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a b s t r a c t 

Following its introduction in 2014 and with support of a broad international community, the open-source tool- 
box Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, 
and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and 
epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and 
a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, up- 
date, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have 
now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image prepro- 
cessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of 
the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation 
warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three com- 
prehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated 
using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson’s 
disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is 
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. Introduction 

Over the past three decades deep brain stimulation (DBS) has become
 mainstream surgical procedure with the potential to directly probe
ysfunctional brain circuits and deliver adjustable stimulation for ther-
peutic effects in neurological and psychiatric diseases. To investigate
he neural substrates underlying therapeutic stimulation, it is integral
o establish a direct relationship between the brain areas stimulated by
BS and the resulting clinical response. To do so, precise electrode lo-
alizations are necessary, which require the use of dedicated and highly
pecialized software pipelines. Several platforms – both open source and
ommercial – have been introduced for electrode localization and recon-
truction in recent years ( Ahrens et al., 2005 ; Johansson et al., 2019 ;
auro et al., 2016 ; Miocinovic et al., 2007 ). The majority of these tools,
owever, are currently aimed at clinical applications in individual pa-

ients. Furthermore, knowledge of the methodological details of commer-
ial tools is limited by intellectual property constraints. Finally, numer-
us tools have lost support or have been discontinued over time. With
he introduction of Lead-DBS in 2014, an open-source platform became
vailable to the DBS community offering a semiautomated pipeline for
mage registration, electrode localization, and stimulation volume mod-
ling ( Horn and Kühn, 2015 ). Following its initial publication, devel-
pment efforts for the platform continued at multiple institutions pro-
iding important methodological updates ( Ewert et al., 2018a , 2019a ;
ellerbach et al., 2018 ; Horn et al., 2014 , 2019 ; Horn and Blanken-
urg, 2016 ; Husch et al., 2018 ; Wang et al., 2021 ). The introduction of
he Lead-Group toolbox in particular constituted a crucial addition to the
latform offering – for the first time – an integrated solution for large-
cale analyses of DBS outcomes on a group level ( Treu et al., 2020 ). The
ool not only allowed comparison of lead localizations across patients
nd research sites, but also featured rudimentary tools for statistical
nalysis. Currently, Lead-DBS constitutes the only mature open-source
olution that is actively maintained and frequently used in the literature.
he repository has received code-contributions by 39 developers from
ultiple institutions (alongside numerous contributors of data) and con-

ists of Matlab, Python, C and Fortran code components. While the main
UI is currently accessible via Matlab, a compiled standalone version is
vailable, which can be readily used with a GUI or from the command
ine, without the need for a Matlab installation. 

Since the introduction of Lead-Group , group-level analysis of DBS
utcomes have become a powerful framework to probe the local and net-
ork substrates associated with clinical outcomes, behavioral responses,
nd side-effects during DBS ( Horn and Fox, 2020a ). Recognizing its po-
ential, a large international community has emerged in recent years de-
eloping and applying a vast array of statistical methods to map clinical
egressors across DBS applications ( Al-Fatly et al., 2019 ; Dembek et al.,
019 ; Elias et al., 2020 ; Horn et al., 2017c ; Johnson et al., 2020 ; Li et al.,
020 ; Mosley et al., 2020 ; Neudorfer et al., 2021 ; Siddiqi et al., 2021 ).
he Lead-DBS toolbox has empowered > 500 peer-reviewed papers to
ate (also see https://www.lead-dbs.org/about/publications/ ) and has
een considered the most comprehensive tool for these analyses by oth-
rs ( Husch et al., 2018 ; Milchenko et al., 2018 ). Accuracy of Lead-DBS
erived electrode reconstructions was electrophysiologically validated
n recent publications from four different groups ( Al Awadhi et al., 2022 ;
owacki et al., 2018 ; Oxenford et al., 2021 ; Rappel et al., 2020 ). Fur-

hermore, the open-source nature of Lead-DBS and its broad applica-
ion across continents may foster standardization, or – to paraphrase
atorre et al. – a growing democratization and increased speed of ad-
2 
ng the various methodological choices and the amount of explained variance in
treams. Finally, based on an increasing need to standardize folder and file nam-
 groups in neuroscience, we introduce the brain imaging data structure (BIDS)
 Thus, this multi-institutional collaborative effort represents an important stage
ive, open-source pipeline for DBS imaging and connectomics. 

