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Abstract—This paper investigates the performance of scalable
user-centric (UC) distributed massive multiple-input multiple-
output (D-mMIMO) systems with multiple central processing
units (CPUs), commonly called cell-free mMIMO. Specifically,
a framework incorporating processing capacity and inter-CPU
communication constraints is proposed. Two methods are pre-
sented for limiting the number of radio units (RUs) serving
each user equipment (UE). The first method is performed by
the CPUs, while the second one is implemented at the UEs and
RUs. Both methods prevent the computational complexity (CC)
for channel estimation and precoding signals from increasing
with the number of RUs. The backhaul signaling demands are
presented and modeled, and it is considered that each CPU can
serve only a restricted number of UEs managed by other CPUs
to mitigate inter-CPU communication. Two strategies to adjust
the RU clusters according to the network implementations are
also proposed. We compare the proposed approaches with a
traditional scalable UC system. Simulation results reveal that
the proposed techniques allow UC systems to keep their spectral
efficiency (SE) under minor degradation while reducing the CC
by 98% and improving energy efficiency (EE). Besides, managing
inter-CPU communication controls backhaul traffic effectively,
and RU cluster adjustments further reduce CC.

Index Terms—Cell-free networks, computational complexity,
multiple CPUs, RU selection, user-centric approach.

I. INTRODUCTION

User-centric (UC) distributed massive multiple-input
multiple-output (D-mMIMO) systems, also referred to as
cell-free (CF) mMIMO, have been envisaged as one of the
most promising technologies for future mobile communication
networks (6G and beyond) [1]–[3]. In these systems, several
radio units (RUs) are spread out in the coverage area, and

This work was supported in part by the Innovation Center, Ericsson
Telecomunicações Ltda., Brazil; in part by the National Council for Scientific
and Technological Development (CNPq); and in part by the project CLEVER
(project number 101097560). The project is supported by the Key Digital
Technologies Joint Undertaking and its members (including top-up funding
by the Italian Ministry of Research and University (MUR)).

Marx M. M. Freitas, Daynara D. Souza, A. L. P. Fernandes, and João
C. Weyl Albuquerque Costa are with the Applied Electromagnetism Lab-
oratory, Federal University of Pará - UFPA, Belém, PA, 66075-110 Brazil
(e-mail:{marx;daynara;andrelpf;jweyl}@ufpa.br).

Daniel Benevides da Costa is with the Department of Electrical Engineer-
ing, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran
31261, Saudi Arabia (email: danielbcosta@ieee.org).

André Mendes Cavalcante is with Ericsson Research, Ericsson Tele-
comunicações Ltda., Indaiatuba, SP, 13337-300 Brazil (e-mail: an-
dre.mendes.cavalcante@ericsson.com).

Luca Valcarenghi is with the Telecommunications, Computer Engineering,
and Photonics Institute (TeCIP), Scuola Superiore Sant’Anna, Pisa, 56127
Italy (email: luca.valcarenghi@santannapisa.it).

A preliminary version of this paper was presented at the IEEE International
Conference on Communications (ICC), 2023.

the user equipment (UE) is served by a subset of RUs,
called RU cluster, providing a more uniform service and a
better coverage probability than cell-based systems due to the
enhanced macro-diversity and reduction of RU-UE distances
[4]–[9]. Despite the benefits, computational complexity (CC)
can still be a drawback in these systems.

Several baseline solutions consider that the complexity of
UC systems grows with the number of UEs and RUs, which
is not practical [4], [5]. In this regard, [8]–[10] proposed a
framework to provide scalability to UC systems. Essentially,
it limits the number of UEs each RU can serve simultane-
ously. Consequently, the network resources (i.e., processing
requirement, fronthaul/backhaul signaling, and total power)
remain finite even if the number of UEs goes to infinity. The
authors showed that scalable UC systems can still provide
uniform coverage with negligible spectral efficiency (SE)
losses compared to the case when the UEs are served by all
RUs. The conclusions hold for both centralized and distributed
network implementations. In the former, channel estimation
and combining processing tasks are carried out on the central
processing units (CPUs), while in the latter, they occur on
the RUs. However, although the network resources become
independent of the number of UEs, the signal processing
complexity can still grow with the number of RUs [9]. For
instance, the number of complex multiplications required to
perform channel estimation and precoding remains propor-
tional to the number of RUs serving the UE [8]. Thus, a
more in-depth investigation into this topic is necessary, as the
literature regularly assumes that there are more RUs than UEs
in the network.

Another limitation inherent to UC systems is that the RU
selection processes are not adapted to the network imple-
mentations. They generally only intend to improve some
key points, such as effective channel gain [11], reduce pilot
contamination [9], among others [12]–[14]. Consequently, RU
clusters may benefit one implementation over another. For
instance, RU clusters with a large number of RUs can degrade
the energy efficiency (EE) and CC of UC systems operating
in distributed implementation while they can improve the SE
for the centralized ones.

Most of the strategies in the literature to enhance the
network performance (e.g., SE and EE) also consider that a
single CPU is responsible for coordinating the signals of all
RUs. In other words, those existing strategies do not evaluate
the negative impacts in UC systems when employing multiple
CPUs, such as increased signaling on backhaul links. That



is, the CPUs may need to share signaling to serve the UE
since the UE’s RU cluster can comprise RUs connected to
different CPUs, as illustrated in Fig. 1. This signaling demand
is called inter-CPU communication or inter-CPU coordination
[15]–[18]. Furthermore, the CC required to perform channel
estimation and precoding is typically modeled only for a single
CPU scenario, which cannot be directly applied to multiple
CPUs. Therefore, deeper investigations into these topics are
indeed necessary since state-of-the-art solutions rely on UC
systems composed of multiple CPUs to efficiently divide the
network processing tasks [9], [10].

A. Literature Review
The UC D-mMIMO literature has proposed several ap-

proaches to reduce network complexity under computational
and signaling aspects [5]–[9]. For instance, [6] introduced
the UC approach, demonstrating that UC D-mMIMO sys-
tems could achieve comparable performance to canonical
D-mMIMO systems while reducing CC and fronthaul require-
ments. In [8], [9], the authors analyzed the scalability of
D-mMIMO systems, presenting their performance in terms of
SE for both centralized and distributed network implementa-
tions. The authors demonstrated that the CC of the network
and signaling in the fronthaul links could be prevented from
growing with the number of UEs, but they did not provide
any analysis regarding the number of RUs. Moreover, [8],
[9] claimed that their proposed strategies are effective for UC
systems with multiple CPUs but did not detail the network’s
necessary signaling procedures and requirements to make it
successful. That is, the authors in [8], [9] did not quantify the
level of inter-CPU communication required by the network.

Strategies for reducing the number of RUs serving the UE
were proposed in [12], [13]. Nevertheless, a mechanism to
prevent network processing demands from growing with the
number of RUs was not presented, i.e., the maximum number
of RUs serving each UE was not restricted. In [19], the
maximum number of RUs serving the UE was limited, defined
as a parameter that can be adjusted to avoid losses in SE.
However, the analysis did not account for the system’s pro-
cessing capacity limitation. In addition, a detailed investigation
regarding CC and multiple CPUs was not provided.

In [15], an approach to mitigate inter-CPU communication
was proposed. The authors considered a network composed
of multiple virtual cells, each managed by an individual CPU.
The UEs within a virtual cell are exclusively associated with
the RUs inside that cell. Conversely, UEs at the cell edges can
connect to RUs from different virtual cells (i.e., belonging to
distinct CPUs). This approach reduced the effect of inter-CPU
communication compared to traditional UC systems. Despite
this advantage, the SE can decrease, while the signaling
demands between CPUs still grow with the number of UEs.

In [16], the UE was initially connected to a primary CPU
and subsequently linked to other CPUs, referred to as non-
primary CPUs. The latter designates the UE as an inter-
coordinated UE. This approach effectively controlled inter-
CPU signaling while keeping the SE under minor degradation.
To this end, it was considered that the number of inter-
coordinated UEs that each CPU serves must be restricted.

However, [16] did not quantify the backhaul signaling, and the
evaluations focused only on the implementations of distributed
processing. Regarding the adjustment of RU clusters under
different network implementations, to the best of the authors’
knowledge, no other works addressing this topic were found.

B. Contributions

This paper investigates the performance of scalable UC
D-mMIMO systems by assuming that the CC to perform
channel estimation and precoding signals does not grow with
the number of RUs. In particular, it is considered a UC system
where the UE is associated only with a finite number of
RUs, i.e., the UE is connected only with the RUs having the
strongest channel gains. To the best of the authors’ knowledge,
this is the first paper to propose an approach that limits the CC
of UC systems from growing with the number of RUs. More-
over, a method is proposed to adjust the RU clusters according
to the network implementation. The proposed method works in
UC systems with and without processing capacity limitations,
and it can be used as an alternative solution for reducing CC in
UC systems without processing capacity limitations. As far as
the authors are aware, this is also the first work that proposes a
method for adjusting the RU clusters according to the network
implementation in UC systems. Moreover, the work studies the
feasibility of UC systems when the signaling requirements on
backhaul links do not grow with the number of UEs, i.e., the
inter-communication among CPUs is controlled. Overall, the
main contributions of this paper can be summarized as:

• Two strategies for controlling the RU cluster size of
UEs are proposed. The first one is conducted by the
CPUs, while the second strategy is performed locally
between UEs and RUs. Simulation results reveal that the
proposed solutions allow the SE to be kept under minor
degradation even if the CC is reduced by up to 98%.
However, our results also demonstrate that the centralized
implementation may require more processing capacity
than distributed to avoid significant losses in the SE.

