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Abstract

This paper tackles the problem of optimum Virtual Machine placement, focusing on
an industrial use-case dealing with capacity planning for Virtualized Network Func-
tions. The work is framed within an industrial collaboration with the Vodafone network
operator, where a particularly important problem is the one of optimum deployment
of Softwarized Network Functions within their Virtualized Networking Infrastructure,
spanning across several EU countries. The problem is particularly difficult due to the
presence of a multitude of placement constraints that are needed in the industrial use-
case, including soft affinity constraints, that should be respected only as secondary ob-
jective; furthermore, in some EU regions, the size of the problem makes it unfeasible
to solve it with traditional MILP-based techniques.

In this work, we review and address limitations of previously proposed heuristics
for this kind of problems, and propose a new placement strategy that is shown ex-
perimentally to be more effective in dealing with soft affinity constraints. The paper
includes an extensive experimental evaluation encompassing a multitude of optimiza-
tion strategies, applied to a set of problems including both real-world problems that
we made available as an open data-set, and additional randomly generated problems
mimicking the structure of the original real-world problems.

Keywords: Virtual Machine Placement, Resource Optimization, Genetic Algorithms,
Network Function Virtualization

1. Introduction

In the nowadays computing landscape, heavily focused on Cloud and distributed
computing scenarios, network services are bearing higher and higher responsibilities
for guaranteeing the success of modern and future digital use-cases [1, 2]. Modern
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scenarios, such as Smart Cities, Smart Transportation and self-driving vehicles, In-
dustry 4.0 and smart factory automation, as well as more traditional ones, like Web
Services, online gaming, and virtual and augmented reality applications, are increas-
ingly based on high-bandwidth, ultra-reliable, low-latency and mobile communications
for their successful implementation and deployment [3]. As a consequence, network
operators are updating their networking infrastructures and operations practices, in or-
der to face the new challenges arising from these emerging use-cases, for example with
a widespread adoption of 5G architectures in access networks [4]. Their absolutely
non-trivial business goal is to design, build, and deploy large-scale networking infras-
tructures that are characterized by high adaptability and dynamism at an unprecedented
level, to be able to cope with the diversity and multitude of workload scenarios that new
applications are bringing.

Among the key technologies providing a great degree of flexibility and adaptabil-
ity in computing and networking infrastructures, we can find virtualization, that has
recently seen widespread adoption in a number of cases: from system-level virtual-
ization and, more recently, lightweight container-based virtualization, used at large in
Cloud Computing infrastructures, to network virtualization and overlays, widely used
in access, core, and data-center networks. It does not come as a surprise that modern
telecommunication networks are seeing an ever-growing adoption of Cloud Comput-
ing principles and paradigms [5], to deploy heavily virtualized computational services
within their infrastructure. Indeed, to enhance dynamism and efficiency, network op-
erators are progressively shifting the management of their network functions, from a
traditional approach based on hardware appliances statically sized for peak-hour op-
eration, to a more dynamic, software-based, and heavily virtualized approach, lever-
aging Software Defined Networking (SDN) [6] and Network Function Virtualization
(NFV) [7, 8, 9]. This allows for: a more automated and dynamic management of net-
work configurations; the implementation of network functions in software as Virtual
Machines or Containers deployed on general-purpose servers; the use of horizontal
elasticity typical of the Cloud Computing paradigm, to scale individual Virtual Net-
work Functions (VNFs) so to keep the computational capacity of the deployed func-
tions aligned with the continuously changing conditions of their workload.

In this context, a key problem is the one of an optimum, or near-optimum, deploy-
ment of new VNFs within an NFV infrastructure, with a variety of possible objectives,
like minimizing the number of used hosts, their overall energy consumption, the ex-
pected service latency, or others.

1.1. Paper Contributions
In this paper, we tackle the challenging problem of optimum deployment of VNFs

throughout the physical hosts of an NFV infrastructure. We consider the problem as
arising from the industrial use-case provided by Vodafone, where VNFs are deployed
as sets of Virtual Machines with attached: precise resource demands, including CPU,
memory, and networking requirements per Host; precise anti-affinity constraints, as of-
ten needed to deal with reliability and fault-tolerance requirements; affinity constraints,
often useful to reduce the service interaction latency, and improve the performance ex-
perienced in the use of end-to-end network function service chains; and others. In our
use-case, the primary objective of the optimization is set as minimizing the number
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of active hosts needed for a given deployment, whereas the affinity constraints are in-
herently soft, meaning that their satisfaction is desirable but they could be broken, to
reduce the deployment size.

We consider three different approaches to tackle the just mentioned problem, each
exhibiting different properties:

1. a formulation based on a Mixed Linear Programming (MILP) optimization pro-
gram, that can be solved exactly with a standard solver, but exhibiting high (and
sometimes prohibitive) solving times;

2. a faster heuristic solver based on a traditional Genetic Approach;
3. a Policy-based heuristic solver that is optimized using a Genetic Algorithm, in-

spired by the work in [10].

Execution speed, optimality guarantees, or capability to adapt to different problem’s
flavors, can play a role when selecting an algorithm. From a practical point of view, the
context in which these problems are solved may change, and this entails a preference
for one approach with respect to one another. The first two methods were also the
subject of our previous work in [11]. This is extended in the present paper, where
we: provide more extended implementation details; and introduce for the first time
the 3rd heuristic mentioned above, developed as a multi-dimensional generalization of
the work in [10], showing its capability to deal with soft affinity constraints; provide
a more extended and insightful evaluation of the three solving strategies, thanks also
to the help of a new, more extended, data-set, synthetically built to mimick the main
characteristics of our available open data-set with real-world problems.

1.2. Paper Organization

The paper is organized as follows. Section 2 describes the problem of optimum
placement of VNFs for NFV, as arising in the Vodafone context, clarifying what are
the features coming into play and what are the goals of the work. Section 3 provides
an overview of prior related works on the subject in the research literature, highlight-
ing interesting research directions. Section 4 details how the mentioned problem can
be tackled using a classical optimization approach, leveraging a formulation based on
Mixed-Integer Linear Programming (MILP), that can be solved with a standard MILP
solver. Section 5 presents in detail a heuristic solver based on a Genetic Approach, that
appeared already in [11]. Section 6 introduces the new Policy-based heuristic solver,
which was developed to address the limitations of the other two approaches. Sec-
tion 7 presents an extended experimental comparison of the three approaches, compar-
ing their advantages and disadvantages. Finally, Section 8 provides a few concluding
remarks, along with a sketch of possible future directions for further research on the
topic.

2. Scenario

This section describes the NFV capacity planning problem at Vodafone, with the
goal to introduce and motivate the problem, explicitly identifying what are the variables
at play and the objectives that can be involved in the task.
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The problem under consideration has been described in our previous work [11] be-
ing extended in this paper. There, we presented the general architecture and prototype
implementation, deployed within the Google Cloud Engine, of the software realized to
tackle the optimal placement of VNFs within the Vodafone NFV infrastructure, man-
aged through the VMWare vRealize Operations management software1, under affinity
and anti-affinity constraints, with the goal of minimizing the number of used hosts.
This is framed within a wider set of tools being experimented at Vodafone, leveraging
ML/AI techniques for infrastructure management, as detailed in [12].

The mentioned capacity planning problem can be tackled in different ways, as de-
scribed in the different solution strategies considered later in Sections 4 to 6.

In reference to Fig. 1, when laying down a Virtual Network Infrastructure, the final
goal is to deploy a set of Virtual Network Functions. Each VNF component is in turn
composed of a set of Virtual Machines implementing the VNF-specific functionality.
These VMs have to be deployed on physical servers, also referred to as Hosts, which
constitute the physical infrastructure.
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Figure 1: Deployment of Network Functions, previously implemented using custom Hardware, as Virtual
Network Functions on a Physical Infrastructure composed by general-purpose servers.

Note that, while this paper focuses on VM placement, a similar approach is be-
ing applied within the operator also for tackling the problem of optimum placement
of Containerized Network Functions (CNFs) [11]. In general, it is commonplace to
use both VM-based and Container-based deployments in NFV infrastructures. VMs
provide a higher degree of isolation, security, and compatibility, whilst Containers are
known to exhibit lower overheads and better performance. Our case-study, extending
the work presented in [11] and based on the open data-set released with that paper,
focuses on VM-based placement of VNFs, albeit the approach is easily generalizable
to the context of optimum placement of CNFs.

