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A B S T R A C T

This paper introduces a novel framework for enhancing quality of service predictability in Flying ad hoc
Networks (FANET) by leveraging P4 data-plane programmability. The proposed solution, P4 FANET In-Band
Telemetry (FINT), is specifically designed to tailor the limited resources in wireless networks and is extended to
collect not only the standard INT metadata but also novel essential Unmanned Aerial Vehicles (UAV) real-time
metrics, including Received Signal Strength Indicator (RSSI), geolocation information and CPU load. These
parameters are then fed into an artificial intelligence (AI) system, enabling proactive prediction of FANET
link failures. By integrating P4 FINT and AI, our framework aims to improve the availability and overall
performance of UAV-based networks through advanced link failure forecasting.
1. Introduction

1.1. Motivation and paper contribution

In an era characterized by rapid automation advancements, offload-
ing various jobs to Artificial Intelligence (AI) is becoming the standard
practice, and many AI experts believe that in the next few decades AI
will match or even outperform humans in many areas [1].

Among the different networking scenarios, Flying ad hoc Networks
(FANET) represent the most challenging framework, since node mobil-
ity and flying state and conditions introduce relevant physical topology
dynamicity issues, involving variable link states, link/node discon-
nection events and flying node platform limitations (e.g., battery).
With technological advances in networking technologies in terms of
programmability, higher transmission speeds, and lower latencies, it is
now possible to collect comprehensive telemetry data on the state of
devices in a given network [2].

For such networks, AI-assisted recovery procedures require standard
in-band network telemetry (INT) [3] augmented with key mobility and
flying performance metadata (for example, the actual quality of the
transmission of a wireless link, or the current position of the flying
node).

In this paper, we propose a new framework for improving the
robustness of connectivity in a FANET based on the collection of
an extended set of P4 In-Band Telemetry [3] data. By feeding these
telemetry data to an AI system as input features, the AI will be able
to make real-time decisions about implementing changes to the state
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of the network devices. These changes would come as a response to
resolve unwanted situations such as link congestion, packet loss, and
high latencies.

For this reason, with our work described in this paper, we aim to
take advantage of data plane programmability with the P4 language [4]
for the collection of telemetry data in FANET. We can summarize our
contributions in the following points:

1. Introducing data plane programmability using P4-enabled nodes
in a FANET for enhanced networking operation. In our imple-
mentation we achieved this by introducing a P4 programmable
software switch that handles the forwarding of the packets and
the collection of extended telemetry data based on flow en-
tries that keep being updated through an SDN controller as the
topology of the network changes.

2. Implementing an extended FANET In-Band Network Telemetry
(FINT) to collect state information on FANET nodes, their actual
properties and additional metadata. The extended telemetry in-
cludes non-standard P4 metadata such as the load of the CPU
of the UAV, its coordinates in the 3-dimensional space and the
RSSI of the radio links. This extended telemetry is used for the
prediction of link failures in the network.

3. Implementing an AI algorithm that uses FANET In-Band ex-
tended telemetry data to predict disconnections between the
nodes and prevent link failure using link recovery in advance,
minimizing traffic disruption.
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In Section 2, we briefly explain the scientific background and tech-
nologies used in our work, while the rest of this paper comprises the
following topics:

1. The related works in the literature that includes FANET and data
plane programmability (Section 3);

2. The architectural framework of P4 FANET, including the net-
work and the node design (Section 4).

3. The proposal of extended in-band telemetry for FANET, i.e. FINT
(Section 5);

4. The proposal of AI-assisted FANET link failure forecasting and
recovery exploiting the FINT reports (Section 6);

5. The experimental testbed and extensive results carried out to
evaluate and validate the FINT-based FANET link failure forecast
(Section 7);

6. The conclusions of the work (Section 8).

2. Background

2.1. Mobile ad hoc networks

Wireless networks can generally be classified into two broad cat-
egories: 1. Infrastructure-based wireless in which nodes communicate
through an Access Point (AP). 2. Infrastructure-less (Ad Hoc) wireless
networks. Mobile Ad Hoc Networks (MANETs) are a type of wireless
network that connect two or more wireless mobile nodes without
relying on a central infrastructure to establish the connections between
different nodes in the network. In this type of wireless network, each
wireless node performs the functions of both a host (generating its
own traffic) and a router (forwarding traffic generated by other nodes).
The topology in MANETs is constantly changing as the wireless nodes
in such a network are allowed to move freely in any direction, and
the nodes can dynamically join or leave the network. Thus, the nodes
frequently break and establish wireless connections to other nodes on
an on-demand basis [5].

2.2. Unmanned aerial vehicles

In recent years the world has seen rapid development in the field
of Unmanned Aerial Vehicles (UAVs), commonly known as Drones.
These Drones are flying aircraft that do not carry a human operator
and can operate either autonomously or via remote control through
a Base Station (BS). UAVs can be built in different sizes and shapes
and be adapted to carrying different types of payloads. Also, they can
be equipped with a variety of sensors for multiple purposes such as
Global Positioning System (GPS) and proximity sensors which can be
used for navigation, cameras for navigation and data collection, and
many other types of sensors adapted to the application. This flexibility
in the design makes drones suitable for many applications, including
parcel delivery, exploration, search and rescue, disaster recovery, and
many others. Most UAVs are designed for high maneuverability, so they
can be deployed quickly and easily, and rely on batteries as their power
source [6,7].

2.3. Flying ad hoc networks

Many applications employ a group of UAVs to increase coverage
area or carrying capacity, thus requiring communication and coordina-
tion between UAVs, leading the UAVs to form what is known as Flying
Ad Hoc Networks (FANETs). A FANET can be described as a wireless
ad hoc network that connects two or more UAVs. Essentially, a FANET
is a particular case of MANET, where the mobile nodes are UAVs [8]. A
FANET provides many advantages over the use of a single UAV system.
Some of these advantages can be summarized here:

1. Reduced costs when using multiple small UAVs than a single
large one [9].
2

2. Increased coverage range [10].
3. Redundancy: if one of the UAVs fails its role can be covered by

other nodes in the network. [11].
4. Task speed up: having a group of UAVs working towards achiev-

ing a goal would take less time than using a single UAV. [12]

owever, the flying nature of a FANET introduces various challenges
n coordinating and sustaining the network. These challenges can be
ummarized in the following points:

1. Routing traffic between nodes: the topology is frequently chang-
ing because nodes have a high degree of movement freedom in
a 3-dimensional space at high speeds that can be more than 400
km/h [11].

2. Power consumption: batteries are the main power source in
small UAVs, their low energy density permits a small UAV to
operate for about 20 to 30 min. Moreover, the relatively slow
charging speeds sometimes call for a manual replacement of the
batteries [13–15].

3. The need for accurate location information at high speed of
movement [16,17].

4. Latency and bandwidth issues [18,19].
5. Managing and organizing the network [20].

2.4. Programmable data plane with P4

Programmable Data Planes (PDPs) allow a network administrator
to tune the processing logic of a network device to their own specific
needs even after the devices have been deployed in the network. This
feature separates the packet processing functions from the underlying
hardware and makes it possible to implement new customized and
non-standard networking protocols, designed to achieve the goals of
the network administrators. This programmability is supported by the
introduction of programmable data plane languages. Among those,
the Programming Protocol-independent Packet Processors Language
(P4Lang) [4,21] is a domain-specific language designed to describe
the processing logic of Software Defined Networking (SDN)- enabled
devices and to specify how data plane devices process packets.

2.5. In-band network telemetry

In-band Network Telemetry (INT) is a framework designed to allow
the collection and reporting of the state of the network by the data
plane, without requiring the intervention of the control plane [3]. In
INT, it is possible to embed telemetry data (also known as metadata)
into the packet by each network node along the packet path. This
process is generally enforced in the following steps:

1. The first node in the telemetry path (known as the ingress node)
inserts two or more telemetry headers. The first header conveys
information about the telemetry protocol and format, such as the
length of the telemetry data. In addition, it can carry instructions
for the downstream nodes. Finally, the ingress node adds one or
more metadata headers, according to the instructions from the
control plane.

