, waste water, sewage, or sludge
B01D 18 652
H04M 19 624
H05B 20 619 electric light sources not otherwise provided for; circuit arrangements 

for electric light sources, in general
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of CPCs are concentrated in what we label “complementary green”.
Restricting the analysis only to green CPCs (Fig. 7), in the non-LS set,
energy, transportation, product and process, digital and building patents
do represent a majority, with a steep increase since 2008 onwards. In
particular, energy and transportation CPCs exhibit notable growth rates.
Other technological classes instead display a more sluggish trend.
Focussing on LS green patents (bottom part of Fig. 7), their lower
number per year generate more volatile trends. In this subset, we
highlight the higher relative importance of product and process CPCs
and building, while CPCs linked to transportation, while still very
numerous, appear to be less dominant.

From the temporal and composition analyses of green CPCs it
emerges that green technologies are themselves quite heterogeneous,

with certain technological domains almost disregarded, such as waste.
Energy and transportation are the workhorse but they generally come as
secondary scope and use. Indeed, it appears that green technologies are
more complementary rather than uniquely sourced, considering that the
largest fraction of CPCs does not belong to the Y02-Y04S classification.
With reference to the LS green set, some ubiquity across domains is
evident, and even the time trend, although sluggish, is increasing. The
main message from the temporal and composition analysis however is
the emergence of a high heterogeneity among technologies, while the
punctual identification of technological content might require further
refinement. For instance, the waste class might be under-represented in
this classification since it is better defined in the OECD ENV-Tech
classification.

Table 4
TOP 20 CPC, non-LS patents.

Top 20 FALSE LS
CPC 4-dig Rank Freq.

H01M 1 403,572 Processes or means, e.g. 
electrical energy

H01L 2 234,719 Semiconductor devices; electric solid state devices not otherwise provided for
Y02E 3 202,559

Y02T 4 182,576
G06F 5 146,749 Electric digital data processing
B60L 6 137,688 Propulsion of electrically-propelled vehicles; supplying electric power for auxiliary 

equipment of electrically-propelled vehicles ; electrodynamic brake systems for vehicles 

variables of electrically-propelled vehicles; electric safety devices for electrically-
propelled vehicles

B01J 7 115,215 Chemical or physical processes, e.g. catalysis or colloid chemistry; their relevant 
apparatus

B01D 8 114,560
H04W 9 114,510
Y02P 10 112,623
H02J 11 105,938

for storing electric energy
F02D 12 104,515
A61P 13 94,281
H04L 14 91,749
F01N 15 86,433 Gas-flow silencers or exhaust apparatus for machines or engines in general; gas-flow 

B60W 16 84,747 Conjoint control of vehicle sub-
systems specially adapted for hybrid vehicles; road vehicle drive control systems for 

-unit
Y10T 17 78,931
A61K 18 72,087 medical, dental, or toilet purposes
C01B 19 59,927 Non-metallic elements; compounds thereof
Y02B 20 57,705

appliances or related end-

Table 5
Quantile regression results (0.5), LS vs. non-LS patents.

NACE Employment total share growth, LS vs. non-LS patents

1999–2019 1999–2009 2009–2019 1999–2019 1999–2009 2009–2019

LS non-LS

(1) (2) (3) (4) (5) (6)

Sectoral penetration index
0.244288** − 0.065534 0.719042*** − 3.076947*** − 0.741661* − 0.210307***
(0.120790) (0.230282) (0.066488) (0.480215) (0.413646) (0.054767)

Sectoral penetration index2 − 1.051315*** − 0.188366 − 1.262192*** 3.158888*** 0.613342 0.275940***
(0.140848) (0.227818) (0.073499) − 1.168288 − 1.193.818 (0.054104)

Observation 1785 1785 1785 2091 2091 2091

Note * p < 0.1; ** p < 0.05; *** p < 0.01
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Fig. 6. Patents’ trend: all patents vs. LS.

Fig. 7. CPC trend: non-LS patents vs. LS, only Y02-Y04S tags.
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Given the different life cycles of the underlying technologies and
their heterogeneity, in Fig. 8 we present the time dynamics of each
specific share of CPC tags. A higher time volatility derives from LS green
CPCs, as shown in the bottom part of the figure where both LS and non-
LS CPCs are considered together. If we focus on the comparison between
LS and non-LS green tags, we can distinguish some specific patterns.
Starting from the non-LS set, we observe stable levels of shares in
building, energy and product and processes. Adaptation and waste
present a similar pattern, with a relative increase until mid-1990s, fol-
lowed by a constant decrease. Digital, smart grids and transport CPCs
instead have acquired higher shares over time, in particular digital tags.
LS shares present some differences with respect to non-LS: for instance,
adaptation and product and process look to be more relevant than,

respectively, non-LS patents and, on the contrary, transportation LS
CPCs do not have a very high importance. Waste, digital and smart grids
tags in LS patents present similar (yet more volatile) patterns than in
non-LS green patents. Smart grids CPCs are relatively more important in
the case of LS patents than in non-LS. It is however crucial to highlight
that the bulk of innovative efforts are concentrated towards comple-
mentary green technologies, as it is possible to notice in the right side of
Fig. 8.