2.1. Resource Requirements
Each VNF component, to be deployed as a VM, is characterized by a multitude of

resource requirements, including: the number of vCPUs; amount of memory (RAM);

1More information at: https://docs.vmware.com/en/vRealize-Operations/index.html.
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disk size for the local disk, as well as for remotely mounted volumes, along with band-
width requirements for accessing them; network requirements for horizontal (East/West)
and vertical (North/South) traffic; and others. However, the investigation carried out in
this paper is limited to considering only the 3 requirements of vCPUs, RAM memory,
and (aggregate) network bandwidth. In our considered NFV use-case, these are the pri-
mary factors impacting the placement decisions, whilst others can be neglected. How-
ever, the techniques presented in the following sections can easily be extended with ad-
ditional resource types, such as disk space or others. Clearly, depending on the specific
case, such extensions could lead to computationally expensive problems. For example,
a considered variant of the problem, albeit not detailed here for the sake of brevity, is
the one considering also NUMA Nodes and NUMA (anti-)affinity constraints. These
lead easily to doubling the size of the problem for the MILP implementation.

In the scenario considered here, it is assumed that all the VMs of the same VNF
component have the same resource requirements. Having multiple identical VMs for
a VNF component is justified, for example, as it eases the design of a load-balancer
spreading the traffic among them, or for reliability purposes where multiple identical
VMs are kept in sync for a better resiliency to faults.

In the placement problem, the aggregate resource requirements of the VMs de-
ployed onto a host should normally not exceed the corresponding availability of re-
sources on the physical hosts, to avoid overcommiting them. Actually, part of the
physical resources are already subtracted from the per-host availability, as they are
dedicated to the management of the infrastructure. However, for some of the clusters
managed in the considered use-case, it is admissible to overcommit resources. This is
possible for VNFs that are not performance critical, and for which it is evident from the
collected monitoring data that the effective resource utilization is significantly lower
than the “official” per-VM requirements. Therefore, in our problem, we consider an
over-commitment factor for the various resources.

2.2. Structural Requirements
Given the complexity of a Network Infrastructure, the placement of the VNF com-

ponents has to consider also their relative location (for some of them). For example,
putting VMs on the same host is beneficial in terms of achievable communication band-
width and latency. On the contrary, making sure that VMs are placed on different hosts
is useful from a performance viewpoint, to mitigate noisy neighborhood problems; or,
it becomes mandatory from a reliability viewpoint, to implement fault-tolerant poli-
cies where a single host failure cannot take down all the VMs of a service at the same
time. Therefore, among the considered requirements of VNF components, we have
also “structural requirements”, such as affinity constraints that control how the VMs
should be allocated with respect to one another. Constraints involving the VMs of a
single VNF are called “auto-affinity” rules, whilst those involving VMs from different
VNFs are called “cross-affinity” rules.

Another important aspect of the planning task is related to the sectioning of the
infrastructure. There are physical, logistic, and managerial limits that constitute con-
straints for the placement. For example, it is necessary to consider limits coming both
from the physical infrastructure (e.g., available space in server rooms, data-center net-
work cabling) and from the software used to manage the virtualized infrastructure.
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Therefore, in our use-case, hosts need to be organized in separate clusters, where each
cluster is characterized by a maximum number of physical hosts and individual VNF
components to be placed have to fit within a single cluster (they cannot be split across
them).

2.3. Objectives

In the above subsections, we described the constraints that characterize a feasible
solution to the placement problem. In this subsection, we focus on the optimization
objective to be pursued by the placement strategy.

In this investigation, the focus is on minimizing the number of hosts needed to
deploy a given VNF workload. This has the benefit of leading to the minimization
of the associated costs, as well as minimizing the energy footprint of the deployed
workload.

However, as mentioned above, in our considered problem we have also additional
factors. The need for partitioning the given VNF workload into separate clusters in-
troduces a secondary objective related to the minimization of the number of clusters
obtained during the optimization process. Additionally, the presence of soft constraints,
that might be relaxed to avoid increasing the required number of physical hosts, intro-
duces an additional (tertiary) objective, related to the degree of violation of the soft
constraints in place. Indeed, it is likely that the presence of additional structural con-
straints leads to an increase in the number of hosts necessary to deploy the system.

Therefore, in our use-case we end-up considering a multi-objective problem, where
the goal of the optimization is to minimize the primary objective, the number of hosts,
then to minimize the additional secondary objectives, i.e., clustering the workload into
the minimum number of clusters, and, eventually, minimize the number of affinity
constraints that are possibly broken in the placement.

As explained in the next section, these 3 objectives can be added-up into a single ob-
jective function, where a careful choice of the weights multiplying each sub-objective
can lead to a variety of policies, in the optimization. In the investigation that follows for
the considered NFV use-case, the highest priority is assigned to reducing the number
of hosts, with the secondary objective of minimizing the number of used clusters, and
finally minimizing the number of broken soft affinity constraints, keeping the affinity
requirements as a “good-to-have” property, rather than a constraint.

In Section 4, we introduce a precise formalization of the considered VM placement
problem, as discussed above.

3. Related Work

In this section, we provide an overview of key related research works that are
closely related to the problem and approach investigated in the present paper.

Telecommunication companies welcomed the shift towards NFV, thanks to the
many advantages it can provide. Under the new architecture, it is possible to optimize
the infrastructure, pursuing a trade-off between the costs and the quality of service.
Similarly to what happens in Cloud Computing, NFV infrastructures have the ability
to decide on VM and Container placement, and to move them when needed, trying to

6



minimize the service downtimes, maximizing availability, and respecting the service-
level agreements (SLAs) possibly in place with the customers, while complying with
security regulations.

An outline of the taxonomy of the VM placement techniques that appeared in the
Cloud Computing research literature can be found in [13]. In that work, the authors
highlight the complexity of the Virtual Machine Placement problem looking at the
different research directions and problem formulation that have been proposed in recent
years.

Wanting to get some references in the context of NFV, in [14], an overview of
VM and container placement strategies studied in the literature can be found, with
a specific focus on NFV placement problems. A comprehensive survey of resource
allocation techniques specifically applied to NFV data centers can be found in [15].
The panorama that can be framed, putting together all these survey works, is showing
up as a multifaced problem that other researchers are sectioning and observing from
different points of view when solving for their specific goals.

For example, in the more general context of Cloud Computing data centers, authors
in [16] propose a framework for efficient resource management, where, by anticipating
the resource utilization of servers, it is possible to apply informed placement and migra-
tion decisions throughout the data center, leading to improvements in load-balancing
and power consumption.

Different flavors of the baseline placement problem could include some extra fea-
tures, like the task of balancing the load, as shown by Xu et al. [17]. In their case, the
surveyed research works dealing with the workload distribution among servers to avoid
imbalanced resource utilization, which in turn could lead to performance degradation.
One specific example of load balancing could be found in the work of Hieu et al. [18],
where they come up with an algorithm that is able to place Virtual Machines on servers
balancing the utilization of multiple resource types.

When considering the performance of the infrastructure more explicitly, and going
into the details of ”what is running”, the problem formulation starts embedding aware-
ness of the client workload. Among the indicators that should be looked at when allo-
cating VMs, are the performance of the applications and the presence of Service Level
Agreements with the customers. In this respect, some works propose an application-
aware placement algorithm. One example of this type of approach is given by the work
of Gupta et al. [19], where, in the context of High-Performance Computing (HPC), the
placement problem is tackled by keeping an eye on the performance of the applications
to avoid breaking possible SLAs.

Given the networking nature of datacenters, many works deal with the problem
of allocating the workload paying attention to latency and bandwidth. Similar to the
“application awareness”, in this case, allocation algorithms are equipped with “network
awareness”, as done by Alicherry et al. in [20]. In that work, the authors considered the
geographical distribution of datacenters and the network link properties when dealing
with client requests for cloud-computing resources. It is possible also to find works
dealing with the deployment of the infrastructure to improve the service capability, for
example by increasing the volume of manageable traffic as done by Ma et al. [21]

Once the problem is framed, and the goals are clear, the next step that is needed
is the selection of the solution approach. Also in this respect, the panorama is very
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heterogeneous and reflects the multitude of practical applications that orbit around the
topic of Cloud Computing.

Some of the approaches that have been proposed leverage stochastic analysis that
helps deal with resource uncertainty. Zhou et al. [22] developed a stochastic meta-
heuristic algorithm to perform VM placement, optimizing for energy cost, when the
demands are not deterministic. Another example of a probabilistic approach is given
by the works of Konstanteli et al. [23, 24]. In their case, they were allocating services
on virtualized resources by trying to use an efficient heuristic that uses probabilistic
information about service demands to increase the allocation capability.

It is not always the case that workload allocation is modeled as a stochastic sys-
tem. Indeed, in many cases, the problems are tackled by using a more deterministic
approach, for example, by casting the requirements into a classical optimization prob-
lem and solving it with a MILP solver, or other approaches. One example is given by
Cucinotta et al. [25] in their work on data center optimization, where the authors solved
the problem of efficiently managing computing and networking resources by solving a
BLP problem, or the more recent work in [26], where a logic programming approach
was proposed to tackle this kind of problems. This works for small-size problems, but
alternatives are needed for larger problems, which constitute many real-world scenar-
ios.