2. Following nodes in the INT path (known as transit nodes) also
include their metadata following control plane instructions and
possibly can make changes to the INT header.

3. The last node in the INT path (e.g., the sink node) inserts its
metadata like a transit node, it extracts all the added INT headers
from the packet and then sends them to a telemetry collector in
a new packet (called INT Report). This way, the original packet
is restored to be delivered to the destination transparently.

. Related work

Several works have been proposed in the literature to identify
nd address the challenges faced in deploying FANETs (Table 1). For
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Table 1
Overview and features of key related works.
Work Description Features

LEPR [22] Link stability metrics for preemptive
estimation of link failure.

The estimation is local to the node,
no overall view of the network,
no INT.

DPTR [23] Tree-based grouping takes into
account multiple ground stations.

No Link estimation, priority-based grouping,
no INT.

SOCS [24] Clustering-based, self-organizing, nodes
exchange information with neighbours.

Requires electing cluster heads,
no dynamic forming of links,
no INT

Fekher et al. [25] Uses fuzzy logic for localization
and energy-efficient routing,
uses node clustering.

Operates in no GPS environment,
uses signal to estimate location,
no INT.

Scano et al. [26] Uses INT in UE in 5G to predict
latency and link failures.

Studies the concepts of using INT
for link state estimation in a
cellular environment instead of FANET.
example, the work by Frew and Brown [27] identifies operational
and networking requirements to be met by the nodes in a FANET for
specific applications. As an example, one scenario reported in [27] is
tracking the boundaries of a toxic plume by drones; for many practical
reasons, it may not be possible or desirable to equip every drone with
the same set of sensors. In this case, drones with a similar set of
sensors need to identify and locate each other for efficient cooperation
and routing of communications. In [22] the authors proposed Link-
stability Estimation-based Preemptive Routing (LEPR) with the goal of
adapting traffic routing to the dynamically changing network topology,
enhancing packet delivery ratio and minimizing delay and overhead.
In [23] the authors proposed a tree-based routing scheme partitioning
the FANET into the aerial and the ground segments. Their thorough
analysis showed comparable results between ground and flying ad hoc
networks in terms of packet delivery ratio and end-to-end delay and
showed good connectivity in networks composed of up to 30 ground
nodes and up to 10 UAVs. On the other hand, the authors in [28]
propose Delay and Link Stability Aware (DLSA) routing, which is based
on DPTR [23] and LEPR [22] and combines the upsides of both schemes
to achieve an improvement in the end to end delay and the packet
delivery ratio.

Authors in [24] propose a Self-Organized Clustering Scheme (SOCS)
to address routing and management issues in FANET. The SOCS makes
use of the Glowworm Swarm Optimization [29] in which every node
exchanges information with its neighbours about distance and connec-
tivity to the ground control station, then based on this information
cluster headers are elected and clusters of UAVs are formed. When
tested against similar clustering algorithms, SOCS offered a substantial
improvement in terms of cluster building time, energy consumption,
and cluster lifetime. However, the scheme in SOCS requires that nodes
adjust their position to stay close to cluster heads which may not always
be desirable, and the tests were simulated in MATLAB which may
not reflect real-world scenarios. A dynamic UAV positioning method
based on Particle Swarm Optimization is proposed in [30], intending
to maximize the value of sensor data collected from multiple UAVs.
The scenario assumes that numerous types of sensors are deployed in a
wide area and that multiple UAVs are used to collect the data from the
sensors in real-time. The protocol works by assigning a value to each
sensor, the value goes higher in time the longer the sensor data has not
been read and is set to the minimum value after a sensor has been read.
The authors in [30] used a MATLAB simulation to prove the worthiness
of their method. However, a real-world evaluation is still desired to
provide reliable test results. Another mechanism for clustering nodes
and routing data is proposed in [31]. The proposed mechanism is based
on the localization of nodes using weighted centroid localization [25]
that uses Fuzzy Logic inference based on RSSI values between different
nodes to compute their locations. The calculated locations of the nodes
are used to select a cluster head, which is then used to optimize routing,
to reduce energy consumption and hence increase network lifetime.
3

Simulations are run in MATLAB which has proven some improvements
over similar algorithms. However, we still believe that real-world val-
idation is necessary to take into account unforeseen events. Another
work that takes link state into account is presented in [32] in which
the authors study and simulate multiple link state routing protocols,
available in the literature. The authors aim to enhance the performance
of these protocols by optimizing their parameters such as coverage,
directional gain, number of nodes, and many other relevant parameters,
as opposed to proposing new protocols. Their results show that it
is possible to gain significant improvements in terms of delay and
packet delivery ratio by fine tuning the routing parameters. However,
this approach may not be very practical as many of the network
parameters may not be known beforehand. Concerning data plane
programmability, in [26] INT operation has been extended with geo-
location tracking of user equipment in edge networking with the aim
to steer the application traffic from the wireless end-user equipment to
the latency closest edge node, also considering the wireless link in the
latency computation budget.

4. P4 FANET

4.1. Research scenario

In this work, the considered scenario focuses on a mesh SDN FANET
responsible for the reliable reception, processing and delivery of traffic
generated by a number of distributed aerial sensors (e.g., IoT de-
vices, and other flying objects such as rescue helicopters), unable to
communicate directly with a ground station using a point-to-point
connectivity. Possible causes of this limitation can be the limited radio
link budget or the instability of the line-of-sight conditions. In this
case, the FANET acts as a wireless network extender within a given
geographical domain, allowing multiple aerial traffic sources to be
received and forwarded by the FANET towards the closest ground
station.

The elements of the FANET are placed and moved to guarantee a
suitable network coverage for the selected sources and may move in
order to optimize the reach due to geographical and weather condi-
tions. The dynamicity of the network, in terms of topology, depends
on two factors. First, the FANET elements (P4-UAV) may move and /or
may change (e.g., due to maintenance operation). Second, the traffic
sources may move independently concerning the FANET, thus they
may disconnect and reconnect to the same or to a different P4-UAV.
This means that a given traffic flow may be subject to dynamic QoS
performance and requires careful monitoring that depends strictly on
the FANET conditions. Moreover, topology changes, occurring at the
FANET, may induce flow disruptions potentially affecting the traffic
QoS, especially in the case of link disconnection and re-connection,
whereas SDN control has to update the topology and the network
routing of all the disrupted flows.
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Fig. 1. SD-FANET architecture: aerial network and ground station.

4.2. Network architecture

The general architecture of the P4-FANET, with particular reference
to the aerial SDN network solution, is detailed in Fig. 1. The three
functional pillars of the solution are clearly distinguishable in the
figure: a set of P4-UAVs with wireless interfaces (𝑛𝑥 nodes in the figure),
the SDN controller and the AI engine. The latter two are located on
the edge node at the ground station and are responsible for the SDN
network configuration and detection or forecast of critical events. For
simplicity, the SDN controller and AI engine are placed on the same
edge node at the ground station. The 𝑛𝑥 aerial nodes are interconnected
through data plane (DP) wireless links and are instructed to forward
application traffic to the ground station through such links. The ra-
dio links are created using standard wireless technology in the ISM
band, with the creation of transparent L2 links. Two solutions were
considered: the Wireless Distribution System (WDS)-based solution and
the overlay solution (adopting VXLAN tunnelling for Ethernet over
IP encapsulation). In this paper, the VXLAN-based solution has been
considered. In particular, when a client connects to an AP, it obtains an
IP address and thus the IP reachability with the AP. Then, both sides
instantiate a VXLAN. The AP node sets its IP address as local and the
client IP address as remote, while the opposite occurs on the client side.
Once ready, the VXLAN is assigned to the P4 switch instances. With
this method, we enable L2 connectivity among two switches using IP
connectivity. The proposed approach can be applied to various radio
technological solutions, with the only requirement of having Ethernet
L2 access to the packets passing over the interface. Furthermore, an
LLDP-based solution was also studied and implemented to update the
state of the links, discovering and deactivating the adjacency between
two devices. This functionality, traditionally managed centrally by the
SDN controller, is distributed to the switches, in order to better handle
the dynamism of the wireless network, which is difficult to track by the
controller.