• Two methods for adjusting the RU clusters according to
the network implementation are proposed. The results
demonstrate that the proposed schemes can reduce CC
and potentially increase EE.

• A framework is proposed to control the RU cluster size
and manage signaling demands on backhaul links in
each network implementation. Moreover, a model for the
backhaul traffic is provided, accounting for data sharing,
channel estimates, and precoding coefficients exchanged
among CPUs.

• The CC is discussed by accounting for multiple CPUs,
and the EE modeling is improved by considering the
processing power consumption of various CPUs and
backhaul links.

C. Paper Outline and Notations

The remainder of this paper is organized as follows. Sec-
tion II presents the system model, including the channel es-
timation procedure, a framework for signaling requirements
from multiple CPUs, and the downlink (DL) SE. Section III



presents the modeling of CC and EE. Sections IV and V intro-
duce the proposed approaches to limit the network processing
capacity and to perform RU cluster adjustment. Section VI
plots illustrative numerical results and draws insightful discus-
sions to reveal the effectiveness of the proposed approaches
compared to prior baseline strategies. Finally, Section VII
concludes the paper.

Notation: Boldface lowercase and uppercase letters denote
vectors and matrices, respectively. The superscript (·)H de-
notes the conjugate-transpose operation, the N × N identity
matrix is denoted as IN , and the cardinality of the set A is
represented by |A|. The trace, euclidean norm, and expectation
operator are denoted as tr( . ), ∥ . ∥, and E { . }, respectively.
The notation NC

(
µ, σ2

)
stands for a complex Gaussian ran-

dom variable with mean µ and variance σ2.

II. SYSTEM MODEL

We consider a D-mMIMO network composed of J CPUs,
L RUs, and K single-antenna UEs, where L > K. Each
RU is equipped with N antennas, resulting in a total of M
antennas considering all RUs, with M = NL. The RUs are
connected to the CPUs through fronthaul links, while the
CPUs are interlinked through backhaul connections, as shown
in Fig. 1. The fronthaul links undergo limited transmission
capacity, while the backhaul ones are considered error-free
and capable of supporting the data traffic. We utilize analog-to-
digital converters (ADCs) to limit the data transmitted over the
fronthaul links. Therefore, signals are quantized before being
sent to the fronthaul. The system operates on time-division
duplex (TDD) mode and it is assumed that the uplink (UL)
and DL channels are reciprocal. Thus, channel estimation is
performed only in the UL direction. We focus on DL transmis-
sions and consider that the channel hkl ∈ CN×1 between the
RU l and UE k undergoes an independent correlated Rician
fading, being defined as [20]–[22]

hkl =

√
κkl

1 + κkl
hLOS
kl ejθkl︸ ︷︷ ︸

hkl

+

√
1

1 + κkl
hNLOS
kl︸ ︷︷ ︸

h̃kl

, (1)

where hkl ∈ CN×1 means the deterministic line-of-sight
(LOS) component, while h̃kl ∼ NC(0N , R̃kl) ∈ CN×1 stands
for the small-scale fading with statistical covariance matrix1

R̃kl = E{h̃klh̃H
kl} ∈ CN×N . The term θkl ∼ U [0, 2π) denotes

random phase shifts that may occur in LOS components due to
the UEs mobility, and the Rician factor κkl is the power ratio
between the LOS and non-line-of-sight (NLOS) components.
The latter can be computed as κkl = pLOS/(1− pLOS), with
pLoS being the probability of the LOS component’s existence
[24]. Furthermore, hNLOS

kl ∼ NC(0N ,R
NLOS
kl ) represents the

effects of the NLOS propagation.
Assuming that the RUs are equipped with half-wavelength-

spaced uniform linear arrays (ULAs), the covariance matrix
of the NLOS channel hNLOS

kl , i.e., RNLOS
kl , can be computed

following the local scattering model for spatial covariance

1The statistical covariance matrix represents the large-scale fading of the
system, being a function of the spatial channel covariance, path loss, antenna
gains, and shadowing [23].
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Fig. 1: UC D-mMIMO system with multiple CPUs. Each CPU
is connected to a subset of RUs, and the UEs can be associated
with RUs linked to different CPUs.

presented in [23, Sec. 2.6]. Thus, the covariance matrix of
the term h̃kl in (1) is given by R̃kl = E{h̃klh̃H

kl} =
RNLOS
kl /(κkl + 1), which implies that Rkl = E{hklhH

kl} =

(hklh
H

kl + R̃kl). Moreover, the LOS channel between the UE
k and RU l can be expressed as [23]

hLoS
kl =

√
βkl

[
1, · · · , ej(N−1)π sin(φkl) cos(ψkl)

]T
, (2)

where φkl denotes the azimuth angle, ψkl is the elevation angle
of the LOS component, and βkl is the large-scale fading gain,
which can be calculated as βkl = tr(Rkl)/N .

A. Network Implementations

UC D-mMIMO systems are commonly implemented in cen-
tralized or distributed manners according to processing capa-
bilities. The centralized implementation places most baseband
functions on the CPUs. Therefore, the CPUs are responsible
for channel estimation and precoding [9]. Furthermore, they
encode and quantize the DL signals. In the distributed im-
plementation, essential processing functions, such as channel
estimation, are moved to the RUs. Consequently, the CPUs are
only responsible for encoding and quantization.

The centralized implementation usually offers superior in-
terference mitigation since the CPUs can access global channel
state information (CSI), which includes channel estimates
and statistics. Conversely, the distributed one can be less
complex and avoids the need to transmit the pilot signals on
fronthaul links [7]. In this regard, several network procedures,
such as channel estimation, interference mitigation, and CC,
vary depending on the network implementation. In order to
compute the combining and precoding vectors, this paper
utilizes the partial MMSE (P-MMSE) and partial regularized
zero-forcing (P-RZF) schemes for centralized implementation.
For the distributed one, the local partial MMSE (LP-MMSE)
and maximum ratio (MR) are utilized. These techniques have
been chosen due to their scalability features [9].

B. Uplink Training and Channel Estimation

Each coherence block comprises τc samples, where τp
samples are dedicated for UL pilot signals and τd for DL data.
During the UL training phase, the UEs send pilot sequences



of τp-length to the RUs for channel estimation. Then, the
UL channels are estimated by correlating the received signals
with a known pilot sequence and using phase-unaware linear
minimum mean square error (LMMSE) estimation. The pilot
signals are assumed to be mutually orthogonal and indepen-
dent of the number of UEs K to ensure the scalability of the
pilot resources. Thus, a pilot t can be reused by some UEs if
the number of UEs is greater than the number of pilot signals,
i.e., K > τp. Let Pk ⊂ {1, . . . ,K} denote the subset of the
UEs assigned to the pilot t, including the UE k. The received
pilot signal at RU l can be expressed as [8]

ypilot
tl =

∑
i∈Pk

√
τpηi hil + ntl, (3)

where ntl ∼ NC
(
0N , σ

2
ulIN

)
denotes the noise and ηi is the

power that the UE i transmits in the UL direction. The channel
estimation procedure differs in each network implementation.
In the distributed implementation, the channel vector hkl is
estimated locally by RU l after receiving the pilot signals
ypilot
tl sent by the UEs in (3). In the centralized one, the

RUs forward the received pilot signals ypilot
tl to the CPUs,

which then perform the channel estimation. Note that due
to the use of ADCs, the signals must be quantized before
being sent to the fronthaul links. Therefore, in the centralized
implementation, the received pilot signals ypilot

tl are quantized
before being sent to CPUs. In contrast, the quantization of pilot
signals is not necessary for the distributed implementation, as
channel estimation occurs locally in the RUs.

In the distributed implementation, the LMMSE channel
estimation is given by [8]

ĥkl =
√
τpηkRklΨ

−1
tl ypilot

tl , (4)

where Rkl = E{hklhH
kl} = (hklh

H

kl + R̃kl) and Ψtl =

E{(ypilot
tl )(ypilot

tl )H} =
∑
i∈Pk

ηiτp(hilh
H

il + R̃il) + σ2
ulIN .

The term Ψtl denotes the covariance matrix of the received
signal ypilot

tl . One can note that Ψtl also indicates the pres-
ence of pilot contamination since it contains the sum of the
covariance matrices of all UEs sharing pilot t.

In the centralized implementation, the LMMSE channel
estimation is computed as [25]

ĥkl =
√
τpηkRklΨ̃

−1
tl ỹpilot

tl , (5)

where ỹpilot
tl ≈ αp,ly

pilot
tl + qt stands for the quantized pilot

signal received on the CPU connected to RU l, while Ψ̃tl ≈
α2
p,lΨtl+αp,l (1− αp,l)Ψtl denotes the covariance matrix of

ỹpilot
tl . The term αp,l represents a distortion factor associated

with the number of bits bpl used to quantize the pilot signals,
and qt ∼ NC(0N ,Rqt

) ∈ CN×1 means the quantization
noise with covariance Rqt

= αp,l (1− αp,l)Ψtl. Note that (5)
degenerates to (4) when αp,l = 1. The relationship between
αp,l and bpl is obtained from [26], [27].