Some authors [27] considered also the problem of VM placement with affinity con-
straints, following the same rationale used in our work. However, they excluded the
MILP approach as viable due to the computational burden and they relied on custom
algorithms to pack the VMs on servers.

Still avoiding the MILP approach but supporting optional affinity constraints, the
work of Dow [28] is worth mentioning. It presented a method to efficiently address the
VM placement problem, proposing an optimized algorithm able to handle problems in
the range of 100 hosts, relying on the assumption that Virtual Machines characteristics
are not infinitely variable in resource consumption, but instead belonging to a limited
set of few different types. In our case, this approach won’t fit very well due to the
variability of the VMs characteristics.

As in many works reported above, in case the problem starts growing too much in
size, authors lean towards specific heuristics that perform well in their specific case.
These heuristics require skills and experience to be found and tuned properly. This
constitutes an interesting spot for techniques embedding Artificial Intelligence. There
are authors who experimented with Machine Learning (ML), or precisely Reinforce-
ment Learning (RL) techniques, to find good placement strategies. One example of
such works is given by Long et al [29], where the authors used Reinforcement Learn-
ing to allocate VMs and optimize for energy consumption. In [30], the authors deal
with the VM placement problem, while optimizing for energy usage and considering
QoS, using a Reinforcement Learning algorithm supported by fuzzy logic.

Huang et.al [31] used a Deep Reinforcement Learning algorithm to tackle the
problem of online job scheduling for containerized applications. The authors justify
their approach, apart from providing better performance, as a valid method to avoid
tedious manual work on ad-hoc simple heuristics.

Also, Genetic Algorithms have been employed to help deploy the NFV components
on the infrastructure as in the work of Khoshkholghi et al. [32], where a genetic-based
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algorithm was used to deploy service chains.
Stepping back from the specific NFV case of study, the baseline problem of bin

packing was tackled by Asta et al. [10] and they set up an interesting framework based
on policy search, where the placement actions were determined by a score matrix ob-
tained by genetic optimization. Their work was limited to just 1D bin packing, but it
was a valid proof of concept for further studies.

In this work, we deal with a deterministic problem, and the problem instances lead
us to try different approaches that include MILP formulation and GA-enhanced heuris-
tics. Precisely, in one of the used approches, which constitutes the novel algorithm
proposed in this paper, the idea described in the paper [10] is extended and adapted for
the VNF placement problem.

Our approach is specifically tailored to the needs of the industrial NFV capacity
planning problem at Vodafone, like the presence of soft affinity constraints alongside
hard anti-affinity ones, and the other requirements detailed in Section 2. There are
works that consider the affinity and anti-affinity properties of workload placement for
the cloud as in [27]. Still, they do not consider the possibility of making the affinity
constraints optional.

We added the possibility to make constraints optional, however trying to satisfy
them with a best-effort approach, by modeling the cost as a modular function as was
done by Unuvar et.al [33] when trying to split the workload between the public and
private cloud.

4. Classical Optimization Approach

The optimal allocation problem is well-known in the industrial landscape, and there
are many well-documented solution strategies. One of the most successful techniques
consists in casting the placement problem into a Linear Programming instance that
can be solved by readily available solvers. In general, the modeling often introduces
Integer variables, leading to the Mixed Integer version of Linear Programming, which
is computationally expensive to solve. The archetype for this type of problems is the
Bin Packing problem, where the goal is to minimize the number of bins to allocate a set
of objects of different sizes. The Bin Packing problem is known to be computationally
NP-hard.

The success of such an approach in real applications comes from the ease of map-
ping the requirements and performance indexes in the MILP format. The deriving
mathematical representation makes the problem easy to share, modify, and reformu-
late. Moreover, the technology behind MILPs is mature and a lot of technicalities and
low-level implementation details are handled silently by solvers, leaving the user more
time to focus on the high-level goal and relieve him of unrelated maintenance duties.
Such solvers give also optimality guarantees when proposing a solution, hinting at how
much further extended calculation could be worth.

However, MILPs tend to become computationally prohibitive when the problem
grows in size. This comes from the combinatorial nature of the solving algorithm.
When exploring different solutions, it could be useful to have a responsive tool that
returns an outcome in a reasonable time. Waiting for hours or days could steer users
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to look for something else. As shown in the previous work, in the pool of problems
coming from the Vodafone Infrastructure there were cases where reaching the global
optimum could take many hours and that was considered unattainable. Further consid-
erations can be made also thinking about the possible extensions to the current place-
ment problem. Given the requirements set by Vodafone regarding the solving time,
albeit possible, it could be hard to add further layers of placement hieararchy. For ex-
ample, naively handling NUMA affinity constraints would duplicate (or quadruplicate)
the number of variables, since the placement action needs to consider multiple NUMA
nodes similarly to how hosts are considered.

Still, the properties of the MILP approach make it worth being considered, and
there are workarounds to make it more applicable in practice. Just to mention a simple
one, that was implemented after the previous study, there is the possibility to combine
the MILP guaranteed solving routine with heuristics that are more efficient in finding a
feasible solution quickly. Currently, we used the GA-based Heuristic developed in the
previous work to “warm start” the MILP solver. In order not to add too much delay, the
GA was used with a reduced population. The idea was to return something feasible,
hopefully, slightly optimized, however quickly, and then leave the MILP solver to con-
tinue optimizing from that. In the experimental evaluation made in this research work,
this was the implementation used for the MILP.

4.1. Main Definitions

Referring to Sec. 2, the set of Nv Virtual Network Functions, that are going to be
deployed, are represented here by a set

V = {1, 2, . . . Nv}. (1)

For each VNF component i ∈ V , the set of Virtual Machines implementing the VNF-
specific functionality is called Ii. The demands of a VNF i ∈ V in terms CPU, Memory,
and Network Bandwidth are expressed here by DCPU

i , DMEM
i and DNET

i respectively. To
simplify the notation, we assume, without loss of generality, that Virtual Machines from
different Virtual Network Function components have all different indexes: ∀i1, i2 ∈
V, i1 , i2 =⇒ Ii1 ∩ Ii2 = ∅.

In the following, the set of Hosts, on which the VMs are going to be placed, is
represented by H = {1, 2, . . . ,Nh}, where Nh is the max number of Hosts that the
infrastructure can contain.

The placement of a single Virtual Machine j on a host h, is modeled with the
Boolean variables

{
x j,h

}
as

x j,h =

1 if VM j on host h
0 otherwise.

(2)

4.2. Resource Requirements

The placement solution should be feasible, that is, the infrastructure resources
should be sufficient to run the workload demanded by the VNFs. The availability of
resources on each Host h ∈ H is given by LCPU

h , LMEM
h and LNET

h . In this study, we
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consider the case of homogenous resources among all the Hosts, but it could be possi-
ble to extend to heterogenous Hosts at the expense of computational complexity. This
way, the selection of the best hardware for the task could be carried out by the solver
itself. For example, it could be possible to augment the problem, by considering multi-
ple versions of each Host h, having different resource capabilities, and then adding the
constraint that only one can be used for the placement. The placement constraints, due
to the availability of limited resources on each host, can be described as follows:

• CPU

∀h ∈ H :
∑
i∈V

DCPU
i

∑
j∈Ii

x j,h

 ≤ LCPU
h ; (3)

• Memory

∀h ∈ H :
∑
i∈V

DMEM
i

∑
j∈Ii

x j,h

 ≤ LMEM
h ; (4)

• Network Bandwidth

∀h ∈ H :
∑
i∈V

DNET
i

∑
j∈Ii

x j,h

 ≤ LNET
h . (5)

4.3. Structural Constraints

Structural constraints control how the VMs should be placed with respect to one
another.

A trivial structural constraint is that each VM must be placed on exactly one host.
This is justified by the fact that VM cannot be shared between Hosts, that all the VMs
should be placed, and that it’s not possible to place twice the same VM. This can be
expressed as a set of linear equalities:

∀i ∈ V, ∀ j ∈ Ii,
∑
h∈H

x j,h = 1. (6)

In general, in case the problem should require a “best effort” placement, where the
request consists of placing as much as possible on a limited amount of hardware, not
sufficient for a full deployment, this type of constraint could be relaxed. However, this
was not the case for the problem solved in this work.