The SDN controller maintains the topology and the routing policies
of traffic flows. The logical connection between the controller and each
single P4-UAV element occurs through the control plane (CP) link. In
this work, since focusing on data plane traffic, we assume the CP links
are always active and not affected by failures or disconnections. In a
real scenario, this assumption is hardly verified. For this case indeed, it
is crucial to take additional countermeasures. For instance, it is possible
to leverage the programmability of the P4 devices to provide them with
a backup path. In that way, whenever a link failure is detected and the
controller is unable to overwrite the routing table, the switch is still
able to properly forward the packets.
4

The controller is designed to manage and configure a series of data
forwarding and telemetry management policies allowing the nodes to
be able to operate and, possibly, modify forwarding rules at runtime,
even in the case of temporary disconnection from the control plane. The
main functions of the controller, i.e. topology management, forward-
ing and in-band telemetry management, are implemented as general
multi-option policies that can be configured on the nodes both in the
deployment/bootstrap phase and in the operational phase.

The AI engine is a set of software applications operating on the
resources of the edge node at the ground station. The AI software
(i.e., the classifier) receives the updated values of a predetermined
set of features as input and computes a series of outputs represent-
ing indicators of critical events predicted with a given advance time
interval. The AI output is then encoded and interfaced with the SDN
controller, responsible for the mapping between the event warning and
the most suitable network reconfiguration. The processed features are
related to telemetry data that describe the state of the P4-UAV switches
and the interconnections between switches. Based on such information,
the AI model is trained to recognize any critical issues in the FANET,
consequently triggering a reaction by the controller in order to maxi-
mize the aerial network lifetime operation (i.e. minimizing the traffic
outage time due to failures and recovery procedures), adapting to its
dynamic nature. Specifically in this work, the AI model detects wireless
connections between pairs of switches that could disconnect within
a few seconds, thus alerting the controller of the need to modify in
advance the routing routes accordingly, following a make-before-break
policy.

The figure also shows the mapping of the use case on the network.
The aerial sensor is placed in source node 𝑛1 which has both the P4S
and the traffic generator module active. The traffic flow, exiting the
generator, is intercepted by the local P4S, configured to manage for-
warding and to insert the INT (INT source node) header which includes
the metadata of the local node. The traffic is routed to air transit nodes
(nodes 𝑛2 and 𝑛3 in the figure), which are also configured to manage
forwarding and to insert their telemetry data (INT transit node) into the
data packet. Finally, a wireless node co-located with the ground station
(node 𝑛4 in the figure) is configured as a telemetry terminal (INT sink
node). In 𝑛4 the data traffic is purified of INT headers and is delivered
to the application instance to be processed. In parallel, the INT data
of each packet is inserted into an INT Report packet containing all the
metadata accumulated during the wireless path. INT Report packets are
processed by a Telemetry Collector which saves all telemetry data in a
local in-memory structure. The data is used to be mapped onto the input
features of the AI Classifier. The output generates discrete events on the
interface towards the controller thus notifying the event. The SDN con-
troller is programmed to react by implementing topology adjustment
and routing reconfiguration policies, anticipating any failure event to
minimize the impact on the transmission and reception of application
traffic on the data plane network. For example, still considering Fig. 1,
degradation on the 𝑛1-𝑛2 link or on the 𝑛2-𝑛3 link, due to the relative
distancing of the drones or to congestion events at 𝑛2, or even to packet
loss events due to an excessive level of CPU load at node 𝑛2, may induce
the AI engine to predict a future link disconnection or low quality
of service, so as to anticipate the network reconfiguration operations
by the controller and avoid significant packet loss events due to link
disconnection.

4.3. P4-UAV architecture

The P4-UAV FANET node encompasses drone functionalities
(e.g., mobility) along with mesh connectivity and programmable for-
warding through an internal P4 switch (P4S). This component rep-
resents the fundamental element of the aerial topology capable of
implementing the following functionalities:

• Exposing control plane connectivity to the SDN controller.
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Fig. 2. P4-UAV internal architecture.

• Managing geolocalization and radio channel information through
GPS receiver and radio modules.

• Ensuring forwarding of sensor traffic flows through the P4-UAV
network via P4-UAV interfaces.

• Implementing the FINT solution by adding additional drone meta-
data at the packet level of the data flow.

The P4-UAV is implemented as a white box. It is described through
a list of external wireless interfaces that connect the P4-UAV to other
FANET peers or to the ground station (e.g., another P4-UAV, the SDN
controller, the telemetry edge node). Fig. 2 shows the architecture
of the node. The central P4S is connected through internal logical
interfaces 𝑙𝑥 to all the radio interfaces of the UAV 𝑝𝑥 using an over-
lay mechanism based on VXLAN. The different sensors of the drone
platform, for example, the CPU load level 𝑐, the geolocation tracking 𝑔
and the radio link level 𝑟, provide their data to the Exporter API. The
Exporter manages the incoming sensor data and writes their updated
values inside specific P4 registers, resorting to the P4 switch command
line interface. The packets of the flows carrying payload 𝑑 are received
by the P4S through 𝑙 interfaces and are then processed. If matched,
they are augmented with local FINT header, including standard INT
metadata 𝑡 (e.g., timestamps, hop latency) and specific FINT metadata
𝑡𝑐 , 𝑡𝑔 and 𝑡𝑟 read from the P4S local registers.

5. FANET in-band network telemetry

Network monitoring is a vital mechanism for UAV Networks, es-
pecially in dynamic environments where UAVs operate and network
conditions change rapidly. Therefore the nodes need to be monitored
periodically to ensure their functioning, detect relevant problems and
apply network optimization.

Today, different types of network monitoring exist, including traffic
probing and network equipment polling. Both of these approaches yield
additional traffic that needs to travel over the network and are prone
to performance issues.

In–Band Network Telemetry (INT) is an innovative approach to net-
work monitoring wherein monitoring information is directly appended
to the data packets by each node along the path, instead of being sent
in dedicated packets and without requiring intervention by the control
plane. The network state is obtained at the precise moment the real
user traffic passes through, reflecting the instantaneous network perfor-
mance and the exact treatment that an application packet undergoes.
INT provides real-time insights, facilitating proactive issue detection
5

Fig. 3. Standard INT over UDP format.

and enabling the identification and addressing of potential problems
before they escalate.

In this work, we have developed and implemented a dedicated
FANET In-band Telemetry (FINT), leveraging the standard design of
INT over UDP outlined in [3]. This standard structure, shown in Fig. 3,
consists of:

1. Shim header: A 4-byte header that indicates the presence of
telemetry data. It contains information about the type of INT
header following it and the total length of INT header and
metadata stack encapsulated between it and UDP payload. The
structure of this header is demonstrated in Fig. 4.

2. INT header: An 8-byte header that follows the shim header and
contains information about the stack of metadata that follows it,
such as the length of metadata to be inserted at each node and
the remaining number of nodes allowed to add their metadata to
the packet. The fields of this header are also clarified in Fig. 4.

3. Metadata stack: Following the INT header, it consists of a stack
of metadata headers. Each header is inserted by an INT node
along the monitored path and contains standard metadata, such
as ingress timestamp, egress timestamp, and hop latency.