LS patents only constitute a tiny fraction. However, what if new
emerging green patents progressively embed LS heuristics? How does
the importance of LS heuristics dynamically change? Time weighted
growth rates, where the weight is based on the lagged annual share of
patents, allow to account for the underlying behaviour. Even if the

Fig. 8. Share of CPC, LS vs. non-LS.
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measure is linked to CPCs and not directly to patents, it offers a powerful
proxy to capture different life cycle stages of green technologies and it is
constructed as follows, for both LS and non-LS patent sets, where the
superscript H = {LS; non-LS} indicates the underlying heuristics:

1. For each green technological category i, we compute the annual
growth rate of CPCs

growthHi.t =
nHi,t − nHi,t− 1

nHi,t− 1
(1)

2. For each year, we compute the share of each specific technology,
with respect to total green CPCs

shareHi.t =
#patent categoriesHi,t

∑k

i=1
#patent categoriesHi,t

(2)

3. The weighted growth for each category is defined as the product
between the yearly growth rate of the single category and its lagged
annual share, namely

weighted growthHi,t = growthHi,t⋅share
H
i,t− 1 (3)

4. Finally, we apply a 5-year rolling average to smooth the trends and
we compute the cumulative growth

The results offer a clear account of the technological pervasiveness of
LS heuristics in the development of new green technologies across the
majority of domains. Fig. 9 represents the cumulative weighted growth,
distinguishing between Y02-Y04S tags and LS vs. non-LS patents. With
the exception of CSSD technologies, digital and, partly, smart grids, the
weighted cumulative growth of all the remaining technologies are much
higher for LS patents. The result highlights that newly coming green
patents progressively embed labour-saving heuristics. Therefore,
although with relatively low numbers, LS patents appear to be concen-
trated in newly developed technologies. Indeed, such heuristics, if at a
first approximation might appear a secondary concern, once concen-
trating in newly emerging technologies, and during the last period,
might turn out to be far more relevant.

This evidence raises the question about the job creation capacity of
the green paradigm. While new jobs might arrive because of new
product creation, technological upgrading and greenifying technologies
might embrace a laboursaving content potentially able to expel part of
the labour force. In the next subsection we shall go deeper into the link
between technological penetration of LS green technologies, at the
geographical level, and related employment growth trends.

5.2. Penetration of green LS technologies and employment growth

We now move to analyse the nexus between employment growth and
LS heuristics’ penetration, at the sectoral and state level in the US. The
aim of the empirical exercise is to test the validity of the proposed sec-
toral level indicator, in order to assess whether it presents any rela-
tionship, and of which kind, with employment growth. With this scope,
we first link patents to sectors, and then, controlling for state level
sectoral composition of employment, we link sectoral penetration of
technologies to employment dynamics.

The first step entails mapping the relevance of LS patents across
sectors: to accomplish the task, we use the concordance table between
IPCs and NACE sectors provided by the European Patent Office which

can also be adapted to CPC.18 The concordance table allows to map each
patent i with its NACE codes (thereafter, sectoral codes) with associated
weights, such that for each patent i the sectoral weights sum up to one.

After associating CPC to sectoral codes, we build a sectoral penetration
index (normalised between zero and one) associated to each sector j,
which represents the overall sectoral exposure to each of the two patent
sets (LS and non-LS). For instance, a level close to one for non-LS patents
characterises a sector not exposed to LS technological penetration,
namely a sector in which the majority of non-LS patents are
concentrated.

To construct an indicator of sectoral penetration we firstly build an
identifier composed by each patent ID and sectoral weights associated,
and then we uniquely select the rows based on such identifier. After-
wards, for each sectoral code jwe compute the average, according to the
following procedure:

avg.sectoral penetrationHJ =

∑nj

i=1
sector weightHi,j

nHj
(4)

where nj is the number of patents in sector j, and sector weighti,j is the
weight associated to patent i in sector j.

Such procedure however equally weights more and less prevalent
CPC, thus presenting potential biases. In order to make this measure
meaningful for intersectoral comparison, we weight the average sectoral
penetration for the patent share in each sector:

sector patent shareHJ =
nHj

∑k

j=1
nHj

(5)

These sectoral shares assume higher values for sectors characterised
by higher patent intensity of a specific CPC,

and vice-versa. Finally, we build a sectoral penetration index which
allows for weighted comparisons between sectors:

sector penetration indexHJ = avg.sectoral penetrationHj ⋅sector patent shareHj
(6)

The attributions of technological penetration to sectors are shown in
Fig. 10 and in the third column of Tables 8 and 9 for non-LS and LS
patents, respectively. If we consider the top twenty most exposed sec-
tors, it is possible to notice a high degree of overlap between the two
sets, in line with the results on CPC prevalence. Restricting the attention
to the top five sectors, we highlight the relative less importance of
automotive/transportation in LS technologies with respect to non-LS
green patents. In fact, in the 1st and 3rd position of non-LS green pat-
ents we find, respectively, sector 27.2 (“Manufacture of batteries and
accumulators”) and 29.1 (“Manufacture of motor vehicles”), while the
same industries appear as, respectively, 7th and 13th for the LS patents
set. These results are indeed unsurprising and signal a lack of specific
concentration of LS heuristics in some specific sectors, and therefore the
ensuing pervasiveness all but limited to specific sectors/technology.
Indeed, the pervasiveness of LS heuristics might be considered a po-
tential warning of the embedded labour-saving traits. Recall that the
majority of identified patents are “complementary green” and therefore
the presence of sectors not strictly related to green products should not
come as a surprise. In addition, this evidence suggests the relevance of
interpreting the usage of the underlying patented technologies also in
terms of green processes.