Formally the structural constraints, which could be required to model the specific
placement demands, are formalized as

• Auto Anti-Affinity constraint (AAF): The Virtual Machines belonging to VNFs
with this type of constraint should be placed on separated hosts. If the set of
VNFs that should satisfy this constraint is represented by VAAF ⊂ V , the con-
straint can be written formally as

∀i ∈ VAAF , ∀h ∈ H :
∑
j∈Ii

x j,h ≤ 1 (7)
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• Auto Affinity constraint (AFF): Indicating by VAFF ⊂ V the set of VNFs with the
AFF property, the constraint requires each VNF to have all of its VMs placed on
the same host:

∀i ∈ VAFF , ∀h ∈ H :
∑
j∈Ii

x j,h ∈ {0, |Ii|}, (8)

where | · | denotes the set cardinality operation. This constraint can be reformu-
lated in a directly implementable form by forcing all the variables referring to
the VMs in set Ii to be equal:

∀i ∈ VAFF , ∀h ∈ H , j ∈ Ii : x j,h = x j0,h, (9)

where j0 is the first index of the set Ii.

• Cross Anti-Affinity constraint (CAAF): Given a set of VNFs, it requires that any
VM of one of the VNFs should not be placed on a host occupied by any of the
VMs of the other VNFs. Calling by VCAAF the set of (iα, iβ) couples of VNFs
undergoing this constraint, the formalization is given by:

x jα,h + x jβ,h ≤ 1, (10a)
∀h ∈ H , (10b)

∀(iα, iβ) ∈ VCAAF , (10c)
∀ jα ∈ Viα , ∀ jβ ∈ Viβ (10d)

• Cross Affinity constraint (CAFF): Given a set of VNFs, every VM of every VNF
in the set needs to be co-located on the same host. Calling by VCAFF ⊂ V the set
of tuples undergoing the constraint, the formalization is given by:∑

i∈VCAFF , j∈Ii

x j,h ∈ {0, |ICAFF |}, (11)

where |ICAFF | =
∑

i∈VCAFF |Ii|, ∀h ∈ H . The same approach used for the imple-
mentation of the simpler Auto Affinity in Eq.9 can be used here.

• Master-Slave constraint (AMS): Virtual Machines designated to the VNF with
AMS should be subdivided into two equal groups such that no VM from one
group is co-located with a VM of the other group. The AMS constraint is reduced
to a Cross Anti-Affinity constraint, for which the definition was given in Eq. 10.

• Cluster constraint: this optional constraint specifies that the physical infrastruc-
ture is logically partitioned in clusters of the same given size, and that, for every
VNF, the VM components need to be partitioned across such an infrastructure in
a way that ensures that entire VNF components are placed entirely within one of
the available clusters, i.e., that the VMs of a VNF component cannot be placed
across two or more clusters. The way the constraint has been implemented is by
encoding this as a sort of Auto Affinity Constraint.
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4.4. Objective

In order to formalize the placement problem within an optimization framework, it
is necessary to specify the “objective” function to be optimized.

Precisely, after the discussion from Sec. 2, it is clear that we need a “multi-objective”
one. The formal definition includes the following components:

1. Primary Objective
As far as the main goal is concerned, using a Boolean variable uh to represent
whether a host h has been used in the placement, the cost function is given by
the following expression:

Jh =
∑
h∈H

uh. (12)

Specifically, uh = ∨ jx j,h, where ∨ j is the logical or operator applied along the
index j. The logical or operator ∨ j over a set J can be implemented in a linear
form by a set of constraints as follows

uh ≥ x j,h,∀ j ∈ J, (13a)

uh ≤
∑

j

x j,h. (13b)

The first inequality guarantees that if one of the x j,h is 1, then the uh is also 1,
whilst the second inequality forces the uh to be zero when all the x j,h are zero.

2. Secondary Objective
Modeling the affinity constraints as “soft” can be done by defining some new
variables ξi,h as

∀i ∈ VAFF , h ∈ H , ξi,h = ∨ j∈Ii x j,h. (14)

These variables represent whether there is at least one VM belonging to VNF i
with affinity constraints on host h. Using these variables it is possible to define a
cost for breaking the affinity constraint, such as an Affinity Penalty, as

Ja f f =
∑

i∈VAFF

∑
h∈H

(ξi,h − 1)

 . (15)

In the case of met affinity, the VMs will be allocated on a single Host, so only
one ξi,h will be 1 and the cost expressed in Eq. 15 will be equal to 0. Otherwise,
the Affinity Penalty will be greater than 0 and the optimizer will try to make it as
low as possible. In the implementation made up to this point, only the number
of Hosts overused is taken into account and not the distribution pattern of the
affine VMs on them. For example, in the case of 5 VMs with affinity constraints
allocated on 2 Hosts, there is no Penalty difference in allocating 4 of them on
the first Host and the remaining VM on the other, or 3 VMs on one Host and 2
VMs on the other. The same approach is valid for the Cross Affinity constraints,
where this time the set of Virtual Machines’ indexes used to compute the logical
OR is composed by joining the Virtual Machines from the set of Virtual Network
Functions involved in each constraint.
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Finally, the optimization objective for the full problem can be defined as a combi-
nation of the previous components:

J = KhJh + Ka f f Ja f f , (16)

where Kh, Ka f f are tuning gains used to make the multiobjective problem separable.
Considering the requirements, this means that the max achievable Affinity Penalty
Ka f f Ja f f should never be more than the increase of the objective determined by adding
an extra Host. This choice comes directly from the requirements in the considered in-
dustrial scenario, where the reduction of the number of used hosts was given higher
priority than meeting the soft affinity constraints, thus avoiding the need for a full
Pareto Optimality analysis.

Extending this model to consider more objectives is possible by adding more com-
ponents to the cost, following the same approach to make them separable and avoid
Pareto Optimality issues. Doing so, the range of the optimization objective would in-
crease, making the work of the solver harder.

5. GA-based Heuristic

Another strategy that was explored during the industrial collaboration is the em-
ployment of Genetic Algorithms in the context of VM placement. As shown in the
previous work, this approach was selected as a trade-off among the simpler Heuristic
solvers and the heavy-weight MILP solver. Indeed, they tend to share a simpler mod-
eling phase and fast execution time with the Heuristic solvers, but they are more robust
in terms of convergence towards a minimum.

5.1. Implementation Details
The first step in the implementation of a Genetic Algorithm is the selection of the

features that encode a solution. Following the modeling of the problem presented in
Section 2, it would come naturally to encode the placement of the VMs by a vector
where every entry i gives the Host on which the i-th VM has been placed. However,
the design choice that was made in the previous work was to indirectly refer to such a
placement solution by acting on the order in which the VMs are going to be placed by a
First Fit algorithm. First Fit algorithms are very efficient in finding feasible placement
solutions, and what matters is the order in which the objects to be placed are drawn. A
posteriori, knowing an optimal solution, it’s possible to find the placement order such
that a First Fit algorithm leads to that. Following this idea, the goal was to have an
algorithm that could search for a good placement sequence, adapting to the specific
problem instance.

The encoding of a solution, or “chromosome”, was a vector of VMs’ indexes s
representing the placement sequence by a First Fit. Considering a problem with Nvms

VMs, it is possible to formalize the chromosome s as the permutation of the VMs
indexes:

s ∈ NNvms , (17)
such that si , s j ∀i, j ∈ [1,Nvms], (18)
i < j =⇒ V Msi placed before V Ms j . (19)

14



The Genetic Algorithm works by propagating and modifying an initial population
of different candidate solutions, favoring the survival of better candidates with respect
to a “fit function”. Selecting the “fit function” is the second important step in imple-
menting a GA. In the original problem, solved in the previous work, the fit function
consisted of the number of hosts used to allocate all the VMs. The adaptation made
in this work extended that to include the affinity, leading to the same expression from
Eq.16.

The Genetic Algorithm is implemented as an iterative procedure applied to a pop-
ulation of chromosomes. A schematic representation of the main blocks is reported in
Fig. 2 The solving routine starts with the random generation of a population P0 of Ns

candidate solutions. In our specific case, the P0 is obtained by performing a First Fit
allocation randomly scrambling the order in which the VMs are placed Ns times. Once
P0 is generated, the algorithm starts the iterative phase. At every iteration k, the current
population Pk is modified to explore better candidates as follows:

1. Obtain an extended population P−k+1 by adding new candidate solutions to Pk;
2. Compute the fit value for each candidate of P−k+1;
3. Generate a Pk+1 population, sampling the Ns best elements in terms of their fit

value from the P−k+1.

Gene 0 Gene 1 Gene N

Active Population

Sorting and 
Candidates Selection

Generation of New Candidates

Extended Population

Initialization of the Population

VMs to be placed

…

Figure 2: Schematic representation of a Genetic Algorithm with the main phases.

The generation of new candidates to extend the current population is made by using
chromosomes from the original population. Usually, the generation of new candidates
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is carried out using a cross-over operation, which mixes the genes among two or more
parent candidates. However, in this case, the implementation of this step was different,
since the encoding approach used in this GA was not optimal for the classical cross-
over operation. The way it was implemented was more similar to a mutation-only GA,
where starting from a candidate solution, the algorithm searches for a pair of VMs to
swap in terms of the order by which they are placed.