ances in the field ( Latorre et al., 2021 ). With inclusion of novel fea-
ures into the pipeline, a growing diversity and complexity of employed
ethods emerges, which bears the risk of jeopardizing the reproducibil-

ty of findings. Indeed, it has become increasingly challenging for users
o understand the complexities and intricacies of methods included in
he Lead-DBS pipeline, which settings to choose and which strategies
o follow. For all of the above reasons, we document here the recent
ethodological advances that have led to Lead-DBS v3.0. 

Given the growth and complexity of preprocessing and statistical
ools available in Lead-DBS ( Fig. 2 ), it is unfeasible to properly address,
ocument, and evaluate each feature introduced since version 2.0 ( Horn
t al., 2019 ) in a single publication as the present one. However, most
ovel features were already described independently in peer-reviewed
ork, and key citations are featured within the graphical user interface
f the software tool itself. Rather than providing an exhaustive empir-
cal evaluation of each single tool in Lead-DBS, the present manuscript
ocuses on describing the most salient updates ( Fig. 1 , bold font). Some
f these tools, such as Sweetspot, Fiber Filtering, and Network Mapping
xplorer could be considered software with substantial complexity that
ustify their own methodological papers (e.g. see similar work based
n simulated data for sweetspot identification ( Dembek et al., 2021a ).
ere, our aim is to provide an overview of the methods available in
ead-DBS and demonstrate their applicability in single patient- as well
s group-level analyses, to provide current and future users with an ap-
roachable resource to guide software applications. 

. Methods 

.1. Patient characteristics, imaging, and surgery 

In the present manuscript, novel features of Lead-DBS v3.0 were
emonstrated either i) in a single example patient, or ii) on a group
evel, using a previously published cohort of 51 DBS patients. The ex-
mple patient was an additional 57-year-old male with a 9-year his-
ory of Parkinson’s disease (PD), who underwent bilateral implantation
f segmented DBS leads into the subthalamic nucleus (STN). The pa-
ient had a baseline Unified-Parkinson’s Disease Rating Scale (UPDRS)
II score of 58 (Hoehn and Yahr Scale: 2; Med-OFF), which improved
arkedly in the ON medication state. Electrode implantation was per-

ormed under awake conditions and guided by microelectrode record-
ngs and stimulation testing. In the postoperative course, the patient
emonstrated a 55.2% improvement on the UPDRS-III at 12-months
ollow-up in the Med-OFF state. For group-level analysis we retrospec-
ively evaluated 51 patients (18 females, mean age: 60.0 ± 7.9 years)
uffering from treatment-refractory PD. These patients had been well
haracterized in prior retrospective studies ( Horn et al., 2017c , 2017b ,
019 ; Sobesky et al., 2021a ; Treu et al., 2020 ) and underwent bilateral
TN-DBS (model 3389, Medtronic, MN) at Charité – Universitätsmedi-
in, Berlin between March 2007 and May 2014. Consistent use of this
standard cohort ” in the present study had the aim of making results
irectly comparable to findings previously published in the literature
 Horn et al., 2017c , 2019 ; Sobesky et al., 2021a ; Treu et al., 2020 ). Pre-
nd postoperative T1-weighted (T1w) and T2-weighted (T2w) magnetic
esonance imaging (MRI) scans were obtained using a 1.5 Tesla clinical
RI scanner (NT Intera; Philips Medical Systems, Best, Netherlands). In

ix of the 51 patients postoperative computed tomography (CT) scans
ere acquired instead. A detailed overview of employed acquisition pa-

ameters can be obtained from the Supplementary Material. 