We now move from sectoral to employment penetration at the
geographical level. In the US, the sectoral employment composition
deeply differs across states. Therefore, we can compare, state by state,

18 Excel concordance tables and metadata can be found at https://forums.epo.
org/concordance-table-between-ipc-and-nace2-9756.
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the change in employment shares in more versus less exposed sectors to
LS patents, where the exposure is measured by the sectoral penetration
index presented in Tables 8 and 9, and then aggregated at the state level.
Indeed, the analysis is meant to understand the extent to which states
that do present an employment composition in sectors more exposed to
LS patents record a different dynamic vis-a-vis states whose employment
composition is less concentrated in sectors exposed to LS` technologies.

We employ SUSB data from the United States Census Bureau and the
concordance table reported in the fourth column of Tables 8 and 9,
linking each sector to the level of employment in 2019. In order to map
the extent to which the sectoral penetration of LS patents has an asso-
ciation with employment share growth, and eventually a differentiated
one with respect to non-LS patents, we set up a quantile regression
analysis, conducted at the state-sectoral level.

Given the lack of sectoral employment data at the state level, we
build state-level employment weights to impute the share of each sector
(available at the federal level) for each state, that is:

state weightHi =
employment stateHi
federal employmentHt

(7)

where i = 1, …,50 represents state dummies, and t =

{1999,2009,2019} the years considered. For both sets, we then.

total shareHi,j,t =
federal employment sectorHj,t

federal employmentHt
⋅state weightHi,t (8)

We finally compute 10-year growth rates of the implied sectoral
employment shares in order to have a relatively long time span to cap-
ture any structural change process. We perform the following quantile
regression estimation for each of the two sectoral penetration indices of
patents (as usual, for both LS and non-LS sets), including both a linear
and a quadratic term:

empl.share growthτH
i,j,θ = βτH

1 sector penetration indexj
+ βτH

2 sector penetration index2
j +ατH+ ετH

i,j,θ

(9)

with τ = 0.5 indicating the proportion of the population having scores
below the quantile at τ; θ represents the interval periods considered
(2019 vs. 2009, 2009 vs. 1999, 2019 vs. 1999), for which we perform
distinct regressions; i = 1, …,50 indicate US states; j indicates the sector.
State-level fixed effects were included to account for geographic het-
erogeneity and to counterbalance the fixed within sectoral composition
across states (see eq. 7). Finally, the inclusion of the quadratic term al-
lows for a non-linear relationship and a more flexible regression
estimate.

In Table 5 we present the results of the regression exercise and in
Fig. 11 we plot the intensity of the coefficients along the distribution of
the sectoral penetration index. Both OLS and quantile regression at the
median estimates are reported, where each point represents the sectoral-
state share of employment in each year of the estimation period.

Results are in line with our expectations. Along the distribution of
the sectoral penetration index, between zero and one, the coefficients

Fig. 9. Cumulative weighted growth, LS vs. non-LS patents by green CPC. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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show an overall negative concave relationship between the relevance of
LS patents across sectors and employment share growth, while the
opposite holds for non-LS patents. Notably, the quadratic relationship
signals the existence of a non-linear threshold behaviour that is in
general around a penetration index of 0.5. Indeed, sectors/states with
high sectoral penetration are not a majority of the observed points but,
whenever the penetration index is high, a stronger negative correlation
emerges.

Our dependent variable informs about changes in the structural
composition across sectors, both services and manufacturing being
included in the overall employment. A robustness test is conducted in
Appendix D.1, restricting the analysis to manufacturing shares only,
which confirms the result: whenever the within-manufacturing sectoral
employment is more exposed to LS green patents, employment shares in
that sector decline.

According to these results, first, our identification methodology of LS
heuristics seems to be ex-post validated, given that sectors exposed to a
large number of LS green patents do present decreasing share growth,
and therefore manifest LS associations with employment. Notably, the
opposite result holds for non-LS patents. In addition, despite the low
number of LS patents, results are significant and robust to the inclusion
of a different dependent variable, namely employment share across
manufacturing. Finally, the nexus between the unfolding of green
technology upon employment strengthens in the last decade
(2009–2019), while in the first (1999–2009) it does not show any sig-
nificant result in either set (LS and non-LS).

In order to account for geographic heterogeneity, Fig. 12 displays the
estimated beta coefficients at the state level. From the maps, the

depressed Rust Belt area and the inner Wyoming and Missisipi states
stand out. These states record negative employment growth shares in
sectors more exposed to LS green technologies, given the differences
between the two maps (left-hand side vs. right-hand side). Winning
states are instead located into the east and southern areas. Notably,
states with higher sectoral exposure to non-LS patents record positive
employment share growth, as shown in the left-hand side picture.
Another striking result is that the distinction between LS and non-LS
technologies becomes relevant in the second decade (2009–2019),
while the dynamics in the decade 1999–2009 shows an almost over-
lapping pattern between the two sets of technologies. Considering that
the sectoral penetration index of LS technologies is a time-invariant
indicator, the intensification of the statistical association over time
can only be attributed to a retardation, time to display-effect, of both LS
and non-LS technologies over time.

In a nutshell, the most exposed sector to LS patents is manufacturing
of computers and peripheral equipments, while, at the opposite, the
most exposed sector to non-LS technologies is manufacturing of batteries
and accumulators. The two most exposed sectors are a clear distinct
example of the different association that process vs. product innovation
manifest with employment even in the green segment.

6. Conclusions

Climate change urges for policy actions: green transition and digi-
talisation/automation efforts are seen as pivotal and are currently under
the lens of practitioners and scholars. However, while recognised as part
of a coupled transition, often restricted to the twin dimension (i.e.