At first, after having selected the two associated indexes in the permutation vector,
the two VMs are deallocated, together with all the VMs at indexes greater than the first
one. These deallocated VMs are later reallocated following the new order generated by
swapping the 2 VMs. The partial deallocation and replacement are necessary because
the elements of the population should be maintained as valid First Fit placements. In-
deed, considering a swap that involves the VMs pair (Vsi ,Vs j ) with i < j, any VM
placed after Vsi had the location selected by a First Fit algorithm that took the presence
of Vsi into account. After the swap, at step i the Vs j is going to be placed, so the First
Fit allocation should be re-evaluated for all the remaining VMs. One example of the
swapping mechanism for new chromosome generation is shown in Fig. 3. In the Fig-
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VM5

VM4

VM0

VM0 VM1 VM2 VM3 VM5VM4

VM6

VM6
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VM2
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VM6

VNF c
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VM0

H0 H1 H2 H3 H4
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VM2
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VM0 VM1 VM2 VM3VM5 VM4 VM6
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VM6
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H0 H1 H2 H3 H4

VM2

VM1
VM0

First Fit 

VM3

VM2

VM4

VM5
VM1

VM0
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VM6

System to be deployed Placement

Swap
Restoring First Fit Placement

Final Solution

Figure 3: Details on the generation of new candidates using the swap method.

ure there are 7 VMs, belonging to 3 different VNFs that need to be placed. Applying
a First-Fit placement to the original sequence it will use 5 Hosts. V M3 and V M5 are
selected to be swapped and this triggers the re-placement of all the VMs placed after
V M3 in the original sequence. Notice that the part of the chromosome that occurred
before V M3 is not changed. After re-placing the removed VMs, the solution takes 4
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Hosts.
The selection of the VMs pair can be made by looking at some specific properties,

such as selecting from Hosts that are not completely full, but in the original implemen-
tation, the search for a pair was purely random.

The focus of the previous work was to find a trade-off between solution optimality
and computation time. On one side we had the MILP approach that provided optimal-
ity guarantees but was slow to return a solution, on the other side there was a simple
Heuristic, which could provide a feasible solution very quickly, but it was often sub-
optimal. Wanting to propose a GA-based Heuristic solver as a balanced solution some
expedients were necessary. Indeed, GAs can become computationally heavy due to the
high number of attempts they need to make when searching for the best candidates. For
this reason, an early termination check was introduced to speed up returning solutions.
The implementation of this early stop procedure was based on a value representing the
confidence of the algorithm to be near an optimal solution. The idea came from the
MILP concept of the optimality gap, which quantifies the distance between the current
solution and the best one obtained via relaxation. In the case of Heuristic solvers, it is
not trivial to assess how far the current solution is from the optimum, and some estima-
tion is necessary. In our implementation of the GA, the idea was that if the population
becomes too uniform in terms of fit value it could be a sign that the solver found a
good solution. In practice, the algorithm monitors the maximum spread of the fit func-
tion among all the population and stops the iterations when the spread is under a given
configurable threshold.

The algorithm has some hyper-parameters that can be tuned, such as the size of the
population Ns, the number of new candidates generated from each candidate of the old
population, the number of iterations to be applied to the population, and the threshold
for the early stopping feature.

6. Policy-based Heuristic

This section covers a different approach: the “Policy-based Heuristic” developed
for the problem proposed by Vodafone. The motivation fueling this step comes from
the limitations observed in the previous study. The details on the comparisons and
comments on the outcomes will be the objective of the next section, whereas in this
one the focus is on the description of the approach.

Solving problems relying on heuristics is a very common approach since it can
quickly provide acceptable solutions. This is true, provided that they are designed by
tailoring them to the specific problem. Manually finding the heuristic that performs bet-
ter in a given case study requires experience and can be daunting. Often, it’s a matter
of finding which aspect is more relevant to produce an optimal solution. From another
point of view, a heuristic translates into assigning priorities to the possible actions and
then selecting the one that comes up first. In the context of this work, an action is the
placement of a VM on a specific host. For example, in the heuristic approach described
in the previous work, constituting the baseline for the GA implemented there, the pri-
ority was encoded as the Host ID, and the actions placing on hosts with lower IDs had
higher priority. Another possible option could be ranking the hosts by free available
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resources, that is, the feasible host with the least amount of available resources is se-
lected first or vice versa. Different priority rules, looking at different system properties,
translate in different algorithms, such as “first fit”, “best fit”, “worst fit”, etc..

The idea behind the proposal of the Policy-based Heuristic is to develop a routine
that automatically adapts to the problem by finding a heuristic that, using information
about the current status of the system, leads to a good placement. The adaptation is
achieved by leveraging Genetic Optimization.

6.1. Modeling the Heuristics
As it has been done for the other approaches, it is necessary to define a model

for the system and the information that can be handled by the algorithm. The system
configuration, that is, the current occupancy of the hosts, provides all the desired infor-
mation to make decisions. This is going to be represented as a set of placement actions
A, that is, a set of tuples (v, h), where v is a VM from the set V and h is the hosting
Host. For example, using as a reference the final placement shown in Fig. 3, the final
state would be

A = [
(v0, h0),
(v1, h1), (v6, h1),
(v2, h2), (v4, h2),
(v3, h3), (v5, h3)

].

Considering the specific problem this work deals with, useful information, obtain-
able from the current placement configuration, which can hint at a good move, can be
in the form of free resources on the hosts, requirements of the new coming Virtual Ma-
chine, or affinity scores quantifying the distribution of the components. The algorithm
is going to work iteratively, placing one Virtual Machine at a time using that infor-
mation. This means that, at the arrival of a new Virtual Machine v, for every feasible
placement action that consists of selecting a feasible hosting host h, there will be a
priority score σ(v, h,V, A), dependent on the current state of the system, quantifying
how good that action would be.

A natural implementation of this priority score assignment is a multi-dimensional
lookup-table. Precisely, in this work, the heuristic has been encoded with a multi-
dimensional matrix of positive integers priority values P, where the coordinates are
quantities related to the information extracted from the system configuration and the
(vm, host) action pair. The quantities selected as coordinates of the policy matrix have
been discretized in a number of finite intervals. The number of intervals, that determine
the size of the search grid, is a hyperparameter of the model and can be selected by the
user. That is, calling Nui the number of intervals for the input coordinate i, the matrix
will lay in NNu0×Nu1×...Nuk , where k is the number of quantities selected to be the input
for the policy. This multi-dimensional matrix has been called the Policy Matrix. A
represenatation of a 2-dimensions Policy Matrix and coordinate computation example
is shown in figure 4, where 2 actions (v0, h0) and (v0, h1) are characterized by the VM
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cpu requirement and the free CPU available on the hosts. The discretization of the
coordinates leads to the selection of 2 different tiles in the matrix associated to two
different priority scores.

(vm0, h0)

(vm0, h1)

Policy Matrix

v0

h0 h1

VM cpu

Host Free CPU

v0 cpu

h0 free cpu

h1 free cpu

Figure 4: Example of 2D Policy Matrix and score evaluation with 2 actions.

The process of action selection is exemplified in Fig. 5, where a VM vm0 can be
placed on three hosts. In the Figure, the Policy Matrix is only 2D for ease of repre-
sentation, and the different colors represent different values for every cell, similar to a
heatmap. As explained, the decision process is carried out by considering the configu-
ration of the system for every possible action, finding the associated score by looking
at the Policy Matrix and selecting the one that ranks better (lower score value).

As far as our case-study is concerned, the quantities selected to be used as inputs
to the algorithm are the following:

• Host’s Free CPU;

• VM’s requested CPU;

• Affinity Score;

• Anti-Affinity Score.

• Standard Deviation of the VM sizes (CPUs) on the Host.
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(vm0, h1) (vm0, h2)

1 5 8Rank

Policy Matrix

vm0

h0 h1 h2

vm0

Figure 5: Iterative placement of VMs on Host using a policy matrix that can rank feasible actions to perform
selection: the VM vm0 can be placed on three hosts, and after evaluating all three possible actions (vm0, hi)
the best one is selected.

The selection of the previous quantities has been driven by practical experience in the
field, by looking at what constitutes a more limiting constraint for the placement prob-
lem and what is more related to the properties that someone seeks to optimize. In
principle, it is possible to add any number of other variables, but this would make the
computation more intense, without bringing a tangible improvement to the final result.
In those cases where it is needed to add more dimensions to the Policy Matrix, it is
possible to counter-balance the size increase, by making the quantization more coarse
on some of them. Considering the real placement problem provided by Vodafone, it
turned out that other resources, such as memory and network bandwidth, resulted less
relevant in shaping the placement solution. It is anyway important to point out that,
even if some quantities are neglected during the score computation, the algorithm will
always take into account all the constraints, and only feasible allocations are consid-
ered.