C. Downlink Data Transmission

In UC systems, each UE is associated with a subset of RUs
called RU cluster. These clusters are intended to be dynamic
and capable of adapting to variations in network conditions,

such as UE position and channel properties. To represent the
RU clusters of each UE, we proceed as follows: First, let
Mk ⊂ {1, . . . , L} represent the indexes of the RUs serving
the UE k. Second, let vector ck = [ck1, ..., ckL] ∈ N1×L

denote the RUs that establish a connection with UE k, such
that ckl = 1 if the RU serves the UE k, and ckl = 0 otherwise.
Therefore, the connections between the UE k and RUs are
expressed as

ckl =

{
1 if l ∈ Mk

0 if l /∈ Mk.
(6)

The matrix Dkl ∈ NN×N is also utilized to describe which
antennas of the RU l serve the UE k. It is assumed that
all N antennas of RU l serve the UE k; thus Dkl = IN
when ckl = 1. Otherwise, Dkl = 0N . The vector ckl can
also be utilized to compute the number of UEs that RU
l serves and the number of RUs serving the UE k. For
instance, let Dl represent the indexes of the subset of UEs
that RU l serves. The cardinalities of Dl and Mk can be
computed as |Dl| =

∑
k∈Dl

ckl and |Mk| =
∑
l∈Mk

ckl.
These cardinalities can also be represented by Lk and Kl,
where Lk = |Mk| and Kl = |Dl|. It is noteworthy that
scalable UC D-mMIMO systems usually assume that Kl is
constrained to prevent it from being a function of the number
of UEs. Thus, it is assumed that Kl ≤ τp [9].

Once the RU clusters are formed, the network can proceed
with the processes of channel estimation, precoding, and DL
transmission for the UEs that each RU serves. Let xdist

l =∑K
i=1 αilDilwil

(
si+qil

)
and xcent

l = αl
∑K
i=1 Dilwilsi+ql

denote the data signals sent by RU l in the distributed and
centralized implementations. Here, si ∈ C is the unity-power
symbol intended for UE i, and αil and αl represent the
distortion factors associated with the number of bits used
to quantize the DL signals in distributed and centralized
implementations, respectively. Besides, qil ∼ NC(0, σ

2
qil
) and

ql ∼ NC(0N ,Rql
) ∈ CN×1 are the quantization noises ap-

plied to the DL signals, with covariances σ2
qil

= αil (1− αil)
and Rql = αl (1− αl)

∑
i∈Mk

E
{
wilw

H
il

}
. An achievable

DL SE can be computed as [9], [25]

SE
(dl)
k =

τd
τc

log2

(
1 +

DSk
ISk −DSk +QNk + σ2

dl

)
, (7)

where ISk =
∑K
i=1 E

{∣∣∑L
l=1 α̃ilh

H
klDilwil

∣∣2} stands for the
interference, DSk =

∣∣∑L
l=1 E

{
α̃klh

H
klDklwkl

}∣∣2 denotes the
desired signal, QNk means the quantization noise, and σ2

dl

is the receiver noise variance. One can note that α̃il is the
distortion factor associated with the number of bits used to
quantize the DL signals. Both α̃il and QNk are computed
differently in each network implementation. Thus, α̃il = αil
and α̃il = αl for distributed and centralized implementations,
respectively, whereas QNk is given by

QNk =

E
{∣∣∣∑L

l=1 h
H
klDklql

∣∣∣2}, for CI

E
{∣∣∣∑L

l=1 h
H
kl

∑K
i=1 Dilwilqil

∣∣∣2}, for DI.
(8)

where CI and DI represent the centralized and distributed
implementations, respectively. The term wil is the precoding



vector generated to mitigate the inferences between the UE
i and RU l. In the distributed implementation, wil satisfies
E
{
∥wil∥2

}
= ρil, with ρil being the power allocated to the

UE i regarding the RU l. In the centralized one, the fraction
of power assigned to wil is calculated based on the collective
precoding vector wi =

[
wT
i1, ...,w

T
iL

]T ∈ CM×1, which must
satisfy E

{
∥wi∥2

}
= ρi, where ρi represents the transmit

power assigned to UE i by all its serving RUs.

D. CPUs Requirements and Backhaul Signaling
In UC D-mMIMO systems involving multiple CPUs, it

is essential to note that the RU cluster serving a specific
UE may comprise RUs connected to different CPUs, as
depicted in Fig. 1. Consequently, signal processing tasks must
be efficiently distributed among these CPUs [7], [9], [10],
[18]. This paper considers two classes of CPUs within the
network to distribute the processing load among them more
effectively. Specifically, one of the CPUs associated with the
UE’s RU cluster is designated as its primary CPU, i.e., the one
responsible for the majority of its signal processing tasks. The
remaining CPUs serving the UE are called secondary CPUs
[16]. It is assumed that each UE is associated with a primary
CPU, which is one of the CPUs belonging to the UE’s RU
cluster. Therefore, UEs may be assigned to different primary
CPUs, since the UEs can be positioned in distinct positions in
the coverage area.

This section fills a gap in the existing literature by providing
a framework explaining how the CPUs should operate in
each network implementation and highlighting the signaling
requirements each implementation can impose on backhaul
links. Moreover, a detailed modeling for the signaling demands
on backhaul links, which considers the impacts of instanta-
neous CSI and data sharing, is also provided.

1) Centralized implementation: Each CPU belonging to the
RU cluster of UE k estimates the channel vector ĥkl for all
its RUs serving the UE k. As for the primary CPU of UE k,
it also computes the combining and precoding vectors of UE
k. Hereinafter, the primary CPU of UE k will also be denoted
as CPU jk. It is considered that the primary CPU of UE k
is the CPU connected to the RU with the strongest channel
gain serving the UE k [16]. The procedure for associating a
primary CPU with a UE is detailed in Subsection IV-A.

Regarding the signaling demands, the primary CPU of UE
k requests other CPUs in the network to forward the channel
estimates of the UE k and interfering UEs to compute the
combining and precoding (wk) vectors. After generating wk,
the CPU jk sends wk and sk to the secondary CPUs. Then,
the secondary CPUs of UE k quantize and forward the DL
data sk to their respective RUs. Let J sec

k denote the subset of
secondary CPUs associated with the RU cluster of UE k. The
number of complex scalars that the secondary CPUs have to
exchange with the primary CPU of UE k via backhaul in each
coherence block can be modeled as

BTpri
k =

∑
j∈J sec

k

(2LjkN + τd) , (9)

where Ljk denotes the number of RUs in the secondary CPU
j serving the UE k. Moreover, Ljk is multiplied by 2 in

(9) to account for the transmission of channel estimates and
precoding vectors over backhaul links. Similarly, the number
of complex scalars exchanged via backhaul between a subset
of CPUs and the primary CPU of UE k to transmit channel
estimates of interfering UEs is given by

BTint
k =

∑
i ̸=k,i∈Ik

∑
j′∈Ji

Lj′iN, (10)

where Ik denotes the subset of interfering UEs affecting the
signal of UE k and Ji represents the subset of CPUs associated
with each interfering UE i, with j′ ̸= jk. One can note
that (10) may overestimate the backhaul traffic, as channel
estimates from interfering UEs are sent redundantly to CPU
jk, i.e., they are transmitted for each UE utilizing CPU jk
as its primary CPU. However, there is no need for redundant
transmission of channel estimates for these interfering UEs
to CPU jk since the UEs that use CPU jk as their primary
CPU may share the same interfering UEs. In this case, these
channel estimates can be transmitted only once. Thus, (10)
can be rewritten as

BTint
k =

∑
i ̸=k,i∈Ĩk

∑
j′∈Ji

Lj′iN, (11)

where j′ ̸= jk and Ĩk represents the subset of interfering UEs
whose channel estimates have not yet been sent to CPU jk.
Hence, the total number of complex scalars exchanged on the
backhaul links is calculated as

BTcent
k = BTpri

k +BTint
k . (12)

2) Distributed implementation: The primary CPU of UE
k encodes the DL data. Then, it sends the DL data to the
secondary CPUs. The latter quantizes and forwards sk to their
respective RUs for DL data precoding. Thus, the total number
of complex scalars exchanged between the primary CPU of
UE k and the secondary CPUs is given by

BTdist
k =

∑
j∈J sec

k

τd. (13)

Remark 1: The computation of (9) and (11) relies on
the assumption that the CPUs share the RU clusters of the
UEs with each other. For instance, CPU j reports which
RUs connected to it serve the UE k. Thus, CPU j does not
need to send L ×N complex scalars (to share the estimated
channel and precoding of UE k) to other CPUs. Instead, it only
transmits Ljk × N elements. This assumption is reasonable
as long as the formation of RU clusters is based on channel
statistics. Hence, the signaling required to share the RU
clusters across the backhaul links is negligible, as the channel
statistics are constant throughout the data transmission2.