Fig. 10. Most prevalent sectoral codes, normalised values. Compute the share of employment in state i and sector j, at time t:
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digital), the embedded labour-saving/input-saving threats in decar-
bonisation technologies are often disregarded, especially with respect to
labour markets. The literature currently tends to emphasise the job
creation effects of the green paradigm (IRENA and ILO, 2021) and the
job-destruction effects of automation, digitalisation, and more recently
AI (Montobbio et al., 2024a). However, there is still no clear

understanding of the coupled dynamics of green technologies, which
should support the green transition, and labour-saving heuristics
embedded in innovative green efforts.

Given the extant literature, the first contribution of this paper is to
detect the existence of LS heuristics in climate change mitigation/
adaptation patents, therefore to link these two countervailing forces

Fig. 11. Regression plots.
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upon labour market restructuring. To empirically accomplish the task,
we delve into the analysis of textual contents of patents relying on
Natural Language Processing (NLP) techniques. In addition, we adopt a

semantic analysis validation method, namely dependency parsing,
which allows to produce quite restrictive but reliable results. The
methodological advancement in identifying LS green patents represents

Fig. 12. State level coefficients, employment share growth.
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our second contribution.
We then construct a direct measure of sectoral technological pene-

tration linking patents, distinguished into LS and non-LS, and connected
to sectors via the patent-sector concordance table. The sectoral exposure
allows then to move to state-level labour markets, accounting for sec-
toral employment distributions and the net effects deriving from LS
penetration. The construction of a direct measure of technological
exposure linked to labour markets is an innovative advancement with
respect to the literature on green jobs, which so far has adopted indirect
measures of greenness at the task level unit of analysis, inheriting the
approach from the Routine-Biased Technical Change literature, the
latter lacking an actual measurement of the technology in use. In addi-
tion, the green jobs literature has so far not delved into understanding
green as a process but rather as a product or new emerging sector. The
construction of a penetration index connecting technology-sector-
employment, together with the focus on green as a process, represents
our third contribution.

According to our results, first, LS and non-LS patents do manifest
differences in terms of technological composition (Y02-Y04S main tag):
for instance the transport (Y02T) and digital sectors (Y02D) exert a less
relevant role in LS green patents than in non-LS ones, while product and
process (Y02P) and smart grids are relatively more important in LS
patents. Remarkably, from the patterns of cumulative weighted growth
in the two patent sets, it emerges clear evidence that LS patents are
becoming progressively more pervasive in recent technological appli-
cations, considering that the measure accounts for the maturity stage of
technologies.

Finally, we explore the statistical association of penetration of the
two different sets of technology on employment (SUSB data) at the
sector/state level. We study changes in the share of employment along
the last ten and twenty years. Our evidence shows that employment
shares in sectors characterised by a higher exposure to LS (non-LS)
technologies present an overall negative (positive) growth dynamics.
Such results are robust when using manufacturing shares instead of
overall employment and provide further validation of the identification
steps of LS heuristics embedded into green technologies. Remarkable
state-level heterogeneity emerges in the second decade, hinting at a
time-todisplay effect of technologies on employment, with the Rust Belt
area dramatically losing, in contrast with Texas and California gaining,
employment shares, with respect to non-LS patents.

The flexibility of the index is such that it can be distinctively adopted
to measure both labour expelling and labour creating effects of the green
paradigm. Our main concern here has been on labour expelling patterns,
although labour creation effects might be studied as well. This repre-
sents a natural continuation of our work. In addition, cosine similarity
measures of textual contents might be used to link patents and tasks
embedded into occupations, via O*NET, along the lines of Montobbio
et al., 2024b. The latter would represent a second avenue of research.
The study of the effects on wage and functional inequality would be a

third realm of investigation. Further extensions may include a distinc-
tion between product and process innovation, together with a more fine-
grained decomposition of the geographical distribution.

There are however a number of limitations: patents do not constitute
the only proxy of technological innovation, and they do not exhaust the
multidimensional aspects of innovation realm and scope. The techno-
logical classification used might not be entirely exhaustive in compre-
hensively embedding eco-innovations. Moreover, our study deals with
technological penetration but does not address the actual adoption of
these technologies by firms: our results, therefore, must be interpreted in
terms of potential LS threats and not as realised ones, since we can not
empirically establish direct causal mechanisms. Indeed, the scope of our
empirical analysis is explanatory in nature, in order to first validate the
proposed indicators and to test the eventual emergence of a relationship
vis-a-vis employment growth.` Finally, finer NLP methods are still
emerging and other supervised machine learning techniques may be
considered valuable alternatives (Do et al., 2022; Mann and Puttmann,
2023).
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Appendix A. Focus: LS vs. non-LS set, CPC tags and sectoral penetration

Table 6
N◦ of patents along identification procedures.

Type of patents Number of patents

All green patents 475,597
Potential LS green patents 10,430
True LS green patents 3901
False LS green patents 6529
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Table 7
Tag composition, LS vs. non-LS green patents.

Tag Comparison LS non-LS

Rank LS Rank non-LS Freq. Rel. freq. (%) Freq. Rel. freq. (%)

Energy 1 1 1526 24.13 202,559 28.73
Transportation 3 2 1003 15.86 182,576 25.90
Products and processes 2 3 1304 20.62 112,623 15.98
Building 4 4 782 12.37 57,705 8.19
Digital 8 5 338 5.34 50,529 7.17
Adaptation 5 6 539 8.52 46,340 6.57
Waste 7 7 354 5.60 23,612 3.35
Smart grids 6 8 463 7.32 22,610 3.21
CSSD 9 9 15 0.24 6430 0.91

Table 8
TOP 20 sectoral codes, non-LS green patents.