Apart from the quantities that involve the CPU, which are quite simple to interpret,
the ones related to affinity and anti-affinity deserve more explanation. When there are
affinity demands, it is expected that a good placement algorithm will place affine VMs
together as much as possible. In order to make the heuristic sensitive to this request,
an affinity score has been defined and included among the input variables. For every
action pair, the score is computed by counting how many VMs, affine to the one that
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is going to be placed, are on the target host. It is worth noticing that the computation
of this score is based only on the current configuration of the placement, that is, the
part of the system that has been already placed, and the single action pair. With this
information available, an algorithm has the ability to give higher priority to hosts that
have a higher score, driving towards a better affinity.

The score related to the anti-affinity is slightly different. Whilst the previous score
can be computed based on the current, partial, placement, without considering what
needs to be placed next, for the anti-affinity case, the computation requires considering
the property of all the VMs that are going to be placed. Precisely, when computing
the score for an action that involves a VM with anti-affinity, the score is evaluated by
counting the number of VMs anti-affine with it that have already been placed in the
system and comparing that number to the total. This score was thought to be infor-
mative for a placement logic, since the impact of placing a VM with many anti-affine
VMs depends on how many other anti-affine VMs are still to be placed. For example,
in case the set of still-to-be-placed anti-affine VMs is empty, then no impact should be
expected on the remaining VMs. On the contrary, placing a VM that has a lot of anty-
affine pairs waiting to be placed could require some considerations, since the selected
Host will become forbidden to them.

The information regarding the Standard Deviation of the VM allocated on a Host
is useful for judging the heterogeneity of the placement. It could be sensible to think
that having available a set of different sizes to choose from could help pack more items
inside a container. On the contrary, placing all the items of a given size in a single
container could make them scarce in the future when they could be needed to fill a
specific gap. Following this idea, it has been decided to add that quantity such that the
Genetic Algorithm could have the choice to integrate that into the policy.

As far as the optimization task is concerned, the Fitness Function used to evaluate
the Population of the GA is selected to reflect the goal of the placement problem in
Sec. 2.3 and correspond to the same function used for the other two methods reported
in 16, apart from some scaling factor.

6.2. Algorithm

Wanting to formalize the routine, it is possible to consider the placement made with
the Policy-based Heuristic as a two steps process:

1. a Forward Pass (Alg. 1), where the learned policies are applied to allocate the
VNFs workload;

2. a Search Phase (Alg. 2), where the policies are improved using Genetic Algo-
rithm techniques.

As previously stated, the goal of the algorithm is to find a good policy P∗, that is,
a policy that determines an allocation satisfying the desired objectives described in
Sec. 2.3. Clearly, the search for a good policy will also lead to a placement solution
for the proposed problem. Casting this into Genetic Algorithm vocabulary, the policy
matrices Ps constitute the chromosomes, whilst the solution cost will be the Fitness
value.
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Forward Pass. The Forward Pass is described in Alg. 1. The algorithm starts with
the set of VMs that need to be placed and the current population of solutions, that is
the set of current Policies. For every policy, the algorithm is going to accomplish the
allocation of all the VMs inV.

The order with which the VMs should be placed can be left unaltered, or it can
be shuffled. We decided for the latter to find policies that are robust to the placement
order and avoid adapting to a specific sequence. If a specific policy survives along the
epochs, this means that it is able to perform well while placing the VMs in different
order of arrival.

For every VM, the algorithm looks at the current configuration of the system Ap

and computes the set of feasible Hosts Hv. In case all the hosts in the set Ap are
not compatible with the VM, a new empty host is added and then populated with the
VM. For each feasible host, the priority score is computed and in the end the best
placement action is selected and added to Ap. At the end of the Forward Pass the
current population is paired with full solutions of the placement problem and is ready
to be ranked and selected.

Search Phase. During the Search Phase, described in Alg. 2, the current population
of policies, which produced the Map of System Configurations A during the Forward
Pass, is evaluated in terms of the Fitness Function. In this regard, it is worth explaining
the strategy used to “judge” the solutions in the selection. At the end of the Forward
Pass, every element of the population, that is, the placement policy, is characterized
by how well the VMs have been allocated using it. The evaluation metric reflects the
number of Hosts used, and the amount of affinity broken after the placement. As ex-
plained in the previous sections for the other algorithms, reducing the number of Hosts
has a higher priority and there is the risk that the affinity could be overlooked in the
evolutionary process. For example, after a few rounds of selection, the surviving pop-
ulation could be composed by elements that perform well in terms of number of Hosts
but the affinity is poorly managed. For this reason, to make sure that the population
contains policies that are able to place VMs maintaining a good affinity, the selection
of the surviving population is accomplished as follows:

• Sort the population by the main Fitness Function, which comes directly from the
demands and weights more the number of hosts used, taking the best individuals:
this population will be the “Alpha” population;

• Sort the remaining individuals by a secondary Fitness function, which weights
only the affinity, and take a subset of the bests: this will be the “Beta” population.

The sizes of the Alpha and Beta populations are tunables of the algorithm and they
depend on different factors, such as problem size and number of affinity constraints.

In this way, when performing the cross-over operation to generate the new popu-
lation from the Alphas, Betas survivors, the information contained in policies leading
to good affinity can be mixed with the ones leading to more packed placements, hope-
fully discovering good trade-off. The current algorihtm implementation makes use of
the uniform cross-over.
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Algorithm 1: Policy-based Heuristic: Forward Pass
Data: SetV representing the VM to be placed.
Data: Set of Policy Matrices P
Result: Map of System ConfigurationsA, one for each policy p ∈ P, in the

form of tuples {p, [(v, hv)]}

1 A ← ∅;
2 for each Policy p ∈ P do

// Randomize the order of VMs to be placed

3 V′ ← randomize(V);
4 Ap ← ∅;
5 for each VM v ∈ V′ do

/* Compute the set of feasible Hosts in the current Ap

for v, or select a new empty Host */

6 Hv ← computeFeasibleHosts(v, Ap);

/* Compute the score on Hv */

7 s← [∞,∞, ...,∞];
8 for each h ∈ Hv do
9 sh ← σ(v, h,V′, Ap, p);

/* Select the best action and update Ap */

10 hv ← argminh(sh);
11 Ap ← Ap ∪ (v, hv);

// Add the configuration obtained applying p to the

output set

12 A ← A∪ {p, Ap};

// Final result

13 Output: A;
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After each round of selections performed in the Policy Search Phase the algorithm
has a set of promising policies and the respective placement solutions. In practice, in-
stead of a single policy, the algorithm could return a group of policies. Precisely, in the
final implementation, the algorithm returns the policies of the last iteration surviving
set.

Algorithm 2: Policy-based Heuristic: Policy Search Phase
Data: Map of System ConfigurationsA
Result: New Population P

1 P ← ∅;
// Compute the Fitness of the current population A

2 s← [∞,∞, ...,∞];
3 for each (Policy, Configuration) {p, Ap} ∈ A do
4 sp ← computeFitness(Ap);

// Extract the Alphas and Betas from the current population

5 (α, β)← rankPopulation(s,A);

// Generate the new population

6 P ← generateNewPopulation(α, β);
// Final result

7 Output: P;

A schematic representation of the full process is reported in Fig. 6.
Fig. 7 shows an example of some statistics of the Fitness Value as a function of the

GA epochs obtained while solving a problem in the generated dataset. The presence
of a decreasing pattern means that, on average, the genetic material surviving is able
to keep placing the set of VMs independently from the order. In the specific case
represented in the Figure, the population’s best solution was reporting a number of
hosts equal to 48, the Avg. stabilized around 49 and the worst cases could give 51-52
hosts.

7. Experimental Evaluation

This section provides results obtained from the experimental evaluation of the ap-
proaches introduced above.

7.1. Dataset

The algorithms proposed in this work have been evaluated both on real and ar-
tificial problems. Indeed, initially, the goal was to solve problems coming directly
from the Vodafone Infrastructure, and this led to the first comparative assessment of
performance in our previous work [11]. The data was provided in the form of plan-
ning files for the networking services, called virtual bill of material vBOMs containing
the requirements in terms of VNFs components and their constraints. The content of
these files was used to frame the optimization problem described in Section 2. After
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Figure 6: Schematic representation of the Policy-based Heuristic: Given a list of VMs to be placed a popu-
lation of Policy Matrices is used to perform placements; The obtained solutions are then ranked and a subset
of the well-behaving ones is computed; The genetic material in this subset is then used to generate the pop-
ulation for the next iteration.

anonymization and relevant information extraction, the dataset of these original prob-
lems was made publicly available2.