E. Reducing Inter-CPU Communication

To further reduce the number of complex scalars exchanged
between CPUs, we rely on one of our previous works [16],
which proposes a strategy to mitigate the inter-communication

2In practice, channel statistics can change due to UE mobility or scheduling.
However, a deeper investigation into this topic is out of the scope of this paper.



between CPUs, also called inter-CPU coordination. Specifi-
cally, it is considered that the network has two classes of UEs.
The first one comprises the UEs using the CPU j as a primary
CPU, denoted as Kpri

j in this paper. The second one includes
the UEs that utilize CPU j as a secondary CPU, represented
by subset Ksec

j . The approach proposed in [16] states that
each CPU can serve only a limited number of UEs as a
secondary CPU, denoted as Ksec. Thus, the CPUs associated
with UE k can modify its RU cluster to meet this condition,
i.e.,

∣∣Ksec
j

∣∣ ≤ Ksec. Let ek = [ek1, . . . , ekL] ∈ N1×L represent
the RU cluster of UE k. The CPUs modify ek to

ck = ek ∧ fk, (14)

where ∧ is the logical operation AND. Besides, fk =
[fk1, . . . , fkL] ∈ N1×L is a fine-tuned version of the RU cluster
of UE k, which can be expressed as

fkl =


1 if

(
k ∈ Kpri

j

)
∨
(∣∣Ksec

j

∣∣ < Ksec
)

1 if
(∣∣Ksec

j

∣∣ = Ksec
)
∧
(
Gkj > G(imin)j

)
0 otherwise

, (15)

where ∨ is the logical operation OR. The term Gkj =∑
l∈Lkj

βkl represents the partial sum gain, with Lkj being the
subset of RUs serving the UE k that are connected to CPU j,
and imin standing for the UE using the CPU j as a secondary
CPU presenting the smallest partial sum gain. It is noteworthy
that the UE imin is dropped from all RUs connected to CPU j if
Gkj > G(imin)j . Note that (14) limits the number of UEs using
CPU j as a secondary CPU, since

∣∣Ksec
j

∣∣ ≤ Ksec. Therefore,
this paper models the total number of complex scalars that the
secondary CPUs have to exchange with primary CPUs through
the backhaul as

BTpri =
∑

j∈J sec

∑
k∈Ksec

j

τd + I (2LjkN) , (16)

where the binary indicator I ∈ {0, 1} specifies the network
implementation type, with I = 1 corresponding to the central-
ized implementation, and I = 0 to the distributed one. The
term J sec denotes the subset of CPUs acting as a secondary
CPU. It can be seen that the condition

∣∣Ksec
j

∣∣ ≤ Ksec prevents
(16) from growing with the number of UEs K. That is, even
if the number of UEs K goes to infinity, the CPU j will
serve at most Ksec UEs as a secondary CPU. In other words,
the number of sums performed in

∑
k∈Ksec

j
τd + I (2LjkN)

will be upper-bounded by Ksec, since
∣∣Ksec

j

∣∣ ≤ Ksec. This
condition is not met in a traditional UC system since

∣∣Ksec
j

∣∣
is not upper-bounded by Ksec. Instead, it would be a function
of the number of UEs, such that

∣∣Ksec
j

∣∣ ≤ K. For instance,
in the worst-case scenario, a CPU j could serve all UEs as
a secondary CPU, leading to the second summation of (16)
becoming

∑K
k=1 τd + I (2LjkN).

Moreover, one can note that BTpri can be further reduced
by limiting the number of RUs serving the UE k to a maximum
value called Cmax, such that Lk ≤ Cmax. Section IV discusses
how to compute Cmax in more detail. Finally, note that (16) is
equivalent to BTpri =

∑K
k=1 BT

dist
k for I = 0, and BTpri =∑K

k=1 BT
pri
k for I = 1.

F. Required Fronthaul and Backhaul Bit rates

The fronthaul bit rate required by UC D-mMIMO systems
varies depending on the network implementation. In the dis-
tributed implementation, the bit rate scales with the number
of UEs served by the RU (i.e., Kl). In the centralized one, it
scales with the number of antennas N deployed at RU. The
required fronthaul traffic (in bit/s) can be expressed as [25]

Rfh,l = 2B
τd
τc

(
N

[
bl + bpl

τp
τd

]
I+

∑
k∈Dl

bkl (1− I)

)
, (17)

where B represents the system bandwidth, while bl and bkl are
the number of quantization bits per sample used for DL data
transmission in centralized and distributed implementations,
respectively. In addition, bpl is the number of quantization
bits per sample used for pilot signals. One can note that the
fronthaul link requirements are constrained by the number of
quantization bits for I = 1. Conversely, fronthaul requirements
may rise with the number of UEs served by RU l (Kl) when
I = 0. However, the maximum value of Rfh,l remains constant
in a scalable system, i.e., Kl ≤ τp. The bit rate Rbh exchanged
in all backhaul links is modeled in this paper as

Rbh =
2B

τc

(
K∑
k=1

bbhk

[(
BTcent

k

)
I+BTdist

k (1− I)
])

, (18)

where bbhk represents the number of bits utilized to quantize
the signals traveling in the backhaul links. It is assumed that
bbhk = bpl = bmax, with bmax being the maximum number
of quantization bits per sample. The purpose is to transmit
pilots and signals on backhaul links at maximum resolution
to reduce quantization errors in channel estimation and data
received on secondary CPUs. The number of quantization bits
per sample utilized for DL data transmission (bkl) is computed
by considering that all RUs are operating at their maximum
capacity, i.e., Kl = τp. Thus, bkl can be computed from (17)
for I = 0 as bkl =

⌊
Rmax

fh,l τc/2Bτdτp

⌋
for all k in Dl, where

⌊.⌋ is the floor operation, and Rmax
fh,l denotes the maximum

transmission capacity of each fronthaul link. Similarly, bl can
be calculated as bl = ⌊Rfh,lτc/(2BτdN)− bpl (τp/τd)⌋. This
paper assumes that Rmax

fh,l = 10Gbps and bmax = 12. It is also
considered that bl = bkl to perform a fair comparison between
centralized and distributed implementations3. Therefore, bl =
bkl = min(bl, bkl).

III. COMPUTATIONAL COMPLEXITY AND ENERGY
EFFICIENCY

A. Computational Complexity

The CC required for signaling processing tasks differs
between network implementations for both CPUs and RUs.
Therefore, this section also utilizes the binary indicator I ∈
{0, 1} to distinguish them. The CC required from each CPU
j in giga operations per second (GOPS) can be expressed as

CCCPU,j = Sf

(
CCcecb

CPU,j + CCrcp
CPU,j

)
I+ CCbasic

CPU,j , (19)

3One can further decrease or enhance the values of bkl and bl. However,
a deeper investigation regarding selecting the best values of bkl and bl is out
of the scope of this paper.



where CCcecb
CPU,j = CCest

CPU,j + CCcomb
CPU,j denotes the num-

ber of complex multiplications that CPU j needs to per-
form channel estimation and generate the combining vectors.
CCrcp

CPU,j = (1 + τd)N
∑
l∈Jl

Kl stands for the CC associ-
ated with reciprocity calibration and precoding, with Jl being
the subset of RUs connected to CPU j. Additionally, Sf =
8Nsc/Tsτc10

9 is a scaling factor that converts CCcecb
CPU,j and

CCrcp
CPU,j into GOPS, where Ts is the orthogonal frequency-

division multiplexing (OFDM) symbol duration, and Nsc
represents the number of subcarriers. The last term of (19) is
the CC in GOPS associated with higher-layer control/network
functions, channel coding, mapping/demapping, and OFDM
modulation/demodulation. These are computed following [28].

It is worth mentioning that CCest
CPU,j and CCcomb

CPU,j are
obtained from Table I, where Sk = {i : DkDi ̸= 0LN×LN}
represents the subset of UEs that are partially served by the
same RUs as UE k. The term Kall

j denotes the subset of all
UEs that CPU j is serving, thus Kall

j = Kpri
j ∪ Ksec

j . The CC
required from RU l in GOPS can be computed as [29]

CCRU,l = Sf

(
CCcecb

RU,l + CCrcp
RU,l

)
(1− I)+CCother

RU,l , (20)

where CCcecb
RU,l = CCest

RU,l + CCcomb
RU,l denotes the number of

complex multiplications required by RU l to perform channel
estimation and generate the combining vectors. CCrcp

RU,l =
(1 + τd)NKl is the CC associated with reciprocity calibration
and precoding application. The specific values of CCest

RU,l

and CCcomb
RU,l are calculated in Table I. The last term of

(20) is obtained as CCother
RU,l = CCDFT + CCbbf , where

CCDFT = 8NNDFT log2(NDFT )/Ts10
9 is the CC in GOPS

due to discrete Fourier transform (DFT) operations, with
NDFT ≤ Nsc being the dimension of the DFT [30]. We have
assumed that NDFT = Nsc. Moreover, CCbbf = 40Nfs/10

9

represents the CC in GOPS related to baseband filtering,
considering a filter with ten taps in a polyphase filtering
scheme, where fs is the sampling frequency [31].