Sector Sector code description Sector Empl. sect. Rank

code pen. Index (abs. values) empl.

27.2 Manufacture of batteries and accumulators 1.000000 449,911 3
29.1 Manufacture of motor vehicles 0.892928 453,170 2
26.3 Manufacture of communication equipment 0.564028 77,046 22
26.2 Manufacture of computers and peripheral equipment 0.527544 39,505 30
28.29 Manufacture of other general-purpose machinery n.e.c. 0.354456 640,863 1
28.11 Manufacture of engines and turbines, except aircraft, vehicle and cycle engines 0.309550 137,586 16
27.9 Manufacture of other electrical equipment 0.234689 319,205 7
27.12 Manufacture of electricity distribution and control apparatus 0.231457 68,926 24
26.51 Manufacture of instruments and appliances for measuring, testing and navigation 0.168164 4685 5
25.3 Manufacture of steam generators, except central heating hot water boilers 0.154136 61,724 25
28.3 Manufacture of agricultural and forestry machinery 0.079312 181,638 13
28.25 Manufacture of non-domestic cooling and ventilation equipment 0.074527 301,782 8
32.5 Manufacture of medical and dental instruments and supplies 0.056016 426,927 4
28.23 Manufacture of office machinery and equipment (except computers and peripheral equipment) 0.055596 78,223 21
27.33 Manufacture of wiring devices 0.054702 40,303 29
27.4 Manufacture of electric lighting equipment 0.048128 103,335 18
28.99 Manufacture of other special-purpose machinery n.e.c. 0.037413 230,878 9
42.91 Construction of water projects 0.030119 72,980 23
26.7 Manufacture of optical instruments and photographic equipment 0.024796 19,414 34
26.4 Manufacture of consumer electronics 0.023935 15,533 35

Table 9
TOP 20 sectoral codes, LS green patents.

Sector Sector code description Sector Empl. sect. Rank

code pen. index (abs. values) empl.

26.2 Manufacture of computers and peripheral equipment 1.000000000 39,505 28
26.3 Manufacture of communication equipment 0.875315519 77,046 21
26.51 Manufacture of instruments and appliances for measuring, testing and navigation 0.556333898 373,743 5
27.2 Manufacture of batteries and accumulators 0.433191707 449,911 3
28.3 Manufacture of agricultural and forestry machinery 0.393741431 181,638 13
28.29 Manufacture of other general-purpose machinery n.e.c. 0.367832238 640,863 1
29.1 Manufacture of motor vehicles 0.330763648 453,170 2
27.12 Manufacture of electricity distribution and control apparatus 0.234918604 68,926 23
25.3 Manufacture of steam generators, except central heating hot water boilers 0.173308396 61,724 24
28.23 Manufacture of office machinery and equipment (except computers and peripheral equipment) 0.147993413 78,223 20
27.4 Manufacture of electric lighting equipment 0.143453480 103,335 18
28.11 Manufacture of engines and turbines, except aircraft, vehicle and cycle engines 0.114136857 137,586 16
28.25 Manufacture of non-domestic cooling and ventilation equipment 0.102149119 301,782 8
27.9 Manufacture of other electrical equipment 0.098981025 319,205 7
32.5 Manufacture of medical and dental instruments and supplies 0.095729130 426,927 4
27.33 Manufacture of wiring devices 0.089135640 40,303 27
28.99 Manufacture of other special-purpose machinery n.e.c. 0.072506004 230,878 9
42.91 Construction of water projects 0.053415885 72,980 22
20.2 Manufacture of pesticides and other agrochemical products 0.031378868 27,457 30
28.22 Manufacture of lifting and handling equipment 0.028898217 353,483 6
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Appendix B. Pattern examples

B.1. Pattern I: predicate ← attribute → objects

The first example is the following excerpt taken from patent US9062327B2:
“[…] there is also less total operational expense, even assuming that the operational expense for a single ear corn harvester is the same as that for a single

combine; and there is less total labour expense.” Fig. 13 shows the por-tion of the dependency tree containing our target keywords (emphasised above).
Here, we see that the word “expense” (NOUN) is connected to both “labour” (NOUN, “compound” of “expense”) and “less” (ADJective, also identified
as an adjective modifier, “amod”). The word “expense” belongs to the attribute list, “labour” to object and “less” to predicate.

Fig. 13. Example 1, pattern I.

The second example we provide is patent US10005267B1 and we focus on this section of text:
“[…] this translates to reduced assembly time and labour for quicker and more cost effective manufacture.”
Here the keyword is “time” which is connected to both the conjuction (“conj”) “labour” and the adjective modifier “reduced”. Again, “time” is in

the attribute list, while the other two terms are respectively in the object and in the predicate lists.

Fig. 14. Example 2, pattern I.

B.2. Pattern II: predicate → object → attribute

As first example of the second pattern, we draw from patent US10003090B2:
“[…] this reduces labour and expenses associated with assembly [sic] a cell stack assembly”.

Fig. 15. Example 1, pattern II.

The graph in Fig. 15 appears more complex, but it is possible to see that it starts from the word “reduces”, passing through “assembly” (“dobj”:
direct object), then “labour” (“nmod”: nominal modifier) and finally concludes with “expenses” (“conj”: conjunction). The structure is therefore
predicate (“reduces”) → [assembly] → object (“labour”) → attribute (“expenses”).