Our contribution lies in extending the standard in-band telemetry
structure not only to monitor standard metadata but also to customize
the monitoring operation by tracking new key parameters, which is cru-
cial for optimizing UAV network performance. These new parameters
are the Received Signal Strength Indicator (RSSI) of wireless links, the
geolocation information (GPS longitude, latitude and altitude) and the
CPU load. The designed FINT can be activated for specific data flows
and its structure is shown in Fig. 3.

In our implementation, every node has the flexibility to serve as a
source node, transit node or destination node. Furthermore, a single
node can perform multiple roles at the same time: it can act as both a
source and transit node or as both a destination and transit node for
different flows.

INT source node is the first node in the packet’s path of the INT
domain. This node inserts a 12-byte structure (i.e., standard shim and
INT header) after the UDP header. Subsequently, the source node
acts as a transit node, appending 40 bytes of its metadata information
into a metadata header known as ’Switch Metadata Header’. The
information in this header includes both the standard metadata and the
new information specifically tailored for UAV network, as illustrated in
Fig. 4. The standard information encompasses: 1. Switch ID. 2. Ingress
timestamp. 3. Egress timestamp. 4. Hop latency (the difference between
egress and ingress timestamp). 5. Flow ID [33]. The new information
includes: 1. CPU load. 2. Longitude. 3. Latitude. 4. Altitude. 5. The RSSI
of the incoming wireless interface.

At the next INT transit node, 40 bytes of information are appended
to a metadata header called ’Second Switch Metadata Header’. All
these metadata headers have the same structure as the Switch Meta-
data Header illustrated in Fig. 4 . This process is repeated for each
subsequent INT transit node along the monitored path. Eventually, at
the sink node, the received packet is duplicated using the P4 clone
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Fig. 4. FINT headers structure.

function. The payload is removed from the cloned packet and the sink
node sends it, along with its own metadata information, as a final
report to the collector. in parallel, the sink node removes all the FINT
information from the original packet and forwards it to the receiver.
Fig. 5 demonstrates the P4 pipeline architecture.

5.1. FINT metadata exporter

Regarding the FINT metadata exporter at the P4-UAV level, an API,
called Metadata Exporter, is utilized to perform the following tasks:

1. It retrieves the RSSI value from the wireless module and stores
it in a specified P4 register array (power_antenna register). The
size of this register is denoted by ’n,’ where ‘n’ equals the number
of interfaces.

2. It obtains the P4-UAV CPU load value, representing the system
load average for the last minute, and then it writes this value in
the dedicated P4 register (cpu_register).

3. It gathers geo-location information from the Global Positioning
System (GPS) device. The collected data, including longitude,
latitude, and altitude, is then written into three distinct P4 regis-
ters (longitude_register, latitude_register, and altitude_register).

4. It updates the values in the aforementioned registers periodi-
cally.

5.2. P4 pipeline implementation

The considered P4 implementation is based on the V1 architectural
model specified in the reference P4 software switch, the Behavioural
Model version 2 (BMv2) [34]. The model includes several stages:

1. The parser: It is represented by a finite state machine, where
the states are responsible for extracting data from the individual
header struct into runtime variables. Transitions within the state
machine occur conditionally, depending on the value of a parsed
header field.

2. Ingress and egress control blocks: each block consists of several
match-action tables that match the packet based on different
header fields and determine the appropriate actions to take when
a match is detected. It also defines a control function that decides
the order in which the tables should be executed. The ingress
stage is utilized to perform forwarding, while the egress pipeline
is utilized to perform further operations after determining the
output port for forwarding.

3. The deparser: Its role involves converting the modified headers
back into a serialized format within the packet, preparing it for
transmission to the subsequent switch in the network.

The internal structure of the parser, illustrated in Fig. 5, begins by
parsing the Ethernet header followed by the IPv4 header. State tran-
sitions are determined by the examination of a specific header field,
6

indicating the presence of the subsequent protocol. The parser subse-
quently processes UDP, Shim, and INT headers. Ultimately, it extracts
the Sw_m header from the packet, characterized by a variable length
with a predefined maximum size. This header represents a stack of
metadata headers, including information appended by every transit
node. In order to parse the appropriate variable length of this header at
each node, the parsing process has been achieved based on the length
field in the Shim header. This field encompasses the total length of
Shim header, INT header and the stack of metadata headers (Sw_m
header) in 4-byte words. By subtracting the length of the Shim header
(1 word) and the length of the INT header (2 words) from the value
of this field and converting the result from words to bits, the correct
length for parsing this header is determined.

After parsing, packets proceed through the ingress pipeline, de-
picted in Fig. 5, where three flow tables are executed: Forwarding,
Activate Source and Activate sink. The Forwarding table determines
the output port based on Layer 2 (L2) MAC addresses, essentially
implementing switch behaviour. The Activate Source table initiates the
FINT process by invoking the associated action. This action involves
inserting both Shim and INT headers into FINT packets received at
a designated port with a specific UDP port. Additionally, it updates
the length of IP and UDP headers to accommodate the new headers.
Meanwhile, the Activate sink table is responsible for duplicating FINT
packets by executing the relevant action for packets destined for a
particular interface with a specific UDP port.

In the egress pipeline, the control function directly triggers the
addition of metadata through the ’adding metadata’ action. This action
retrieves FINT metadata from various registers (CPU load, Antenna
power register, Geo-latitude, Geo-longitude, and Geo-altitude regis-
ters), and writes them into the corresponding header fields. It also
decreases the number of hops by 1 and assigns this modified value
to the remaining hop field in the INT header, which determines the
number of traversed nodes. Finally, it updates the lengths of the IP,
UDP, and Shim headers to accommodate the new metadata information
added by the node. The ’Table Report Forwarding’ is tasked with alter-
ing the destination of the duplicated FINT packet (report) by modifying
the MAC address of this packet.

6. FANET link state forecast

FINT data analytics from the network are used to perform the
forecast of the state of the FANET connections used by the application
traffic. The main idea is to deploy an AI model capable of predicting a
wireless link disconnection event and sending a warning to the SDN-
Controller. The controller, aware of the overall topology, performs
recovery decisions about that link in advance with respect to actual
disconnection. The ground node responsible for the telemetry data
consumption is composed of three elements:

1. Data collector: it parses incoming packets to extrapolate teleme-
try data and generates feature reports to the AI model;

2. AI model: it reads reports extrapolated by the collector, performs
classification, and sends a warning whenever a disconnection
has been predicted;

3. SDN-Controller: it runs re-routing algorithms whenever a warn-
ing has been received, trying to avoid the critical connections,
and sending updated flow rules to the involved P4S of the
FANET.

6.1. Data collector

The data collector is the component responsible for parsing the
packets, retrieving telemetry data, elaborating them and eventually
sending them to the AI-model for prediction. The FINT metrics reports
are sent to an edge node that reads and interprets them to extract flow
and device-related metadata. Those pieces of information anyway are
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Fig. 5. P4 pipeline architecture.
Fig. 6. Processing of telemetry data.

not enough to derive anything about the link status. Thus, the collector
correlates information from different reports to generate more interest-
ing metrics, such as the node distance or the relative speed among them
and thus generates finer knowledge data about the network status.
(Fig. 6). The obtained final report about the link status is sent to a
message queue, retrieved and consumed by the AI model.

6.2. AI-model

The deploying of the AI model has been designed through the
following steps:

1. Analysis of which kind of data is possible to extrapolate from the
network and creation of a dataset for the training;

2. based on the previous stage, defining whether the learning pro-
cess will be for a classification or regression problem;

3. Model selection;
4. Final test of the model.

6.2.1. Dataset creation
In the first step, the telemetry data used to train and validate the

AI model have been generated through MininetWiFi, an open-source
emulator of wireless networks that includes wireless channel mod-
elling estimation [35]. In fact, the extended ‘‘WiFi’’version of Mininet
provides the modules mobility and telemetry. The module mobility can
be used to emulate the movement of one or more nodes of the net-
work, while the module telemetry can be used to collect telemetry
data, like position, RSSI, channel errors etc. Therefore, we used this
7

Fig. 7. Dataset: example of sample labelling for a link disconnection pattern due to
distancing.

emulator to recreate a network with several moving nodes, following a
pseudo-random path, while collecting telemetry data.