B. Energy Efficiency

The energy efficiency (EE) in bit/Joule is calculated as the
ratio between the sum throughput in bit/s and the total power
consumed in Watts (W), being expressed as

EEtot =
B
∑K
k=1 SEk∑L

l=1 {Pl + Pfh,l}+ P proc
CPUs + Pbh

, (21)

where Pl denotes the total power consumption in RU l, while
Pfh,l represents the power consumed by the fronthaul link
connected to RU l. Additionally, P proc

CPUs is the power that
all CPUs need for processing tasks, and Pbh accounts for
power consumption in all backhaul links. Pl is calculated as
Pl = E

{
∥xl∥2

}
/γl + NPtc,l + P proc

RU,l , where 0 < γl ≤ 1
represents the efficiency of the power amplifier, Ptc,l is the
power required for each antenna of RU l to operate internal
components like converters and filters, and P proc

RU,l accounts for
the power needed by RU l to perform processing tasks. The
latter can be given by [32]

P proc
RU,l = P proc

RU,0 +∆proc
RU,l

(
CCRU,l

CCmax
RU

)
, (22)

where P proc
RU,0 is the power consumed by each digital signal

processor (DSP) of RU l in idle mode; ∆proc
RU,l is the slope of

power consumption due to processing in RU l, and CCmax
RU

indicates the maximum GOPS capacity of the DSP in RU l.
The power consumed in each fronthaul link is calculated

as Pfh,l = P0,l + Pft,l, Rfh,l, where P0,l is the fixed power
consumption of each fronthaul link, Pft,l denotes the traffic-
dependent power in Watt per bit/s, and Rfh,l is computed
in (17). Similarly, for backhaul links, Pbh = 0.5 × J(J −
1)Pbh,0 + PbtRbh, where Pbh,0 and Pbt represent the fixed
and traffic-dependent power of each backhaul link, while Rbh

is computed in (18). The term 0.5×J(J −1) refers to a fully
connected topology, where each CPU has a direct connection
to each other. Finally, P proc

CPUs can be expressed as

Pproc
CPUs =

1

σcool

(
∆proc

GPP

CCCPUs

CCmax
GPP

+ χproc
CPUs

)
, (23)

where 0 < σcool ≤ 1 denotes the cooling efficiency and
CCCPUs is calculated as CCCPUs =

∑J
j=1 CCCPU,j . More-

over, ∆proc
GPP stands for the slope of power consumption in a

general purpose processor (GPP), and CCmax
GPP is the maximum

processing capacity of each GPP in GOPS. The term χproc
CPUs is

obtained as χproc
CPUs = P proc

GPP,0

∑J
j=1Wj , with Wj denoting the

number of active GPPs in each CPU j, and P proc
GPP,0 represent-

ing the power consumed by each active GPP during idle mode.
The term Wj can be given by Wj = ⌈CCCPU,j/CC

max
GPP⌉,

with ⌈.⌉ being the ceiling operation. It is worth mentioning that
(23) extends the load dependent power consumption model
proposed in [32] to a multi-CPU scenario.

IV. SCALABLE UC D-MMIMO SYSTEMS WITH
RESTRICTED PROCESSING CAPACITY

In scalable D-mMIMO systems, the network complexity
does not grow with the number of UEs since the number
of UEs that each RU serve is limited, i.e., Kl ≤ τp, where
Kl = |Dl|. Therefore, the maximum number of UEs served
by each RU remains finite even if the number of UEs K goes
to infinity. However, the complexity of performing channel
estimation and computing the precoding vectors can still grow
with the number of RUs [9]. That is, as L increases, the
number of RUs connected to the UE k (Lk) can also increase,
resulting in more processing complexity from the network,
where Lk = |Mk|. To circumvent this issue, we rely on a
strategy where each UE can be associated only with a finite
number of RUs, denoted as Cmax, with Lk ≤ Cmax [19]. We
refer to this strategy as maximum RU cluster size control. It
is noteworthy that despite having a similar function, the Cmax
on this work is fundamentally different from the one presented
in [19]. In this paper, Cmax is a parameter that refers to the
system processing capacity limitation that provides a new type
of analysis for UC D-mMIMO systems.

A. RU Cluster Size Control with CPUs Cooperation

The maximum RU cluster size control procedure can be
described as follows: when a new UE k enters the network, it
measures the large-scale fading coefficients of the RUs in its
vicinity, which is calculated according to βkl = tr (Rkl) /N



TABLE I: Number of complex multiplications required from CPUs and RUs to perform channel estimation and generate the
combining vectors in each coherence block for different precoding schemes.

Scheme Channel estimation Combining vector computation

P-RZF CCest
CPU,j

∑
k∈Kall

j

(
Nτp +N2

)
Ljk CCcomb

CPU,j

∑
k∈Kpri

j

[
|Sk|2 + |Sk|

2
NLk + |Sk|2 + |Sk|NLk +

|Sk|3 − |Sk|
3

]

P-MMSE CCest
CPU,j

∑
k∈Kall

j

(
Nτp +N2

)
Ljk CCcomb

CPU,j

∑
k∈Kpri

j

[
(NLk)

2 +NLk

2
|Sk|+ (NLk)

2 +
(NLk)

3 −NLk

3

]

LP-MMSE CCest
RU,l

(
Nτp +N2

)
Kl CCcomb

RU,l

1

2
(N2 +N)Kl +N2Kl +

1

3
(N3 −N)

MR CCest
RU,l

(
Nτp +N2

)
Kl CCcomb

RU,l -

[9]. Then, it claims a master RU to ensure its connection with
at least one RU. The master RU serves the UE even if it has
a poor channel condition [8]. The UE k points the RU l with

l = argmaxl βkl
s.t |Al| < τp,

(24)

to be its master RU, where Al ⊂ Dl represents the subset
of UEs the RU l serves as master RU. In order to solve
(24), the UE k requests a connection to the available RUs.
Posteriorly, the available RUs respond, and the UE k chooses
the one with the strongest channel gain βkl to be its master
RU. The available RUs are the ones presenting |Al| < τp,
∀l ∈ {1, . . . , L}. Furthermore, |Bl| + |Al| ≤ Kl, where
Bl ⊂ Dl represents the subset of UEs the RU serves, but
not as a master4 (i.e., UEs that the RU may disconnect). It is
worth mentioning that the CPU connected to the UE’s master
RU will be considered the UE’s primary CPU [16].

After selecting the master RU, the UE k performs any
UC RU selection scheme5 in (6). In the following, the CPUs
associated with the RU cluster of the UE k share the indexes of
the RUs serving the UE (Mk) with each other. Then, the CPUs
serving the UE k compute the number of RUs serving the UE
k, i.e., Lk = |Mk|. If Lk ≤ Cmax, no action is required.
Otherwise, the CPUs will drop the connection of the UE k
with the Ek RUs presenting the weakest channel gains, where
Ek denotes the number of RUs that exceed Cmax, which is
calculated as Ek = Lk − Cmax. Let Jk denote the subset
of CPUs associated with the RU cluster of the UE k. The
maximum RU cluster size control is performed in Jk CPUs,
where Jk = |Jk|.

In order to drop the RUs in excess, the Jk CPUs serving the
UE k sort the channel gains (βkl) of the RUs serving the UE k
in ascending order, such that β̃kl′ ≤ · · · ≤ β̃k(Lk), where β̃kl′
denotes the sorted version of βkl, ∀l ∈ Mk. The indexes of the
RUs before the sort operation are stored in the l′-th element
of the subset M̄k. Finally, the CPUs drop the connection of
the first Ek RUs presenting the smallest channel gains after

4Subset Bl does not affect the master RU assignment in (24). For instance,
if Kl = τp and |Bl| ≥ 1, the RU l could drop the UE with the weakest
channel gain of Bl to serve the UE k in subset Al.

5The efficiency of the proposed solution is proportional to the effectiveness
of the RU selection method. Thus, if the RU selection method does not provide
a connection for a given UE, the proposed technique will not be activated.

the sort operation. This procedure is given by

ckl =

{
0 if l′ ≤ Ek

1 otherwise,
(25)

where l′ is mapped to the unsorted value of l in subset M̄k.
Hence, the final RU cluster of UE k will only be composed
of the Cmax RUs with the largest channel gains. Algorithm 1
summarizes the maximum RU cluster size control algorithm
performed by the CPUs serving the UE.

The time complexity of the proposed method is computed as
follows: the complexity for choosing a master RU by solving
(24) is O(L). The time complexity to perform RU cluster
size control in each CPU j is O

( ∣∣Kall
j

∣∣ log ∣∣Kall
j

∣∣), since each
CPU has to perform a sort operation before computing (25).
Thus, the overall time complexity can be expressed as O

(
L+∑J

j=1

∣∣Kall
j

∣∣ log ∣∣Kall
j

∣∣).
Remark 2: It is considered that controlling RU cluster size

is done before reducing the effects of inter-communication
between CPUs. In other words, we first limit the number of
CPUs serving the UE so that Lk ≤ Cmax. Then, we reduce
the effects of inter-CPU communication in (14). This sequence
also applies to the other methods in Sections IV and V. That
is, they are performed before computing (14).

B. RU Cluster Size Control without Using CPUs

This subsection presents a method that does not utilize
the CPUs for controlling the maximum RU cluster sizes.
Instead, it shows that RU selection methods themselves can
incorporate Cmax. Therefore, it is considered that the proposed
approach is performed only between UEs and RUs. This one
relies on a matched-decision (MD) strategy to make the RU
clusters meet the restriction Cmax. The MD strategy is a
general RU selection framework that makes the RU clusters
be composed of the more convenient connections for UEs and
RUs. It is divided into two steps, where the UE first requests a
connection to a subset of RUs following a decision criterion,
e.g., largest-large-scale fading [5]. In the following, the RUs
accept or reject the UE request using criteria such as least pilot
contamination [9], effective channel gain [11], among others.