Another example, with a simpler semantic structure, is in patent US10010936B2:
“[…] accordingly, improved methods and articles of manufacture are needed to reduce labour and time required for fabrication and to improve the quality of
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the part.”
The structure of Fig. 16 is indeed the following: from “reduce” (predicate) the link is directed to “labour”(object) which is connected to “time”

(attribute).

Fig. 16. Example 2, pattern II.

B.3. Pattern III: object → attribute → predicate

The text belongs to patent US8410636B2:
“[…] installation of solar panels integrated with wireless power transfer may require less skilled labour since fewer electrical contacts need to be made.”

Here, in Fig. 17 we have a minimalist structure starting from the word “labour” (object), connected through the adjective modifier “skilled” (attribute)
which is connected with the adverbial modifier “less” (predicate).

Fig. 17. Example 1, pattern III.

B.4. Pattern IV: object → predicate → attribute

Patent US4723220A presents a more convoluted structure. The relevant text follows:
“the invention results in significant investment, installation labour and time savings.”
The structure we are interested in starts with “labour” (object), connected through the conjunction “savings (predicate) to the compound “time”

(attribute).

Fig. 18. Example 1, pattern IV.

Appendix C. Employment data and concordance tables

The American classification for industrial activities (North American Industry Classification System – NAICS) is different from the European one
(Statistical Classification of Economic Activities in the European Community – NACE): in order to connect the sectoral industry data based on eu-
ropean classification, with the employment data in US (based on the american one, in the present paper we use the 2017 version of the Eurostat
NACE2-NAICS concordance table at the 6-digit level.19 A second issue regards the release of revised NAICS classifications over time, as well described
in US Census site (https://www.census.gov/naics/). We use employment data for three different years, 1999, 2009 and 2019, each belonging to a
specific NAICS classification, in particular: year 1999 to NAICS 1997; year 2009 to NAICS 2007; year 2019 to NAICS 2017. Subsequent releases of

19 The table was downloaded in October 2022 from Eurostat-RAMON; a newer version has appeared since.
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NAICS classification (see upper part of 19) were used to harmonise the data.

Fig. 19. NAICS update and NACE concordance.

Appendix D. Robustness checks regression analysis

D.1. Manufacturing shares

We replicate the regression exercise of section 5.2 using exclusively employment in the manufacturing sector. The exercise allows to capture
within-manufacturing share changes. In addition, we can assess the robustness of our identification and empirical strategy. We construct the following
variable:

manuf .shareHi,j,t =
federal employment sectorHj,t

manufacture federal employmentHt
⋅state weightHi,t (10)

The regression coefficients are shown in Table 10 and plotted in Fig. 20. As in the baseline scenario, we detect an inverted U-shape correlation for
LS sectoral penetration and a U-shape one for non-LS sectoral penetration, with small/no statistically significance in the period 1999–2009. Results
suggests, similar to the baseline specification, that the majority of labour dynamics is concentrated in the period 2009–2019, with effects that are
present also in the longer period 1999–2019.

Table 10
Quantile regression results (0.5), LS vs. non-LS patents.

NACE Employment manufacturing share growth, LS vs. non-LS patents

1999–2019 1999–2009 2009–2019 1999–2019 1999–2009 2009–2019

LS non-LS

(1) (2) (3) (4) (5) (6)

Sectoral penetration index
1.061473*** 0.074066 0.824139*** − 4.983590*** − 1.122979* − 0.261887***
(0.211299) (0.351547) (0.072674) (0.750901) (0.618508) (0.065887)

Sectoral penetration index2 − 2.480830*** − 0.551530 − 1.457756*** 5.118344*** 0.928259 0.337653***
(0.228018) (0.347845) (0.076132) − 1.834030 − 1.736114 (0.065147)

Observation 1785 1785 1785 2091 2091 2091

Note * p < 0.1; ** p < 0.05; *** p < 0.01
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Fig. 20. Regression plots, manufacturing.

D.2. Accounting for education

In this section, we replicate the empirical analysis controlling for the average education level of the population in each state, since it is possible that
the penetration of LS heuristics in different sectors may have different relationships depending on the general level of formal education of the
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population. We use the Occupational Employment Statistics (OES) survey by the Bureau of Labour Statistic (BLS).20 In particular, we use the per-
centage of people in each state with a bachelor’s degree or higher as a proxy for education, to test whether the general results of the empirical section
hold. We opt for a baseline OLS regression.

As we can see in Table 11 results are confirmed, in the form of a U-shape for non-LS penetration index and a Ushape for LS penetration index. More
caution must be exercised in the interpretation of the education relationship. For instance, we might argue that prior to the global financial crisis (1999
to 2009), education played a significant role in fostering overall employment growth at the state level, while in the post-crisis period (2009 to 2019)
the contribution of education may reverse. Given the scope of our exercise, two results are relevant for us: firstly, even adding the education control,
one of the most relevant variables for labour market outcomes, the empirical exercise confirms the results shown in the main figures in the paper.
Secondly, the sign of education is coherent between the two sets (LS vs. non-LS). Similar results hold for the growth share of employment in
manufacturing. In this case, the share of employment is always positively associated with education, signalling that, if anything, the explosion of
employment absorption in low-educated services might help explain the negative sign of education level after the 2008 crisis in states recording higher
shares of bachelor educated people.

Table 11
OLS regression results, LS vs. non-LS patents, education variable included, overall sectors.