However, despite the fact that this gave us the opportunity to work with real data, it
had some limitations. First of all, the number of problems we had access to was limited.
Also, the variety of problem features was limited or at least not very well distributed.
For example, there were far more small-size problems than large ones. Even if some-
times it is possible, and recommended, to use small problems to assess the properties of
algorithms, it is true that bigger problems are more relevant in practice. Among those
available problems, only a limited number had affinity constraints, making it difficult
to assess how that type of request is dealt with by the proposed algorithms. To confirm
our claims, Figs. 9 and 8 show the distribution of the number of Virtual Machines and
required resources in the set of problems coming from the Vodafone dataset.

In order to have a better insight into the performance of the proposed approaches,
it has been decided to generate further artificial problems to increase the size and cov-
erage of the datasets. Indeed, one of the points of interest stemmed from the previous

2http://retis.sssup.it/~tommaso/papers/ic2e22.php
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Figure 7: Average, Worst, and Best values of the Fitness Function among the full population and the Alpha
population during training.

work was to analyze the relationship between some characteristics of the problems and
the performance of the algorithms. In order to be able to spot such relationships, if
any, it was necessary to have a way to generate problems of different sizes and possibly
with a more uniform distribution of the problem properties.

The problem generation is controlled by a set of chosen parameters, given by the
following list:

• number of VNFs;

• max number of VMs that each VNF can have;

• minimum and maximum amount of CPU that can be required by VMs;

• minimum and maximum amount of Memory that can be required by VMs;

• minimum and maximum amount of Network Bandwith that can be required by
VMs;

• pautoa f f VM’s probability of having Intra-Affinity Affinity constraint;

• pautoaa f VM’s probability of having Intra-Affinity Anti-Affinity constraint;

• pcrossa f f VM’s probability of having Inter-Affinity Affinity constraints;

• pcrossaa f VM’s probability of having Inter-Affinity Anti-Affinity constraints;

• Max number of components that can be Inter-Affine with each VNF.

For the sake of simplicity, the random operations used during the generation are
based on Uniform Probabilities.

In Figs. 11 and 10 the distribution of the resources and number of Virtual Machines
is reported for an artificially generated dataset.

26



	0
	2000
	4000
	6000
	8000

	10000

	0 	2 	4 	6 	8 	10 	12 	14 	16 	18 	20 	22 	24 	26 	28 	30 	32 	34 	36 	38 	40

O
cc
ur
en

ce
s

CPUs

CPU	distribution

	0
	1000
	2000
	3000
	4000

	0 	25 	50 	75 	100 	125 	150 	175 	200 	225 	250 	275 	300

O
cc
ur
en

ce
s

RAM

RAM	distribution

	0
	1500
	3000
	4500
	6000
	7500
	9000

	10500

	0 	1000 	2000 	3000 	4000 	5000 	6000 	7000 	8000 	9000 	10000

O
cc
ur
en

ce
s

NET

NET	distribution

Figure 8: Distribution of the Resources in the Vodafone original dataset.

7.2. Experiments

In the following, the MILP and the GA-based Heuristic were run using the same
tuned parameters used in the previous study. Precisely, the GA was run with a popula-
tion of 50, performing 5 swaps for every element of the population and running for 25
epochs.

A difference with respect to the previous work is that the MILP was run providing
the solver with a warmstart solution found with a short run of the GA-based Heuristic.
The first purpose of the warmstart solution was to obtain a reasonably tight upper bound
on the number of Hosts necessary to produce feasible solutions. This value is needed
to define the size of the H set in the optimization problem and, thus should be known
before running the solver. Without having a warmstart solution, the problem could have
been defined using an estimated worst-case value. Although this option is viable, a too-
high worst-case value would make the problem unnecessarily harder to solve, giving
the MILP approach some unfair disadvantages. The second purpose of the warmstart
solution is to help the solver get an initial feasible solution that can be used to speedup
the searches on the solution tree. Given the fact that this is just an initial solution,
the interest was not focused on getting the best solution, but just obtaining it quickly.
For this reason, the GA-based Heuristic was run with a smaller population, performing
only 2 swaps, and with a 2 epochs limit. The milp solver was also configured with an
optimality gap of 1e−6 which was required due to the presence of the soft affinity cost,
which, depending on the size of the problem, could be quite small. This fixed value
is clearly not optimal, and in the future we are planning to implement some automatic
hyperparameters tuning, but, currently, we opted for this “one size fits all” for the

27



	0

	5

	10

	15

	20

	0 	100 	200 	300 	400 	500 	600 	700 	800 	900 	1000 	1100 	1200 	1300 	1400 	1500 	1600 	1700

O
cc
ur
en
ce
s

VMs

Num	VMs	distribution

Figure 9: Distribution of the number of Virtual Machines in the Vodafone original dataset.

Vodafone problems.
The Policy-based Heuristic Genetic Optimization was run for 150 epochs, with a

population size of 1500, selecting 50 and 10 elements of the population as Alphas and
Betas, respectively. The Policy Matrix was choosen to be in N25×25×25×10×10.

The comparison with respect to the affinity is made using an Affinity Penalty index
PAFF which is computed as follows:

PAFF =
∑

i∈VAFF

(
HAFF

i − 1
)
, (20)

where VAFF is the set of VNF having Affinity relationships and HAFF
i is the number

of Hosts used to allocate the VMs involved in the Affinity relationships of VNF i. For
example, if VNFA with VMs [vma0 , vma1 ] is affine with VNFB with VMs [vmb0 , vmb1 ],
the contribute of VNFA to the Affinity Penalty is given by the number of Hosts used to
allocate [vma0 , vma1 , vmb0 , vmb1 ] minus 1.

The experiments were run on a dedicated machine having a Intel(R) Core(TM) i7-
8700 CPU @ 3.20GHz GPU and 64 GB of RAM @2666 MT/s.

7.2.1. Original Dataset
The first phase of the experimental evaluation makes use of the original dataset

provided by Vodafone. The goal was to investigate the capability of the previously
proposed solution from a different perspective that was neglected in the initial work.
Indeed, in the previous work evaluation, the focus was put only on the number of
Hosts used to perform the placement, without considering the performance in terms
of the soft affinity requirements. However, as explained in Sec. 2, soft affinity, even
if not directly affecting the cost of the infrastructure, could be worth considering in
cases where network bandwidth and computational throughput of VNFs are taken into
account. For this reason, in this work, the original dataset was used to extract also
some information regarding the algorithms’ outcome in terms of affinity. Running
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Figure 10: Distribution of the Resources in the artificially generated dataset.

again the experiments and looking at the value of the affinity penalty, shown in Fig. 12,
it’s possible to see that the previously proposed GA approach tends to be far from
optimal. Considering the way the previous GA algorithm was developed, it could have
been expected, since the probability that swapping two random VMs, could lead to a
new solution with a better affinity score (lower penalty) is likely low. For this reason,
even if the previously proposed approach was able to find a good solution in terms
of used hosts, comparable with the one returned by the MILP approach, as can be
seen in Fig. 12, the inefficiency in accommodating soft affinity requirements led to
the development of different approaches. Another observation regarding the original
dataset is the fact that only a small subset of problems had the soft affinity constraint
involved. This is the reason why in Fig. 12 many experiments are reporting no penalty.

7.2.2. Artificial Dataset
The two algorithms from the previous work and the new one have been evaluated

on artificially generated problems having many soft-affinity constraints to verify the
capability to handle such requests, together with the baseline goal of minimizing the
number of used hosts.

Initially, a set of 40 small-size problems have been generated with the following
parameters:

• Number of VNFs = 10;

• Max Number of VMs per VNF = 7;
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Figure 11: Distribution of the number of Virtual Machines in the artificially generated dataset for large-size
problems.

• CPU ∈ [0.1, 15];

• RAM ∈ [0.5, 6];

• Net ∈ [100, 1000];

• pautoa f f = 0.4;

• pautoaa f = 0.5;

• pcrossa f f = 0.12;

• pcrossaa f = 0.15;

• Max number of VNF in Cross-Affinity = 2.

This led to a dataset where among the 10 VNFs, roughly 40% of them had Auto-
Affinity and 15% had Cross-Affinity requirements.

From the results plotted in Fig. 13, we can observe that the number of Hosts is
approximately the same and matches the general trend shown on the dataset of the
previous work. As far as the deployment cost for the Network Operator is concerned,
all three algorithms are proposing nearly equivalent solutions. Also in terms of Affinity
Penalty, the artificial dataset confirms what was observed in the real dataset: the GA-
based Heuristic is performing worse than the MILP approach. Wanting to compare
with the new Policy-based Heuristic, this latter was able to find, apart from a few
cases, a better solution with respect to the Genetic Algorithm proposed in the previous
work. There are cases where the new Policy-based algorithm seems to perform worse,
but at a close inspection that was due to the fact that the placement was made on a
smaller number of Hosts. For this reason, to ease the interpretation of the results,
Fig. 14 shows the relative improvement of the Affinity Penalty between the old GA
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Figure 12: Number of hosts necessary to perform the placement and Affinity Penalty as computed by the
placement algorithms on the Vodafone dataset.

and the Policy-based one, along the problems’ dataset, and also a scatter plot, where
the relative improvement is shown together with the improvement in the number of
Hosts used for the placement. As expected, the MILP approach is the one returning the
better solutions, except that the computation time is higher. In the case of the small-
size dataset, the MILP was able to reach the end of the optimization routine, without
triggering the timeout, thus providing a solution that was guaranteed to be optimal.
Unfortunately, as we will see in the next examples, this is not always the case.