The subset of RUs selected by UE k is denoted by
ek = [ek1, ..., ekL] ∈ N1×L, where ekl = 1 if the RU is in
accordance with the criterion adopted by the UE. Otherwise,
ekl = 0. It is assumed that the UE k solves (24) and re-
quests a connection to the Cmax RUs presenting the strongest



channel gains βkl in its vicinity. For this, the UE k sorts
the channel gains of the RUs in descending order, such that
β̃kl′ ≥ · · · ≥ β̃kL, where β̃kl′ denotes the sorted version of
βkl, for l = {1, ..., L}. The indexes of the RUs before the
sort operation are stored in the l′-th element of the subset
M̄k = {1, ..., L}. Then, the UE requests a connection to the
first Cmax RUs presenting the strongest channel gains after
the sort operation. This procedure can be expressed as

ekl =

{
1 if (l′ ≤ Cmax) ∨ (UE k ∈ Al)

0 otherwise,
(26)

where l′ is mapped to the unsorted value of l in subset
M̄k. The decision taken in the RU l is denoted by fk =
[fk1, ..., fkL] ∈ N1×L, where fkl = 1 if the RU l accepts the
UE k. Otherwise, fkl = 0. It is considered that the RUs also
rely on the channel gain to use similar decision criteria among
the UEs and RUs. Therefore, fkl is expressed as

fkl =

{
1 if (UE k ∈ Al) ∨ (Kl < τp) ∨

(
βkl > βmin

il

)
0 otherwise,

(27)

where i ̸= k denotes the UE with the smallest channel gain
that the RU l serves in Bl. It is worth noting that in (27), the
RU l drops the UE i to serve the UE k if Kl = τp. Finally,
the RU cluster of the UE k is given by

ck = ek ∧ fk. (28)

Therefore, the connections will only be established if both
UEs and RUs agree. Algorithm 2 summarizes the maximum
RU cluster size control without using CPUs.

Algorithm 1: RU cluster size control: CPUs
Input: l = 1, ..., L, Cmax

1 The UE connects to a master RU by solving (24) and
associates with a subset of RUs (Mk) in (6);

2 Identify the Jk CPUs serving the UE; // Jk = |Jk|
// The Jk CPUs perform RU cluster size control:

3 if Lk > Cmax then
4 Ek = Lk − Cmax; // where Lk = |Mk|
5 Sort the channel gains of the RUs serving the UE

in ascending order, such that β̃kl′ ≤ · · · ≤ β̃k(Lk);
6 for l′ = 1 to Ek do
7 Map l′ to the unsorted value of l in subset M̄k;
8 ckl = 0; // Computed in (25)
9 end

10 end
Output: ck = [ck1, . . . , ckL].

V. RU CLUSTER ADJUSTMENT

In this section, a heuristic method that adjusts the RU
clusters according to the network implementation is proposed.
Such method holds for any UC RU selection scheme, i.e.,
with and without processing capacity limitation. Besides, it
is a heuristic strategy because only heuristic solutions are
scalable [9]. In a nutshell, the UEs are associated with a
subset of RUs following any RU selection process. Then, the

Algorithm 2: RU cluster size control: RUs and UEs
Input: Cmax, M̄k = {1, ..., L}

1 The UE k connects to a master RU by solving (24)
and sorts the channel gains (βkl) of the RUs in
descending order, such that β̃kl′ ≥ · · · ≥ β̃kL.

2 ekl = 0; fkl = 0, ∀l ∈ M̄k.
3 for l′ = 1 to Cmax do
4 Map l′ to the unsorted value of l in subset M̄k.
5 ekl = 1; // Request a connection to nearby RUs

// RUs accept or reject the UE request:
6 if k ∈ Al or βkl > βmin

il then
7 fkl = 1; fil = 1; // where i ∈ Bl
8 if Kl = τp then
9 fil = 0;

10 end
11 end
12 ckl = (ekl ∧ fkl) // Matched-decision
13 end

Output: ck = [ck1, . . . , ckL].

proposed method aims to simultaneously reduce the number
of UEs served by each RU l (Kl) and the number of RUs
connected to each UE k (Lk) while keeping the SE under
minor degradation. In this context, it is a novel way to reduce
the CC and increase EE in scalable UC D-mMIMO systems.
Throughout the analysis, it is also assumed that each UE
connects to a master RU.

A. RU Cluster Adjustment in the Distributed Implementation

In the distributed implementation, the proposed method
exploits the local long-term CSI at each RU and intends to
reduce Kl without causing significant SE degradation. When
all RUs are involved, the average value of Lk is also reduced.
It is noteworthy that Lk is not directly reduced in distributed
implementation, and neither could it be since it would require
global long-term CSI at each RU.

The adjustment of the RU cluster relies on two proposed
metrics: (i) the partial channel strength indicator (β̄kl) and (ii)
the total channel strength indicator (β̄l). We use these metrics
to prevent the less fortunate UEs from being easily dropped
by the RU. Thus, they do not directly represent the long-term
CSI of the UEs that the RU serves. Instead, they are the long-
term CSI raised to a normalization exponent, defined as λl,
which provides a better balance between the channel gains of
the most and less fortunate UEs served by the RU, such that
0 < λl < 1. Without this normalization, the RU could easily
drop a UE presenting a weaker channel gain if the RU was
also serving UEs with stronger channel gains. However, these
differences can be reduced when the channel gains are raised
to a power lower than one and greater than zero, such as λl.

The partial channel strength indicator is given by β̄kl =
(βkl)

λl , where λl = mink∈Dl
(βkl)/maxk∈Dl

(βkl). The sec-
ond metric, called total channel strength indicator, is calculated
as β̄l =

∑
k∈Dl

β̄kl. In the proposed method, the two metrics
are used by each RU l to calculate β̄l,−k = β̄l− β̄kl, ∀k ∈ Dl.
The purpose of calculating β̄l,−k is to evaluate how much the



total channel strength indicator β̄l is reduced by dropping the
UE k from the RU l. After computing β̄l,−k, the RU keeps
the connection of UE k, only if

ckl =

{
1 if (UE k ∈ Al) ∨

(
β̄l,−k ≤ β̄meanl

)
0 otherwise,

(29)

where β̄meanl =
∑
k∈Dl

β̄l,−k/Kl is a threshold value and
Al ⊂ Dl is the subset of UEs that RU l serves as a master.
One can note that the term β̄l,−k has to be smaller than
β̄meanl , because β̄l,−k will be small if the UE k has a large
partial channel strength indicator β̄kl, since β̄l,−k = β̄l − β̄kl.
Meanwhile, β̄l,−k will be large if the UE k adds only a
marginal gain to the total channel strength indicator β̄l. That is,
if β̄kl represents a considerable percentage of β̄l =

∑
k∈Dl

β̄kl,
the term β̄l will be significantly reduced if the UE k is
disconnected from RU l.

B. RU Cluster Adjustment in the Centralized Implementation

In the centralized implementation, the long-term CSI of
RUs and UEs is available at the CPUs [7], [9]. Hence,
the proposed method exploits the global long-term CSI to
reduce Lk. At first, reducing Lk may appear counter-intuitive
since the centralized implementation has a better interference
suppression capability. However, since CC grows with the
number of RUs serving the UE (recall that Lk = |Mk|),
the RU cluster expansion will not always be beneficial, and
reducing Lk may be necessary even in this implementation. In
the centralized implementation, the RU cluster adjustment is
also performed by the Jk CPUs associated with the RU cluster
of the UE k, which are denoted as Jk, where Jk = |Jk|.
Moreover, the Jk CPUs need to share the indexes of the RUs
serving the UE (Mk) with each other, as in Section IV.

The partial channel strength indicator is now calculated
in the CPUs as β̄kl = (βkl)

λk , where λk introduces a
balance between the serving RUs presenting the smallest and
highest channel gain to the UE k. The CPUs compute λk
as λk = minl∈Mk

(βkl)/maxl∈Mk
(βkl). The total channel

strength indicator is computed as β̄k =
∑
l∈Mk

β̄kl. Then, the
CPUs calculates the contribution that each RU brings to β̄k as
β̄k,−l = β̄k− β̄kl, ∀l ∈ Mk. Therefore, the CPU connected to
the RU l keeps the connection of RU l with the UE k only if

ckl =

{
1 if (UE k ∈ Al) ∨

(
β̄k,−l ≤ β̄meank

)
0 otherwise,

(30)

where β̄meank = σsi/2+
∑
l∈Mk

β̄k,−l/Lk and σsi denotes the
standard deviation of β̄k,−l, ∀l ∈ Mk. The term σsi is utilized
to make the CPUs drop fewer RUs from the RU cluster of
UE k to exploit the centralized implementation’s capacity in
improving SE. It is worth noting that only the CPUs associated
with the RU cluster of the UE run the proposed method.

C. Pros and Cons of the two RU Clusters Adjustments

The utilization of the proposed method in a distributed
implementation enables a fronthaul signaling reduction since
the number of data flows on the fronthaul is proportional
to Kl in (17). Besides, it allows the RU to carry out fewer

operations while attaining the same SE performance, increas-
ing the system’s EE. Utilizing the proposed method in a
centralized implementation also allows significant savings in
CC resources. Nonetheless, it does not directly reduce the
number of data flows in the fronthaul links, since the required
bit rate is not proportional to Kl in (17). It is worth noting
that this paper has considered that the RU cluster adjustment is
only activated when λl and λk are lesser than a threshold Γ to
avoid excessive adjustments, where Γ is a project parameter.
We have set Γ = 10−2 and Γ = 10−3 for the distributed and
centralized implementations, respectively.