NACE Employment total share growth, LS vs. non-LS patents, Robustness check with education

1999–2019 1999–2009 2009–2019 1999–2019 1999–2009 2009–2019

LS non-LS

(1) (2) (3) (4) (5) (6)

Sectoral penetration index
1.810273*** 0.897947*** 0.715134*** − 5.786150*** − 5.285816*** − 1.230684***
(0.295473) (0.325903) (0.081013) (0.408902) (0.420287) (0.112357)

Sectoral penetration index2 − 2.797161*** − 1.630465*** − 1.274070*** 7.339100*** 6.691921*** 1.335995***
(0.335663) (0.370232) (0.092033) (0.469565) (0.482640) (0.129025)

% Pop. with Bachelor or higher, avg. 0.464704 2.013109*** − 0.946540*** 2.240058*** 3.417616*** − 0.498418**
(0.628987) (0.693766) (0.172457) (0.794140) (0.816252) (0.218211)

Observation 1785 1785 1785 2091 2091 2091
R2 0.090012 0.096381 0.309581 0.172815 0.171732 0.101330
Adjusted R2 0.062166 0.068730 0.288454 0.151303 0.150192 0.077959

Note * p < 0.1; ** p < 0.05; *** p < 0.01

Table 12
OLS regression results, LS vs. non-LS patents, education variable included, manufacturing sectors.

NACE Employment manufacture share growth, LS vs. non-LS patents, Robustness check with education

1999–2019 1999–2009 2009–2019 1999–2019 1999–2009 2009–2019

LS non-LS

(1) (2) (3) (4) (5) (6)

Sectoral penetration index
3.210296*** 1.397451*** 0.812259*** − 10.261020*** − 8.226172*** − 1.397828***
(0.532623) (0.512092) (0.092421) (0.737840) (0.660858) (0.128111)

Sectoral penetration index2 − 4.960420*** − 2.537448*** − 1.447106*** 13.014990*** 10.414460*** 1.517442***
(0.605071) (0.581747) (0.104992) (0.847303) (0.758901) (0.147117)

% Pop. with Bachelor or higher, avg.
6.705631*** 7.156894*** − 0.121354 10.400700*** 9.569100*** 0.419306*
− 1.133821 − 1.090116 (0.196740) − 1.432981 − 1.283473 (0.248808)

Observation 1785 1785 1785 2091 2091 2091
R2 0.318061 0.293905 0.246470 0.334814 0.310913 0.139710
Adjusted R2 0.297193 0.272298 0.223412 0.317516 0.292992 0.117337

Note.
* p < 0.1; ** p < 0.05; *** p < 0.01.

D.3. Wage estimation

In order to embrace the dynamics of labour markets not only in terms of quantity of employment but also of remuneration of labour, in the exercise
below we substitute our dependent variable with the share growth of payroll (a proxy for wages). We replicate the baseline estimation including a
linear and a quadratic term (Table 13). The dynamics of the wage share growth closely mimics that of the employment share. These results, rather than
suggesting that wages might represent a factor of sustainability, highlight that the price dynamics follows the quantity dynamics, that is, relative
employment contractions in industries most exposed to LS green patents are mirrored by relative wage contractions. On the opposite side, industries
experiencing higher exposure towards non-LS green patents, and recording relative employment growth, are accompanied by wage growth. However,

20 More can be found at https://www.bls.gov/oes/tables.htm.

T. Rughi et al. Ecological Economics 230 (2025) 108497 

23 

https://www.bls.gov/oes/tables.htm


a full account of the dynamic relationship between technology choices, employment, and wages is beyond the scope of the current investigation.

Table 13
Quantile regression results (0.5), LS vs. non-LS patents.

NACE payroll total share growth, LS vs. non-LS patents

1999–2019 1999–2009 2009–2019 1999–2019 1999–2009 2009–2019

LS non-LS

(1) (2) (3) (4) (5) (6)

Sectoral penetration index 0.237317 0.095119 0.723977*** − 2.173433*** − 0.753124* − 0.308187**
(0.240949) (0.203893) (0.093711) (0.440695) (0.442263) (0.140451)

Sectoral penetration index2 − 0.866189*** − 0.368522* − 1.357358*** 2.150349** 0.430730 0.352317**
(0.245629) (0.205176) (0.092146) (1.027010) (1.038821) (0.138664)

Observation 1785 1785 1785 2091 2091 2091

Note.
* p < 0.1; ** p < 0.05; *** p < 0.01.

Appendix E. Full digits CPC, LS vs. non-LS green patents

Top 20 TRUE LS
CPC Freq.

Y02P90/02 341
Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated 
manufacturing systems [IMS]

Y02E10/50 270
Y02P70/50 178

the final manufactured product
Y02E60/10 177

Y02E10/47 175
Y02D10/00 169

management
Y02P90/80 159

Management or planning
Y02B10/10 141

related end-
Y02T50/40 138
Y02T10/70 126
Y02D30/70 125
G06Q10/06 110

management
Y02E10/72 104 transmission or 

Y02T10/7072 103
passengers, 
supercapacitors or double-layer capacitors

Y02B10/20 102
related end-user 

Y02B20/40 100
related end- gies, e.g. halogen lamps or gas 
discharge lamps; Control techniques providing energy savings, e.g. smart controller or presence 

Y02A90/10 94

H04W84/12 92 Local Area Networks]
H04L9/3247 89

H04W88/08 89
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Top 20 FALSE LS
CPC Freq.

Y02E60/10 51,758 Enabling technologies; Technologies with 

Y02P70/50 33,856
sses characterised by the final 

manufactured product
Y02T10/12 31,863 Road transport of goods or passengers: Improving ICE efficiencies
Y02T10/70 24,847 Road transport of goods or passengers: Energy storage systems for electromobility, e.g. 