We assume the presence of only one access point and several mobile
stations that move at different speeds. This is sufficient to collect info
about several links with different characteristics. The collected data are
stored in an SQL database to provide long-term retention and reuse
of the data for several tests. Moreover, the SQL language allows for
a rapid combination of link data as shown in Fig. 6. The final dataset
used for the training and validation consists of 5485 rows, while the
test has been performed on 438 rows obtained in a different execution
of Mininet.

6.2.2. Problem definition
After gathering the data related to the connection, it is necessary to

select the metric on which to perform the prediction. We decided, for
each link, to calculate the time (e.g., the seconds) to the disconnection,
and thus defining a threshold to separate a critical status from a safe
state. In Fig. 7 an example is shown of how each sample has been
labelled.

Note that the threshold has to be set according to several parameters
of the network, such as the expected speed of the nodes, the sample
rate and the controller efficiency. For this case of study, the bottleneck
is the sample rate. MininetWifi indeed allows to sample one data point
each 2.8 s roughly. Thus, to ensure not to miss a critical sample, the
threshold must be greater than 3 s. Moreover, to consider possible
packets lost, or misclassification, it can be useful to set a higher
threshold so that more than one report can be classified as critical. For
these reasons, we set the threshold at 15 s.



Computer Networks 250 (2024) 110599L. Ismail et al.
Fig. 8. Precision and recall of the SVM and RF models.

In a different scenario, with a higher sample rating and faster nodes,
it is recommended to set a lower threshold.

Once the label has been assigned, before training, it is necessary to
perform the features selection. This step has the double goal of elimi-
nating the features that are useless for learning (e.g., the timestamp has
no correlation with the link status) and eliminating the features with
low variance, and thus poor information content.

In this first training, the features we include are the following:

• coordinates: we suppose that the nodes can only move on the 𝑥
and 𝑦 axis

• RSSI: the received signal strength indicator is a negative number
in the range [-30; -90]

• the distance between the two nodes at the edge of the link
• the relative speed between the two nodes. It can be either a

negative number if the nodes are getting closer, or a positive value
if the nodes are moving away

All the features are numerical values, and the target is the link status,
which can be either Safe or Critical.

6.2.3. Model selection
Due to the nature of the network, the AI model must be topology-

independent. For this reason, the learning is performed at link level
rather than topology. Indeed, the topology can change its shape due to
the moving nature of the nodes and the limited autonomy of the UAVs.

Given the characteristics of the data collected for the forecast,
we decided not to rely on Deep Neural Network. For this particular
case, indeed, more effective and simple ML models are available. In
our previous work [36], we showed that two models are suitable for
this scenario. Those two models are Random Forest and Support Vector
Machine. Here, we perform again the training, validation and testing
steps on a wider dataset, and provide a comprehensive set of results
including performance and accuracy that identify the best model and
the best hyperparameters for this case of study.

To evaluate precision and recall, we tune the two models finding
the best hyperparameters for each of them, and then we use a K-fold
cross-validation, with 𝐾 = 10 to compare those metrics on each fold. In
Fig. 8 the results of the classification are shown on the validation set.
In this stage, the two models show similar classification performances,
with SVM having a slightly higher recall value. Nevertheless, those
differences are not enough for a T-test to reject the null hypothesis.
This means that the differences are not statistically significant and we
cannot really state which model is outperforming.

However, when we compare the classification time, we achieve far
better results for SVM, as shown in Fig. 9. The benchmark shows that
SVM requires 1 ms to perform a classification, against the 7 ms of
Random Forest.

6.2.4. Model test
Once the model has been selected, we perform again the training on

the training set and validation set and test it again against a novel test
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Fig. 9. Benchmark of the SVM and RF models.

Fig. 10. Confusion Matrix and results of SVM on the test set.

set, a set of fresh data unseen by the model. In this way, overfitting
issues are avoided, moreover, an in-depth analysis of the results can
be performed. In Fig. 10 the results of the test set are reported. As
expected, the precision and recall are in line with the results in the
validation stage, meaning that there is no overfitting. It is interesting
to perform an in-depth investigation of the errors. Particularly, we
focus on the false safes that are, in our opinion, the critical part of
the network. As mentioned before, the considered approach introduces
an information loss about ‘‘how critical’’ a sample is. Therefore, it is
interesting to evaluate the false safes distribution based on their time
proximity to the disconnection. This distribution is shown in Fig. 11.

The results show that most of the errors occur when the discon-
nection happens in more than 12 s. The closer a critical sample is to
the disconnection, the higher the accuracy. Eventually, when the next
disconnection is within 4 s, the recall is 100%.

6.3. SDN-controller

The SDN-Controller has been designed to execute the following task:

1. Computation of the shortest path among two hosts;
2. Managing the warning received from the AI-model;
3. Configuring the P4-switches accordingly with the results of the

previous two points.

The actions of the controller are triggered through Rest-API. Therefore,
whenever it is necessary to instantiate an application flow among two
nodes of the network, an API request is submitted to the controller,
which computes the shortest path, using the Dijkstra algorithm, and
eventually pushes the forwarding actions in the flow tables of all
the involved switches. Whenever the AI-model finds a critical link,
a warning API message is sent to the controller. As a response, the
controller sets a higher link cost on the critical link and recomputes
the shortest path for all the couple of endpoint nodes.

Moreover, since the AI may return a false critical, the controller
stores all the links classified as critical in a hash table, associating
them with the relative timestamp of the last warning received. Then,
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Fig. 11. Distribution of the false safes based on the proximity to the next disconnection.

periodically, the controller will delete the link from this table if no more
warnings or failures are received in the last seconds, assuming thus that
the link is safe again.

6.4. Implementation: components interfaces

The communication between the AI-model and the collector has
been realized with RabbitMQ [37], a managed message queue written
in Erlang [38]. This solution allows the decoupling of the two compo-
nents, taking into account the different performances of a sniffer and
an AI-model.

In order to prevent an overload of the AI, the collector performs
a filter on the reports, sending no more than one report per link per
100 ms. Thus, the model must process no more than 10 reports per
active link per second. On the other hand, the AI process interacts with
the controller through Rest-API.

The edge node’s components need to communicate with the P4-
switches as well. Particularly, three types of messages need to be
exchanged:

• Telemetry Data Reports from switches to data collector;
• Path Computation requests, triggered whenever two hosts need to

communicate, or when a topology change occurs;
• Flow entries, sent by the controller to the switches.

In order to obtain telemetry data, the collector listens to a prede-
fined port (e.g., in the tests we used the UDP port 12345). The sniffer
is based on the libpcap library. Path computation requests are triggered
by the P4S switches, calling a Rest-API whenever a new neighbour
is detected, or an old one becomes unreachable. The control plane
communication between the SDN-controller and the P4S nodes resorts
to the P4Runtime protocol using the P4Runtime-shell library [39],
written in Python. Control operations include the bootstrap phase and
the runtime phase. In the bootstrap phase, the controller instantiates a
shell through each switch and pushes the P4 pipelines. In the runtime
phase, whenever a new or recovered path is computed, flow entries are
9

Fig. 12. Sequence diagram of the forecasting at the edge node.

derived and sent by the controller to the switches to activate the related
match-action rule.

To summarize the forecasting workflow, we show in Fig. 12 a
sequence diagram of the use case. Note that the network (i.e., FANET)
is hereby considered as a single entity.