To evaluate the performance on more realistic sizes, a set of 40 mid-size problems
has been generated increasing the number of VNF to 110, and leaving the other gener-
ation parameters as in the small-size dataset.

The results in terms of needed hosts to implement the solutions and affinity penalty
are shown in Fig. 15.

It is possible to observe that for all the problems the number of hosts used is the
same and that the differences are only on the Affinity side. In this respect, the Affinity
is generally handled better by the MILP and Policy-based Heuristic. The details on the
Affinity Penalty shown in Fig. 16 are in line with what was discovered in the smaller
cases. As can be seen there, the new Policy-based Heuristic, except in a few cases,
is usually able to find a solution with better affinity. The improvement gap is also
noticeable, reaching up to about 50%.

One point that requires explanation is when the MILP approach does not perform
better than the other two approaches. Considering the properties of a MILP solver,
this should not be the case, provided that the solver is allowed to run up to complete
exploration of the solution tree. Indeed, in our case, a time limit was set up at 3500
seconds and for such problems, the solver terminated always hitting the time limit.
Wanting to consider the solving time of the proposed approaches on these mid-size
problems, the results are shown in Fig. 17. As expected, the MILP approach is the one
with the longest solving time, and in all cases, the end is given by timeout. In practice,
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Figure 13: Number of Hosts necessary to perform the placement and Affinity Penalty computed by the
placement algorithms on a small-size dataset.

this issue could limit the applicability of the MILP approach to large problems. As a
reference, the mid-size MILP problems had between 30, 000 and 50, 000 columns and
between 50, 000 and 100, 000 rows. Sometimes it is possible and it is worth waiting
hours, or days, for a good solution, sometimes this is not viable. For example, in our
industrial experience, the long solving time needed by the MILP was an issue and
was the driving force behind the development of the other two approaches. For this
reason, it does not come as a surprise if the simple GA-based Heuristic, launched with
the same hyperparameters used in the previous work, is the one reporting the lower
solving times. The new Policy-based Heuristic is in between the other two, due to the
Genetic Optimization routine used to select the Policy.

On average, the mid-size problems had about 430 VMs to place. Considering that
Vodafone problems had a few cases with more than 1000 VMs, another set of problems
was generated, focusing on a larger problem size. Precisely, a set of 100 large-size
problems has been generated with the following parameters:

• Number of VNFs = 180;

• Max Number of VMs per VNF = 7;

• CPU ∈ [0.1, 25];

• RAM ∈ [0.5, 15];

• Net ∈ [100, 5000];

• pautoa f f = 0.4;

• pautoaa f = 0.3;

• pcrossa f f = 0.12;
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Figure 14: Affinity Penalty Improvement with respect to the GA-based Heuristic for the small-size problem
dataset. On the x-axis, the values are integer, and the visible perturbations have been introduced artificially
to ease the visualization of the distribution.

• pcrossaa f = 0.15;

• Max number of VNF in Cross-Affinity = 2.

The 180 VNFs can have up to 7 VMs each and the span of CPU, RAM, and Network
requirements have been expanded up to 25 CPUs, 16 GB, and 5000 Mb/sec respec-
tively. The large-size MILP problems had between 140, 000 and 230, 000 columns,
and between 250, 000 and 420, 000 rows.

The results on this set of problems show the same trend spotted in the mid-size
problems. From Fig. 18, the number of Hosts necessary to implement the solutions
is approximately the same, whilst the Affinity Penalty shows a little advantage of the
newest Policy-based Heuristic. Clearly, this is just due to the timeout issue of the MILP.
As easily spotted from Fig. 19, the MILP was failing to return in the 3500 timeout
window. In those cases, it is not rare to find out that the returned solution is the one
provided as a warmstart. Without constraining the computation time, the MILP should
return the best solution, except for issues coming from approximation and tolerances.

In terms of Affinity Penalty improvement it is possible to notice that, even if the
Policy-based Heuristic performs better in most of the cases, the improvement margin
is not as big as it was for smaller problems. However, it’s also necessary to point out
that it was able to perform better in cases where the old GA-based Heuristic was using
more Hosts. Indeed, it is usually common to see solutions with a higher number of
Hosts reporting better affinity. This is expected since there is more freedom to move
the VMs around. This is shown in Fig.20.

8. Conclusions and Future Work

In this paper, we considered the problem of designing data-center optimization
strategies in the context of Softwarized Network Services for NFV, as arising from an
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Figure 15: Number of Hosts necessary to perform the placement and Affinity Penalty computed by the
placement algorithms on mid-size dataset.

industrial capacity planning use-case in the context of the Vodafone network operator.
We investigated three different approaches to tackle the problem: a MILP-based for-
mulation that allows for using a standard MILP solver; a heuristic solver based on a
traditional use of genetic optimization; a policy-based heuristic solver that is optimized
using a genetic algorithm. We described the 3 techniques, explaining the reasoning be-
hind their adoption, and we provided experimental comparative results among them.
The results showed that, depending on the context in terms of optimization goals and
time allowance, there is no clear winner among these 3 strategies. Solving a number of
real-world placement problems coming from the considered industrial use-case, when
the solving time is not an issue, the MILP approach is able to return the best solution
with formal optimality guarantees. However, there are cases where the size of the prob-
lem is too large, to have an optimal solution in a reasonable time. If a faster solution is
required, then heuristics are often realized, and this work reported an attempt to come
out with good heuristics empowered with Computational Intelligence methods, such as
Genetic Algorithms in different flavors. Presenting an extended set of experiments, it
was shown how these latter approaches can achieve a good trade-off between compu-
tation time and quality of the found solution. In order to overcome the difficulties in
heuristic selection and ease the adaptation capability to new problem requirements, a
Policy-based Heuristic has been proposed. The GA-based heuristic algorithm was able
to find a good placement policy to allocate the VMs in terms of used physical hosts, but
it fell short in dealing with the secondary objective of minimizing the number of broken
soft affinity constraints. The policy-based heuristic performed well in the experimental
evaluation, and it allowed us to improve the placement in terms of the preserved soft
affinity constraints within the solution, with respect to the simpler GA-based heuristic
developed in our previous work [11]. In terms of execution time, the new method col-
located itself in the middle between the MILP and the old genetic algorithm but still
was considered manageable.
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Figure 16: Affinity Penalty Improvement with respect to the GA-based Heuristic for the mid-size problem
dataset. On the x-axis, the values are integer, and the visible perturbations have been introduced artificially
to ease the visualization of the distribution.

In terms of possible future directions of research on the topic, it might be interesting
to generalize the techniques described in this paper to handle the placement strategy of
a wider multitude of resource types and structural requirements. For example, increas-
ing the details of the network structure, keeping into account link bandwidth limitations
and latencies, would extend the applicability of the proposed approach, e.g., merging
with network-aware placement approaches like [25].

Second, it might be interesting to investigate solvers making use of machine learn-
ing to improve the solving time of classical MILP problems, as done recently in [34,
35]. Third, the Policy-based approach is suitable for an extension involving learning.
Currently, the Policy is “learned” for a given problem instance, and it would be interest-
ing to see the grade of generalization that can be achieved using this approach. It could
seem reasonable to expect that similar problems, differing by scale, but keeping some
similarity in terms of components and constraint types, could be solved using a similar
placement policy. If this were the case, it would be beneficial in terms of computation
time since the algorithm could be started from a previous solution and improved on
that.
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Figure 17: Solving time for the mid-size problem dataset.
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Figure 18: Number of Hosts necessary to perform the placement and Affinity Penalty computed by the
placement algorithms on large-size dataset.
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Figure 19: Solving time for the large-size problem dataset.

-3
-2
-1
	0
	1
	2
	3
	4

	0 	20 	40 	60 	80 	100

Im
pr

ov
em

en
t	%

Experiment

Relative	Affinity	Penalty	Improvement

-3
-2
-1
	0
	1
	2
	3
	4

-3 -2 -1 	0 	1 	2 	3

Im
pr

ov
em

en
t	%

#	Hosts	Improvement

Relative	Affinity	Penalty	Improvement

Figure 20: Affinity Penalty Improvement with respect to the GA-based Heuristic for the large-size problem
dataset. On the x-axis, the values are integer, and the visible perturbations have been introduced artificially
to ease the visualization of the distribution.
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