Y02E60/50 24,069

Y02D10/00 22,434
management

Y02D30/70 21,575
networks

Y02T10/40 17,578 Road transport of goods or passengers: Engine management systems
Y02A50/30 15,603

extreme weather; Against vector-borne diseases, e.g. mosquito-borne, fly- -borne 
or waterborne diseases whose impact is exacerbated by climate change

Y02T50/60 14,617

Y02T10/7072 13,348
or passengers, 
ultracapacitors, supercapacitors or double-layer capacitors

H01M10/0525 11,996
electrical energy: Secondary cells; Manufacture thereof; Rocking-

-
Y02B70/10 11,904

or related end- -user side electric power 
ing 

switchedmode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power 

Y02T10/62 11,875
or passengers; Hybrid vehicles

Y02E10/50 11,087
Y02T10/72 10,037 transport of goods 

ultracapacitors, supercapacitors or double-layer capacitors
H01M10/052 9,256 energy into 

electrical energy: Secondary cells; Manufacture thereof; Li-accumulators
Y02E30/30 9,124

fission reactors
Y02E10/72 8,982

Y02T10/64 8,794
or passengers; Electric machine technologies in electromobility
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Appendix F. Sectors ordered by employment share growth

We present below descriptive statistics on the share growth rate of employment in each industry, based on the different time span of the growth
rates (2019 vs. 1999, 2019 vs. 2009, 2009 vs. 1999). Positive growth rates are marked in blue, negative ones in red, while industries which are not
targeted by LS technologies are in gray. With reference to the whole period, the majority of industries display a negative growth rate. However, and
notably, the only non-LS sectors that are not targeted by exposure to LS traits, rank, except for one, among the top 5 growing industries.

Fig. 21. Average growth by sector, 2019 vs. 1999.

Fig. 22. Average growth by sector, 2019 vs. 2009.
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Fig. 23. Average growth by sector, 2009 vs. 1999.

Appendix G. Tagging legend

POS tagging of spaCy is based on https://universaldependencies.org/u/pos/, the list of which follows:

• ADJ: adjective
• ADP: adposition
• ADV: adverb
• AUX: auxiliary
• CCONJ: coordinating conjunction
• DET: determiner
• INTJ: interjection
• NOUN: noun
• NUM: mnumeral
• PART: particle
• PRON: pronoun
• PROPN: proper noun
• PUNCT: puncuation
• SCONJ: subordinating conjuction
• SYM: symbol
• VERB: verb
• X: other

For what concerns the Universal Dependency, we refer to the table at https://universaldependencies.org/u/dep/all.html for the complete list and
full description. Here we report only some of the acronyms of the examples shown in the paper:

• amod: adjective modifier → “An adjectival modifier of a noun (or pronoun) is any adjectival phrase that serves to modify the noun (or pronoun).
The relation applies whether the meaning of the noun is modified in a compositional way (e.g. large house) or an idiomatic way (hot dogs). An
amod dependent may have its own modifiers (e.g. very large house) but the dependent should not be a clause. If it is a clause, then acl should be
used”.

• acl:attr: attributive adnominal clause → The acl:attr subtype of the acl relation is used for adnominal clause with attributive morphology.21

compound: compound → “The compound relation is one of three relations for multiword expressions (MWEs) (the other two being fixed and flat). It
is used:

– “for any kind of X0 compounding: noun compounds (e.g. phone book), but also verb and adjective compounds that are more common in other
languages (such as Persian or Japanese light verb constructions) […]”

– “for particle verbs (with the subtype compound:prt)”;

– “for serial verbs (with the subtype compound:svc)”.
The compound relation (nor any subtype thereof) is not used to link an inherently reflexive verb with the reflexive morpheme, despite the

21 https://universaldependencies.org/ckt/dep/acl-attr.html.
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similarity of this construction to particle verbs. The current UD guideline is to use an appropriate subtype of the expl relation. Each language that uses
compound should develop its own specific criteria based on morphosyntax (rather than lexicalisation or semantic idiomaticity), though elsewhere the
terms “compound” and “multiword expression” may be used more broadly […]”.

• conj: conjunct → “A conjunct is the relation between two elements connected by a coordinating conjunction, such as and, or, etc. We treat con-
junctions asymmetrically: The head of the relation is the first conjunct and all the other conjuncts depend on it via the conj relation”.

• dobj: direct object → “The direct object of a VP is the noun phrase which is the (accusative) object of the verb”22

• nmod: nominal modifier → “The nmod relation is used for nominal dependents of another noun or noun phrase and functionally corresponds to an
attribute, or genitive complement […]”.

• advmod: adverbial modifier → “An adverbial modifier of a word is a (non-clausal) adverb or adverbial phrase that serves to modify a predicate or a
modifier word”.

In some contexts and languages, a limited set of adverbs can also modify nominals (e.g. only on Monday). The advmod relation or its subtype has
to be used in such cases, too (see also advmod:emph).

Note that in some grammatical traditions, the term adverbial modifier covers constituents that function like adverbs regardless whether they are
realised by adverbs, adpositional phrases, or nouns in particular morphological cases. We differentiate adverbials realised as adverbs (advmod) and
adverbials realised by noun phrases or adpositional phrases (obl). However, we do not differentiate between modifiers of predicates (adverbials in
a narrow sense) and modifiers of other modifier words like adjectives or adverbs (sometime called qualifiers).

These functions are all subsumed under advmod”.

Data availability

Data will be made available on request.
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