The diagram shown in Fig. 12 does not consider the case of link cre-
ation and link deletion, since these scenarios do not involve forecasting.
The diagram steps are the following:

1. The AI collector starts sniffing Report packets using libpcap
library;

2. A host of the FANET is required to communicate with another
host and thus requests the controller to calculate a path;

3. Once the controller finds a path, it has to configure the switches
of the network, providing them with flow entries;

4. While packets are flowing among the two hosts of the FANET,
FINT will be generated and attached to those packets, and thus
the AI will process those data;

5. AI will use telemetry data to perform predictions about the links
traversed by the traffic. Whenever a critical link is found, AI will
send a warning to the controller using the exposed Rest-API;

6. Eventually, the controller checks whether a different path is
feasible and, if this is the case, it pushes the updated flow entries
into the involved switches.

7. System performance and experimental results

This section summarizes the experimental tests carried out to eval-
uate the performance of the proposed solution.

7.1. Testbed description

The proposed FINT scenario and architecture has been deployed and
evaluated utilizing the experimental setup depicted in Fig. 13.

The four red devices, labelled S1, S2, S3 and S4 respectively, are
the P4-enabled switches that will be onboarded on the UAVs. In this
setup, the WiFi links among the devices are made using coaxial cables,
avoiding interference with the rest of the laboratory equipment. The
architecture of the devices is similar to the one described in [40]. All



Computer Networks 250 (2024) 110599L. Ismail et al.
Fig. 13. FINT Testbed: P4S aerial segment topology.

those switches are then connected to a management switch (Netgear)
that is responsible for the forwarding of the packet to the ground
station, where the telemetry will be parsed and elaborated.

Each device is built of a versatile x86 board called APU1 produced
by PC Engines. This platform ensures compatibility with a diverse range
of software and applications. The devices are equipped with an AMD G
series T40E CPU. The CPU is a Bobcat dual-core with a clock frequency
of 1 GHz and is compatible with both 64-bit and 32-bit applications.
Each core has a 32 K data cache, a 32K instruction cache, and a
512K L2 cache. The inclusion of 2 GB DDR3-1066 RAM in each de-
vice ensures efficient management of active applications and processes
and enables APU1 unit to effectively handle workloads ranging from
light to moderate. In addition, the devices natively host three gigabit
Ethernet interfaces based on the Realtek RTL8111E chipset and a DB9
serial port which allows the management of the device even in the
absence of a video card or disabled networking. Moreover, every APU1
is equipped with three mPCIe slots, providing flexibility for further
expansion. Among these slots, one is designated for the integration
of a 64 GB m-SATA SSD drive, the other two have been adopted for
the WiFI radio modules, allowing adaptability for running in a FANET
node. The APU1 board’s dimensions measure 152.4 𝑥 152.4 𝑥 25 mm,
rendering it compact and well-suited for environments with spatial
constraints. The APU1 board has been outfitted with Linux operating
system (Ubuntu), and augmented with two dual-band miniPCIe Qual-
comm DAXA-F1 QCA9980 radio modules. Each module offers a triadic
chain configuration for harnessing multi-input multi-output (MIMO)
technique and supports 802.11 a/b/g/n/ac standards. The wireless
channels have been established using the standard 802.11a at the 5 GHz
frequency band. The WiFi interfaces have been enabled and configured
on each node in a dedicated configuration. The core of the node’s
architecture lies in the use of the dockerized BMv2 instance [34] to
effectively onboard the P4S and ensure an isolated environment for
running services. This methodology yields numerous benefits, including
a simplified deployment process, scalability, the capacity to update the
software independently of the underlying operating system, and the
guarantee of enduring software stability.

The picture of Fig. 14 shows the possible P4-UAV deployment
integration between a real UAV and the APU platform hosting the P4S.
In a minimal configuration, only a power supply connection is needed
between the two platforms. In this way, the drone native OS and the
APU OS are kept independent. Moreover, additional metadata exposed
by the drone OS (e.g., battery level) may be easily integrated into FINT
by resorting to an additional Ethernet interface connecting the drone
case and the APU.

The implementation uses a unique and efficient approach, based
on the Python P4Runtime-shell library, to send the flow entries to the
different P4Ss. The library allows the controller to open a shell to the
P4 devices, and use this shell to write or edit the routing table. On the
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Fig. 14. P4-UAV drone integration with the APU platform hosting the P4S.

Fig. 15. Wireshark capture of FINT implemented on specific flows.

other side, the topology events, like a link disruption or creation can
be sent using REST API deployed through the Flask library [41]. The
same mechanism is used by the classifier to send warnings whenever a
dangerous link is detected.

The picture in Fig. 13 illustrates the section of the aerial network
with the four APU1 nodes. The nodes are connected to each other with
wireless data plane interfaces adopting coaxial cables and attenuators
or in free space, depending on the tests to be performed. The ground
node control plane and data plane interfaces are wired over Ethernet
and are connected in star centre mode to an Ethernet switch, attached
to the subnet that includes the edge node and the SDN-P4 controller.

7.2. P4S performance

7.2.1. Functional validation
The functional validation has been implemented in the testbed

demonstrated in Fig. 13. An API in Linux has been launched on each
node to collect information about the antenna power of wireless inter-
faces, CPU load, and geo-location information. It gathers geo-location
information from a Global Positioning System (GPS) device using a
Python script that utilizes the gpsd library. This library facilitates
interaction with GPS devices through the gpsd service. Then, the API
writes this information inside the appropriate register and updates
these values every 1 s. Three flows of traffic with different destination
UDP ports (i.e., 12345, 12344, 12343) have been generated in P4S4.
The three flows are injected into the P4S container for processing. Here
the P4S4 acts as a source node, selectively inserting shim and INT
headers only into the flows destined for UDP ports 12345 and 12343,
based on predefined flow entries, shown in Fig. 15.

The switch adds its metadata to these two flows and forwards
the three flows to P4S2. P4S2, in turn, appends its metadata to the
incoming flows and forwards the three flows to P4S1, the sink node.

The figure shows that the length of the FINT Report header related
to each node is 40 bytes. Therefore The total length of the extra FINT
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Table 2
The latency on the P4-UAV path with and without FINT.
Rate (p/s) RTT Without INT RTT With INT

2 switches 3 switches 4 switches 2 switches 3 switches 4 switches

1 4.896 6.953 14.243 5.627 8.980 13.276
10 5.164 6.461 13.045 5.712 8.980 12.991
100 4.272 5.687 10.895 5.103 8.980 11.217
1000 4.039 6.595 9.470 5.830 8.980 10.037
Fig. 16. Wireshark capture of FINT-tagged traffic.

header is 12 + 40𝑁 bytes, where 𝑁 is the number of nodes traversed.
In the implementation, the maximum FANET path length is assumed
equal to 6, with a maximum FINT size of 252 bytes in the worst case
(at the sink node).

At this stage, P4S1 duplicates each FINT packet, removes the pay-
load from the cloned packets and sends them as a final report to the
collector after adding its metadata. The two report packets related to
the two flows are captured and illustrated in Fig. 16.

The functional validation confirms the effectiveness of the proposed
FINT protocol extension and the ability to activate FINT on specific traf-
fic flows while guaranteeing the transparent forwarding of additional
flows. Moreover, it quantifies the amount of FINT overhead required
by the header extensions.

7.2.2. End-to-end latency
The purpose of this set of experiments is to check the ability of the

P4S container to process FINT information with a limited additional
latency compared to the latency introduced with standard forwarding,
with variable topology of P4S nodes with different path depths and
variable traffic. Moreover, we investigate the ability of the P4S con-
tainer to manage and process FINT information for any switch role
(source, transit and sink). The impact of data plane programmability
in terms of accumulated latency was evaluated. The ICMP traffic has
been used for the generation of packets at variable rates. The latency
is evaluated as a function of the traffic bitrate and path length, ranging
from a minimum of 2 to a maximum of 4 P4-UAVs. In these experi-
ments, the Round Trip Time (RTT) latency measured by Ping includes
all the P4-UAV system components, including the radio interfaces and
the wireless links.