VI. NUMERICAL RESULTS

We consider a D-mMIMO network consisting of K single
antenna UEs and L RUs, each equipped with N antennas.
The values of L, N , and K vary and are specified throughout
the results. The K UEs are uniformly distributed over a square
area of 1×1 km, and the distribution of the RUs follows a hard
core point process (HCPP)6. After the RUs positioning, the
coverage area is divided into J rectangle regions of the same
size, each consisting of a CPU coordinating approximately
L/J RUs, where J = 4. Each CPU can serve up to Ksec =
10 UEs as a secondary CPU [16]. The simulations focus on
DL channels and it is assumed that τc = 200, τp = 10, and
τd = 190. The total transmission powers of the UEs and RUs
are 100mW and 200mW, respectively. We perform Monte-
Carlo simulations to account for different RU/UE locations
and channel realizations. The wrap-around technique is also
utilized to provide a better balance regarding the amount of
interference affecting each RU.

We utilize an RU clustering scheme that jointly performs the
pilot assignment and RU selection [8]. In this one, the UEs
can connect to master and non-masters RUs. The non-masters
serve only the UEs with the greatest channel gain in each
pilot. The first τp UEs are assigned to mutually orthogonal
pilots, and the remaining ones to the pilot causing the lowest
pilot contamination. Hereafter, we name it as scalable cell-free
(SCF) scheme. Furthermore, we utilize two other RU selection
strategies to assess the proposed approach’s performance in
UC D-mMIMO systems presenting distinct RU-UE association
strategies. Both are non-scalable solutions but are utilized to
demonstrate that the proposed approach can be used in any RU
selection scheme when RU cluster size control is performed
at the CPUs. The key features of these RU selection methods
are described below:

• Largest-large-scale fading (LSFB) [5]: the UE measures
the large-scale fading gains of the RUs in its surroundings
and sums these channel gains. Posteriorly, it connects to
the subset of RUs that contribute the most to the sum of
its total channel gain in percentage δ%, with δ% = 99.9.
The LSFB is a non-scalable scheme because it does not
limit the number of UEs that each RU can serve.

6This method states that the distance between any two RUs cannot be
smaller than dmin =

√
A/L, where A is the coverage area in square meters.

The first step is to randomly drop the RUs based on a homogeneous Poisson
point process with mean rate 1/dmin, then randomly update the location of
RUs that do not meet the spacing requirement until it is fulfilled.



• User-centric clustering (UCC) [6]: the RU serves the
Umax UEs with the largest estimated channel in each
coherence block, where Umax is the maximum number of
UEs the RU can serve. We have adjusted this strategy to
consider only the large-scale fading to avoid performing
RU selection in each coherence block. Thus, the RU
serves the Umax UEs presenting the largest large-scale
fading in their vicinity, with Umax = τp.

The 3GPP Urban Micro (UMi) path loss model is adopted
for modeling the propagation channel, with LOS/NLOS con-
ditions defined in the Technical Report (TR) 38.901 [33]. It is
considered that the shadowing terms of an RU to different UEs
are correlated, and the computation of correlation matrices
Rkl follows the local scattering spatial correlation model [8].
Table II exhibits the parameters used in the UMi and Rkl

models [8], [34].

TABLE II: Parameters assumed for the UMi path loss and
local scattering spatial correlation model.

Parameter Value

Shadow fading standard deviation, σSF 4 dB
RU/UE antenna height, hRU, hUE 11.65 m, 1.65 m

RX noise figure (NF) 8 dB
Carrier frequency, bandwidth (B) 3.5GHz, 100MHz

Angular standard deviations (ASDs) σφ = σθ = 15◦

Antenna spacing 1/2 wavelength distance

The power coefficients at RU l in the distributed implemen-
tation are set as ρkl = ρd

√
βkl/

∑
k′∈Dl

√
βk′l, where ρd is

the maximum transmit power per RU. For the centralized one,
scalable fractional power control is used with the following
parameters: v = −0.5 and κ = 0.5 [8]. The EE parameters
related to the power consumption of the hardware of the RUs,
fronthaul, and backhaul links are summarized in Table III,
which follows [5], [29]. However, P proc

RU,0, ∆proc
RU,l, and CCmax

RU

are in accordance with a Texas Instruments TMS320C6678
DSP. Moreover, conventional 5G new radio (NR) parameters
are assumed to compute the CC in GOPS, where NDFT =
Nsc = 3300, fs = 122.88MHz, and Ts = 35.38µs. These
values correspond to 30kHz of subcarrier spacing.

TABLE III: Parameters assumed for calculating the power
consumption in CPUs, backhaul/fronthaul links, and EE.

Parameter Value Parameter Value

Pproc
RU,0, Pproc

GPP,0 7.3 W, 20.8 W P0,l, Pbh,0 0.825 W
∆proc

RU,l, ∆
proc
GPP 73 mW, 74 W Pft,l, Pbt,l 0.25W/(Gbit/s)

CCmax
RU , CCmax

GPP 180 GOPS σcool, γl 0.9, 0.4
Rmax

fh,l 10Gbps bmax 12 bits

A. Impacts of Limiting the Processing Capacity

We start by evaluating a network composed of K = 25
UEs and L = 100 RUs equipped with N = 1 antenna. Fig. 2
presents the cumulative distribution functions (CDFs) of the
SE of UC systems with and without processing capacity lim-
itation. It considers different processing capacity limitations,
i.e., several values of Cmax, and the system is compared with

a traditional UC scheme (i.e., Lk and Ksec are not restricted),
which we have denoted as SCF. These results are presented
for the case where CPUs impose that Lk ≤ Cmax.

In Fig. 2a, the SE is not significantly reduced by the
variations of Cmax. The SE even increases slightly for 5 ≤
Cmax ≤ 10. This is because decreasing Lk also reduces Kl,
helping precoding techniques such as LP-MMSE (of local
processing) to mitigate interference. In Fig. 2b, the SE can
suffer significant losses when Cmax is small. For instance,
it decreases by 32% when Cmax goes from 30 to 5. Hence,
reducing the RU cluster sizes (Lk) may lead the centralized
implementation to not exploit its full potential in mitigating
interference and improving SE. Therefore, this implementation
needs to utilize more processing capacity, such as Cmax ≥ 20.
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Fig. 2: CDF of SE by varying Cmax from 5 to 30. Parameters
setting: J = 4, L = 100, K = 25, N = 1, and Ksec = 10.

Fig. 3 presents the SE and sum of CC to perform channel
estimation and generate the combining vectors when the
number of RUs L varies. The CC is given in terms of number
of complex multiplications (CM), i.e., only considering the
terms CCcecb

CPU,j and CCcecb
RU,j in (19) and (20). In Fig. 3a, the

average SE grows with L for UC systems with and without the
proposed approach for processing capacity limitation. Despite
this, limited systems have a significant advantage, as their CC
does not always increase with L, starting to be constant from
L = 60. This behavior occurs because Kl and Lk does not
increase with L, as Table IV demonstrates. Additionally, it is
possible to observe that the CC decreases by about 98.22%
when the proposed approach for processing capacity limitation



is employed together with the P-MMSE scheme for L = 200.
It is noteworthy that Lk does not equal Cmax in Table IV. This
happens because after applying (28), the proposed approach
(PA) also reduces the effects of inter-CPU communication
in (14). Thus, Lk is lowered both in (28) and (14), making
Lk < Cmax.
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Fig. 3: Average DL SE (a) and CC in terms of number of
complex multiplications (CM) (b) achieved by varying the
number of RUs L. Parameters setting: J = 4, K = 25, N = 1,
Cmax = 20, and Ksec = 10.

Fig. 4 shows the total CC in GOPS when the number of RUs
L varies, i.e., considering all the terms of (19) and (20). One
can note that the overall CC still increases with the number
of RUs. This is because some network functions, such as
higher-layer control, do not rely on Cmax. Therefore, their CC
(denoted as CCbasic

CPU,j) still grows with the number of RUs L.
However, the proposed approach still effectively reduces the
CC. For instance, it decreases the CC by about 85% and 77.5%
in centralized and distributed implementations, respectively.

TABLE IV: Average number of RUs per UE (Lk) and UEs
per RU (Kl) without and with RU cluster control. Parameters
setting: J = 4, K = 25, N = 1, Cmax = 20, and Ksec = 10.

Method L = 95 L = 200

Kl Lk Kl Lk

SCF 10 38 10 80
With PA 4.56 17.35 2.25 18

Fig. 5 presents the backhaul traffic for UC D-mMIMO
systems, with and without the proposed approach, when the

number of UEs K grows. It can be noted that the proposed
approach (i.e., using Cmax and Ksec) decreases the backhaul
traffic significantly. For instance, it reduces the backhaul traffic
by about 77% and 80% in centralized and distributed imple-
mentations, respectively, for K = 100. These results indicate
that the proposed strategy allows UC D-mMIMO systems to
reduce their CC and signaling demands while keeping the SE
under minor degradation.
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Fig. 4: Average CC in GOPS achieved by varying the number
of RUs L. Parameters setting: J = 4, K = 25, N = 1,
Cmax = 20, and Ksec = 10.
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Fig. 5: Backhaul traffic in each network implementation by
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Fig. 6: Average EE achieved by varying Cmax. Parameters
setting: J = 4, L = 100, K = 25, N = 1, and Ksec = 10.

Fig. 6 illustrates the EE achieved by a UC system with and



without the proposed approach for processing capacity limita-
tions with different values of Cmax. Note that the processing
capacity limitation can provide a considerable improvement in
the EE, especially for small values of Cmax. For instance, the
EE grows by about 47% in the LP-MMSE and 106% in the
P-MMSE, when Cmax decreases from 50 to 5. This happens
because reducing Cmax also decreases the number of UEs the
RUs serve (i.e., Kl), as indicated in Table IV. For instance, the
proposed approach reduces the average value of Kl from 10
to 2.25 for L = 200. Consequently, the power consumption in
each fronthaul link Pfh,l reduces since Pfh,l is proportional to
the number of UEs served by the RU. Thus, even though the
system experiences SE losses when Cmax = 5, the reduction
in power consumption in the fronthaul links compensates for
these losses, thereby increasing the EE. In other words, the
denominator of (21), which contains Pfh,l, decreases more than
the numerator, which contains the SE.

Fig. 7 compares the RU cluster size control performed by
the CPUs with the MD scheme, which operates between UEs
and RUs. One can note that both methods maintain the SE
with minor degradation compared to the SCF scheme. It is
noteworthy that CPUs provide adaptable control for any RU
selection method, while the MD strategy has limited flexibility
as it is performed only between UEs and RUs. However, the
MD scheme demonstrates that the benefits of limiting CC can
be achieved whether the procedure of computing and applying
Cmax is centralized in CPUs or occurs locally among the UEs
and RUs.

Fig. 7: CDF of SE for the proposed strategies to control the
RU cluster size. Parameters setting: J = 4, L = 100, K = 25,
N = 1, and Ksec = 10.

Fig. 8 presents the average SE and the total CC in GOPS
as the number of antenna elements per RUs N varies. The
MD scheme is used to control the maximum RU cluster
size. As expected, the proposed approach reduces the overall
CC in GOPS, as it mitigates the impact of N , as shown in
Table I. Interestingly, the proposed approach also leads to
some improvements in SE as N increases in the P-MMSE
scheme. This happens because when the RU cluster size for
certain UEs is large, these UEs may connect to RUs that
contribute marginally to the desired signal while intensifying
interference. Consequently, removing such RUs can be ben-
eficial, particularly in sophisticated precoding techniques like

P-MMSE, as these techniques can better manage interference
and further exploit the advantages of using more antenna
elements per RU when the UE is connected to fewer RUs.
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Fig. 8: Averages DL SE (a) and CC in GOPS (b) achieved by
varying the number antennas per RU N , when the MD scheme
is utilized to control the RU cluster size. Parameters setting:
J = 4, K = 25, L = 100, Cmax = 20, and Ksec = 10.

However, this same effect is not observed in the LP-MMSE
scheme since its interference mitigation is performed locally
at the RUs, which do not have access to global statistical
and channel estimation information. Additionally, although
not shown in the figures due to space constraints, our results
demonstrate that the same behaviors are observed when the
RU cluster size control is performed at the CPUs.

B. Comparison with other Baseline Solutions

Recall that the proposed approach can be applied to any RU
selection strategy when RU cluster size control is performed at
the CPUs, as described in Subsection IV-A. Therefore, we also
evaluate the proposed approach for the UCC and LSFB RU
selection schemes, which are non-scalable strategies but can be
utilized to demonstrate the proposed approach’s performance.
To avoid redundancies, we present the results only for the
P-MMSE precoding scheme.

In this regard, Fig. 9 shows the average SE and CC in GOPS
as the number of RUs L, varies. It can be noted that the
previous explanations hold even if the RU selection scheme is
modified, i.e., the proposed approach can reduce the CC while
yielding minor degradation in the SE. Besides, it is possible to
observe that distinct RU selection schemes can lead to different
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Fig. 9: Averages DL SE (a) and CC in GOPS (b) achieved by
varying the number of RUs L, when the UCC and LSFB RU
selection schemes are employed. Parameters setting: J = 4,
K = 25, N = 1, Cmax = 20, and Ksec = 10.

CC and SE since they operate differently and thus affect the
overall CC distinctly. For instance, the proposed approach
decreases the average CC by about 86% and 54.5% for the
UCC and LSFB schemes, respectively. It is worth mentioning
that the higher CC of the UCC scheme compared to the LSFB
is associated with the fact that the UCC scheme always makes
the RUs operate at their maximum capacity, i.e., Kl = τp. In
contrast, Kl is usually lesser than τp in the LSFB strategy.
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Fig. 10: Average EE achieved by varying Cmax, when the
UCC and LSFB RU selection schemes are employed. Parame-
ters setting: J = 4, L = 100, K = 25, N = 1, and Ksec = 10.

The proposed approach can also improve the EE for both
the UCC and LSFB schemes, as depicted in Fig. 10. The EE

TABLE V: Average number of RUs per UE (Lk) and UEs per
RU (Kl) without and with RU cluster adjustment. Parameters
setting: L = 100, N = 1, and Ksec = 10.

Method K = 25 K = 50

Kl Lk Kl Lk

SCF 10 40 10 20
Distributed adjustment 4.32 17.3 4.38 8.75
Centralized adjustment 6.23 24.92 6.17 12.35

increases by about 56% and 94% in the LSFB and UCC
schemes, respectively, when Cmax decreases from 50 to 5.
The higher EEs of the LSFB scheme is also related to the fact
that it operates with RUs serving fewer UEs, which reduces not
only the CC but also the power consumption in the fronthaul
links, thereby improving the EE.

C. Impacts of RU Cluster Adjustment

From now on, we will investigate the impacts of adjusting
the RU clusters in UC D-mMIMO systems. We will focus on
UC systems without processing capacity limitation to assess
the full benefits of the RU cluster adjustment in reducing
CC. Furthermore, we will consider only the P-MMSE and
LP-MMSE schemes as they provide the best interference
mitigation in centralized and distributed implementations.

Fig. 11 presents the average SE and total CC versus the
number of UEs K in a network composed of L = 100 RUs
equipped with N = 1 antenna. Note that the SE is significantly
reduced in the P-MMSE with the proposed method (denoted
as adjusted). Nonetheless, this reduction is related to the value
of Ksec = 10, which is small for centralized implementation.
For instance, although not shown in the figures due to space
constraints, the average SE for Ksec = 20 has been analyzed,
and the RU cluster adjustment revealed to affect the SE
negligibly. One can also note that the proposed method causes
a slight increase in the SE of LP-MMSE. Moreover, the
RU cluster adjustment also reduces the CC of both network
implementations, decreasing the CC by up to 58% in the
P-MMSE scheme for K = 25. Finally, the proposed method
decreases the values of Kl and Lk as illustrated in Table V,
indicating that it can also increase the EE.

Fig. 12 presents the average SE and CC versus the number
of RUs L and N for a fixed total number of antennas
M = LN = 100, when K = 25. One can note that the
same discussions regarding decreasing CC apply to this case.
The difference is the SE behavior. When L = 50 and N = 2,
the LP-MMSE scheme achieved the best balance regarding the
amount of interference and desired signal, leading the average
SE to its maximum value. Meanwhile, the P-MMSE presents
better SE when the RU clusters are adjusted for 10 < L < 100.
This is because the fewer RUs in the coverage area, the further
away the RUs will be from the UE. Therefore, disconnecting
some of these RUs will not impact the UE’s performance [12].

VII. CONCLUSIONS

This paper investigated the performance of scalable UC
D-mMIMO systems with multiple CPUs. In this regard, we
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Fig. 11: Average DL SE (a) and CC in GOPS (b) achieved by
varying the number of UEs K, when the proposed RU cluster
adjustment is employed. Parameters setting: J = 4, L = 100,
N = 1, and Ksec = 10.
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Fig. 12: Average DL SE by varying L and N , while keeping
M = LN = 100, when the proposed RU cluster adjustment is
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proposed a framework that restricts the number of RUs serving
each UE and considers that each CPU can only serve a limited
number of UEs managed by other CPUs. The backhaul traffic
was modeled, and the CC of performing channel estimation
and generating the combining vectors was presented for mul-
tiple CPUs in four precoding schemes. The EE modeling was
also improved by considering the power consumption in CPUs
and backhaul links. Two strategies for controlling the size
of the RU cluster were presented, where one was carried
out by the CPUs and the other between the UEs and the

RUs. Moreover, we proposed two methods that adjust the RU
clusters to the network implementations, i.e., centralized and
distributed. The results demonstrated that using the proposed
strategies to restrict the processing capacity can improve the
EE up to 106% in centralized implementation. However, it
can degrade the SE of centralized implementation when the
maximum number of RUs serving the UE is small. On the
other hand, RU clusters comprising just a few RUs almost do
not harm the SE of distributed implementation. The benefits
of the proposed schemes were observed in both RU cluster
size control methods presented in this paper.

Simulation results also reveal that the proposed framework
allows UC D-mMIMO systems to decrease CC and signaling
requirements while maintaining minor degradation in SE. For
instance, it can reduce the CC to perform channel estimation
and generate the combining vectors up to 98% while prevent-
ing it from growing with the number of RUs. The backhaul
traffic due to inter-CPU communication is also controlled, i.e.,
it does not increase with the number of UEs. Nonetheless,
the CC of certain network functions, such as higher-layer
control, are not affected by the proposed methods. Thus, their
CC continue to scale with the number of RUs. Finally, the
proposed RU cluster adjustment can slightly improve the SE
of distributed implementation while reducing the CC in both
network implementations. These results open the way for
future works to design practical UC systems with processing
capacity and signaling constraints. Future works can expand
our analyses to consider non-reciprocity and mobility.
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