The tests were carried out on the topology of Fig. 17. The paths
P4S4-P4S2, P4S4-P4S2-P4S1 and P4S4-P4S2-P4S1-P4S3 were consid-
ered in the different measurements. The S4 node always acts as a traffic
generator and receiver. Ping packets are generated externally to the
P4S container and are routed inside the P4S container which processes
the packet. In the set of measurements without INT, each P4S was
configured only in static forwarding mode, allowing pings to be routed
to the next hop in a bidirectional fashion. In the set of measurements
with FINT, the P4S has been populated with flow rules to correctly
manage the FINT. Then, a first FINT stack was configured up to the
sink node. The sink node eliminates all FINT headers and forwards the
11
Table 3
The hop latency of P4S node exported as FINT metadata.

Rate Num. nodes traversed Hop latency (μ𝑠)

Node1 Node2 Node3 Node4

1 p/s
2 587 587 – –
3 341 340 527 –
4 314 347 347 496

10 p/s
2 334 578 – –
3 335 369 552 –
4 356 411 384 465

100 p/s
2 324 464 – –
3 332 399 508 –
4 435 374 403 424

1000 p/s
2 535 589 – –
3 670 401 451 –
4 854 375 360 364

ping request packet to the external radio interface of the last node.
The interface responds with a ping reply in the backward direction.
In this case, the local node acts as the source node for a new FINT
stack backwards to the source. The experienced RTT results are shown
in Table 2 when varying the rate of the packet per second (p/s) and
the number of the switches.

The table shows that the additional contribution due to FINT pro-
cessing is always less than 0.5 ms per node in a single direction. The
non-linear latency values concerning data plane bitrate are attributed to
the behaviour of the BMv2 container which is well known in the liter-
ature [42]. Specifically, the switch demonstrates superior performance
within an aggregate bitrate range of 150 to 800 Mbit/s, exhibiting
increased latency at lower bitrate. However, it is clearly noticed that
the latency is always less than 5 ms per node, with or without FINT.

7.2.3. Hop latency
The intra-node latency values measured by the P4S and entered as

FINT metadata are reported as a function of the bitrate and the number
of the nodes traversed, as shown in Table 3.

Results show that, as expected, the processing of the source and
sink nodes is more intense and requires a longer execution time. In
general, the sink node seems to require the greatest contribution of
latency (variable from 400 to 500 μs) while the transit nodes introduce
the least contribution of delay (from 300 to 400 us). The source node
has a latency that strongly depends on the number of nodes traversed,
especially at high bit rates. The contribution of the P4S in terms of
latency is always less than 0.9 ms in the case of a source node, always
less than 0.4 ms in the case of a transit node, and always less than 0.6s
in the case of a sink node.

7.2.4. CPU load and RAM resources
The performance of the P4S container has been evaluated with

regard to its capacity to handle packet information using FINT without
imposing a significant additional CPU load compared to the standard
load introduced by the P4 switch with regular forwarding. This eval-
uation involves different FANET topologies, featuring different path
depths and fluctuating traffic conditions. Additionally, we evaluate the
ability of the P4S container to manage and process FINT information
for any switch role (source, transit and sink) with a RAM requirement
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Table 4
CPU load performance of P4S container with and without FINT.
Rate (p/s) #Node % CPU INT – NO INT

Node1 Node2 Node3 Node4

1
2 0.75–0.93 0.61–0.69 – –
3 0.76–0.86 0.60–0.69 0.59–0.71 –
4 0.78–0.91 0.62–0.71 0.77–0.68 0.27–0.35

10
2 3.95–4.42 2.68–3.12 – –
3 4.1–4.61 2.72–2.83 2.63–3.04 –
4 2.35–4.62 2.85–2.85 2.83–2.86 1.12–1.61

100
2 25.1–28.74 24.09–28.2 – –
3 27.35–30.72 24.28–25.66 24.17–28.66 –
4 27.49–29.19 23.58–23.90 23.2–23.60 8.74–12.17

1000
2 50.9–55.88 45.43–52.43 – –
3 31.74–35.33 27.39–28.88 28.92–32.42 –
4 28.78–33.22 24.57–27.35 24.54–26.56 9.31–16.77
Table 5
RAM performance of P4S container.

P4S Off P4S On P4S 1 p/s P4S 10 p/s P4S 100 p/s P4S 1000 p/s

Rate (p/s) 260 428 278 768 285 613 286 056 288 308 288 514
compatible with the resources available at the individual APU platform
level. In this case, the evaluations are conducted by comparing the
performance in terms of CPU and RAM of the P4S solution with simple
static forwarding against forwarding accompanied by complete FINT
processing.

Table 4 shows the obtained results. From the performance analysis,
it becomes evident that FINT processing requires an additional con-
tribution of CPU load compared to the performance required by the
entire P4S in a simple forwarding configuration. The additional load
is approximately 2% at maximum for low rates and 7% at maximum
for high rates. The most significant contributions are observed in the
sink nodes, while the smallest contributions are observed in the transit
nodes. Importantly, the P4S occupies at most a maximum of 50% of the
CPU in any configuration, ensuring a substantial operational margin for
all other essential processes of the P4-UAV.

Table 5 depicts the RAM requirements of the P4S container at
various data rates, demonstrating the total RAM utilization on the P4-
UAV (APU1) platform. In the absence of the P4S container, the P4-UAV
system consumes around 260MB of RAM. The P4S container powered
up with P4 code compiled without flow rules enabled requires ap-
proximately 18MB of additional memory. Activating the essential flow
rules for forwarding and FINT functionality incurs an additional RAM
demand of about 10MB. This incremental RAM requirement ranges
from 7MB to 10MB, depending on the fluctuation in traffic, varying
from 1 packet per second (1 p/s) to 1000 packets per second (1000 p/s).
The results show that the system does not require excessive amounts of
RAM in any operating configuration. Considering that the total amount
of RAM the APU1 platforms offer is 2 GB, the additional percentage of
RAM needed in the system for the activation and complete functioning
of the P4S stands at approximately 1.5%.

7.3. Edge node evaluation results

In order to evaluate the edge node we connected all the pieces
we described in this paper and simulated a link degradation. The
server hosting the controller, the AI classifier and the collector has the
following properties:

• 16 core Inter Xeon Gold 2.20 GHz, with hyperthreading (2 thread
per core);

• 77 Mebibyte (MiB) L3 Cache;
• 8 MiB L2 cache;
• 512 Kibibyte (KiB) L1 cache;
• 64 Gibibyte (GiB) RAM (4x16 GB DDR4) with 0.3 ns access delay;
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Fig. 17. Forecasting: Initial state.

• 2 SDD of 479 GB for storage;
• OS Ubuntu LTS 20.04 with kernel Linux 5.15.0-87-generic.

We carried out both functional and non-functional tests. The first
ones aim to prove the capability of the edge node to handle a dynamic
topology. The second class of test are needed in order to estimate the
workload that the server can handle. It should be noted that this second
type of test depends both on the implementation of the algorithms and
on hardware resources.

7.3.1. Link failure forecasting
This test scenario is divided into two phases: in the first phase,

shown in Fig. 17, the switch P4S2 is progressively getting close to P4S4.
In this case, thus, the two switches will establish a connection and the
traffic that has P4S4 as the source and P4S1 as the destination, will use
this link.

In the second phase (Fig. 18), the switch starts to move away. The
AI, after a while, will classify the link P4S2-P4S4 as no longer safe to
use. The controller then, will receive the warning and will search for
another possible path. In this case, it is possible to use P4S3 instead of
P4S2. The controller will then recompute the path and will send new
flow entries in the routing tables. the traffic will then use the new path,
avoiding the dangerous link. In the test, we will show the ability of our
solution to take preventive countermeasures to avoid packet loss in case
of topology changes.
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Fig. 18. Forecasting: Link degradation.

Fig. 19. Graph of the evolution of RSSI and distance of the used link.

In the experimental testbed, wireless links are connected using
coaxial wires and attenuators and the switches do not move. Therefore,
to emulate mobility, we created a script in the Metadata Exporter that
periodically updates P4 registers with values of geolocation and RSSI.
During the tests, we emulated a node (P4S2) moving far from the
topology, thus inducing a progressive degradation of the quality of the
signal. The AI will notice the degradation and will predict that the
quality of the signal will not improve. Thus, it will send a warning to
the controller, which will check for an alternative path. The observed
behaviour in the experiment is shown in Fig. 19.

The distance between nodes P4S4 (ID: 00000004) and P4S2 (ID:
00000002) is increasing, with the related RSSI degradation. We can
notice this behaviour by observing the blue line in Fig. 19, that repre-
sents the link 00000004-00000002. At a given time, the link is not used
anymore and FINT telemetry data will not be collected. The old con-
nectivity is replaced by the link P4S4-P4S3 (ID:00000004-00000003),
represented in Fig. 19 by the orange lines.

In Fig. 20 it is shown how the controller and AI work together to
prevent a link failure and avoid packet loss in the network.

7.3.2. Handover performance
In order to validate the deployed solution, we check how the

unavailability time (i.e., the outage time of the flow traffic) changes
whenever a predictable failure happens. For this purpose, after setting
up the testbed, we have emulated a progressive degradation of the link,
as in Section 6.4. The test has been repeated twice: with and without
the AI node. A Spirent N4U [43] traffic generator has been connected
to two end-points of the testbed topology, emulating a host source and
a host destination. The Spirent is configured to send 1000 packets per
second, thus the packet loss is equal to the number of milliseconds the
network is unavailable (i.e., the outage time). In Fig. 21, the packet
loss measured by the Spirent is shown, when the AI prediction is
deactivated. In this case, recovery accounts for 1 s of unavailability.
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Fig. 20. Workflow of the edge node.

Fig. 21. Packet loss without prediction.

Fig. 22. Packet loss when the AI predict the failure.

In Fig. 22, the same results are shown when the AI is activated
and anticipates the failure link. In this case, the controller recomputes
the path and pushes the flow entries into the forwarding table of the
switches and no packet loss occurs. This means that the recovery based
on the forecast is able to drastically reduce the outage time of more
than three orders of magnitude (i.e., from 1s to under 1 ms).

Without AI, several contributions account for the recovery time,
such as fault detection, the recalculation of a new path and, even-
tually, the reconfiguration of the switches along the new path. On
the other hand, using AI prediction, the system circumvents a true
recovery from the fault since it is actually anticipated. Therefore, the
detection time since recomputation and reconfiguration are irrelevant
since re-optimization takes place while the link is still working.

If we denote as 𝑡 the working time of link P4S4 - P4S2, the avail-
ability in the classical scenario is (𝑡)∕(𝑡+1𝑠) < 1. To improve the overall
dependability, we are not acting on the resilience of the link, but we
are working on the recovery time. For this specific case thus, bringing
this time to 0, we reach an availability of 100%.

7.3.3. Edge node capacity test
We conclude our evaluation of the edge node performance by

testing its capacity. This is useful in order to understand how many
packets the edge node can handle and thus correctly size the telemetry
of the network.

We used the Spirent traffic generator that creates UDP packets and
sends them to the first switch of the network (P4S4). The flow entries
are configured so that when a UDP packet with the given source and
destination comes into switch P4S4, it will be sent to the host connected
to switch P4S1. Here, a copy of the packet is mirrored to the edge node
that will parse it and perform the forecast. We tested first the telemetry
collector alone, and then the combination of the collector and AI model.
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Fig. 23. Capacity test results.
Fig. 24. Capacity of the AI model.
The reason behind this choice lies in the different speeds expected by
the two components. Indeed, the forecasting is expected to be slower
than the parsing.

In the first test, the traffic generator emulates a growing number
of users, from 1 to 8, generating UDP packets. Each user generates
packets 2000 packets at the rate of 200 packets per second. Thus at the
beginning, the edge node receives 200 packets per second and finishes
by receiving 1600 packets per second. The purpose of this test is to
check if we can saturate the capacity available of the collector before
reaching the maximum bandwidth established. To do this, we check
the latency and the throughput of the collector as the input grows. The
results are shown in Fig. 23.

In Fig. 23 the first graph shows the latency variation compared to
the average value. As we can see, the latency never diverges, meaning
that the packets are never queued and the collector manages the
amount of packets generated. This is also confirmed by the throughput
plot. Indeed we never observe a knee on the curve. This basically
means that the collector can keep up with this amount of requests, and
potentially can handle even additional incoming rates.

In the second step of the capacity test, we also included the classifi-
cation time. In this case, we expect a significant overhead, therefore we
decided to reduce the number of packets sent in the network. We plan
to handle this different speed by implementing a filter on the collector
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(e.g., the collector sends no more than one packet each 0.100 ms per
link). With this test, we aim exactly to figure out how this filter should
perform. In this case, we do not consider the number of packets sent,
but the number of the reports classified. Indeed, a single packet can
include more reports, based on how many switches are traversed.

Fig. 24 shows the results of the test. In this case, we managed to
saturate the capacity of the server. Indeed we can notice how, when
the throughput of input data becomes too high, the throughput of
the classification stops growing and the latency starts increasing, due
to queuing time. The maximum capacity of the AI model is nearly
360 reports per second. After this value, the model cannot keep up
with the request rate anymore, resulting in packets queued and thus a
growth in latency. Due to this test, for a server with the aforementioned
capability, we believe that the classifier should take in input no more
than 340 packets per second while running, preserving some spear
capacity for possible spikes in the number of active links. A heavier
workload could be dangerous since in case of traffic spikes the server
would not have the capacity to handle the event. At the same time,
using a lighter workload would be a waste of resources since the server
would be under-exploited.

Lastly, in Fig. 25 we show the results of the resource utilization
during the test. In Fig. 25 we immediately find out the different stages
of the test. Indeed we can notice a growth of used resources as time in-
creases. Even though the CPU utilization is growing, it never exceeded
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Fig. 25. Resource metrics of the server during the test.
10%. What we notice growing up is the number of context switches,
that seem to be strictly correlated with the number of interrupts.
Therefore we can conclude that, in our case, the capacity is full because
the server spends more time performing context switches than time
performing the actual classification. At the same time, we have to
consider that we used a general-purpose OS, simultaneously hosting
the controller and the AI model, along with additional background
processes. Thus, the capacity can surely grow up using a Real-Time OS
on dedicated servers.

8. Conclusions

This paper presented a novel architecture of SDN-enabled FANET
nodes enriched with a programmable P4 switch capable of managing
augmented FANET in-band telemetry of key aerial network node vi-
tal parameters, including real-time geolocalization, radio link levels
and internal resource occupancy. The proposed FINT was exploited
to perform data analytics on the FANET state at the ground edge
node. Wireless link state prediction using AI allowed the system to be
robust against mobile topology changes, enabling anticipated recovery
thus minimizing traffic outages occurring in the FANET. Experimental
evaluations showed the ability of the P4 switch to effectively enable
FINT with limited resource burden, while allowing the AI forecasting
mechanism to reduce the link failure outage time by three orders of
magnitudes, guaranteeing zero packet loss at the millisecond time scale.

This work focuses on the P4 capabilities and machine learning
model accuracy for failure prediction. However, in a similar scenario,
it is also crucial to consider the power consumption of the component
of the network. UAVs indeed have a limited capacity in terms of power
supply and therefore it is fundamental to optimize energy resources. In
our next works, we will consider extending the current framework in
order to address this challenging topic, integrating FINT with metadata
about energy consumption, allowing the AI to consider power metrics
and taking the most suitable decisions to allow the network to work
with a sustainable and reduced energy footprint.
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