https://www.lead-dbs.org/about/publications/
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Fig. 1. Overview of the Lead-DBS v3.0 folder structure. Following the release of Lead-DBS v2.0 (gray-blue) in 2019, major changes and updates have been 
integrated into the Lead-DBS platform (orange). Modifications affected existing preprocessing pipelines for image registration and normalization, but also tools for 
lead localization, stimulation volume modeling, and statistical analysis. Circles denote the Lead-DBS folder structure with inner circles representing hierarchically 
higher folders. The size of each segment indicates the number of files contained within each respective subfolder. Color gradients represent the time course of 
updates to the file and folder structure with greater intensities denoting more recent implementation. Bold fonts denote the most important changes as implemented 
in Lead-DBS v3.0 which are addressed in the present manuscript. 
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The surgical techniques associated with STN-DBS have been reported
reviously ( Horn et al., 2017c ). In brief, targeting of STN was performed
ased on T1w and T2w sequences. The preliminary target (reflecting
he center of the most distal contact) was identified 12.5 mm lateral,
.8 mm posterior and 3.5 mm ventral to the midcommissural point
MCP). Intraoperatively, test stimulation and microelectrode recordings
ere used to guide lead placement and determine the location of op-

imal symptom improvement. Following electrode implantation, leads
ere internalized and connected to an internal pulse generator under
eneral anesthesia. 

.2. Volume registrations 

.2.1. Linear (within-patient) co-registration and nonlinear 

patient-to-template) normalization 

A detailed description of the methods used to perform co-registration
nd nonlinear normalization in Lead-DBS has been reported previously
 Horn et al., 2019 ; Horn and Kühn, 2015 ). In brief, following non-
arametric, nonuniform, intensity normalization (N4) bias field correc-
ion ( Tustison et al., 2010 ) of multimodal preoperative imaging scans,
n anchor modality (typically, the preoperative T1w sequence) was
dentified in each patient and up-sampled to isotropic 0.7 mm resolu-
ion. MRI acquisitions were then co-registered to the anchor modality
sing SPM 12 ( https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ ).
imilarly, postoperative CT scans containing the lead location infor-
ation were co-registered using Advanced Normalization Tools (ANTs;
ttp://stnava.github.io/ANTs/ ). Results were visually validated to con-
rm accurate and complete pre-processing. 

To evaluate lead placement with respect to neuroanatomical atlases
nd allow inferences on a group-level ( Treu et al., 2020 ) co-registered
atient scans were transformed into ICBM 2009b Nonlinear Asymmet-
ic (‘MNI’) space applying ANTs Symmetric Normalization (SyN) algo-
ithm ( Avants et al., 2011 ) with the ‘effective: low variance + subcor-
ical refinement’ preset. This approach has been specifically optimized
or non-linear registration of subcortical structures ( Ewert et al., 2019a ;
ogel et al., 2020 ) and constitutes the current state-of-the-art in the
eld ( Edlow et al., 2019 ; Elias et al., 2020 ; Ewert et al., 2019b ; Li et al.,
020 ). To account for potential pneumocephalus and associated non-
inear deformation of brain tissue brain shift correction was applied to
ostoperative scans ( Horn et al., 2019 ). 

.2.2. Registration refinement using WarpDrive 

While the aforementioned registration protocol has been used to cre-
te reliable DBS models capable of explaining variance in out-of-sample
ata ( Horn et al., 2017c ), automated algorithms may still yield misalign-
ent in the area of interest in some cases. Automated registration of the

asal ganglia in particular proves challenging to intensity-based regis-
ration methods owing to the lack of image contrast ( Neudorfer et al.,
022 ). This is further emphasized by the need to perform manual perfor-
ance checks in each patient – even for the best performing algorithms
to ensure consistent registration quality ( Ewert et al., 2019a ). How-

ver, while visual inspection may allow the identification and exclusion

f subpar registrations, there is a current lack of tools allowing targeted
efinement of registration in the area of interest. 

WarpDrive is a manual refinement toolbox that allows direct manip-
lation of deformation fields generated during normalization and was
pecifically created for use within Lead-DBS ( Oxenford et al., 2021 ).
he application of WarpDrive constitutes an optional step during nor-
alization and is aimed for use in cases where normalization errors are

learly visible and image quality allows unambiguous refinement. It fea-
ures a diverse set of tools, which allow identification and correction of
egistration mismatches based on point-to-point or line-to-line fiducials,
s well as a smudge tool to freely add local displacements that are ap-
lied with a Gaussian smooth kernel. Following WarpDrive-based refine-
ent, the generated transform is applied to both, electrode and contact
ositions to accurately map lead locations to MNI space. Conversely,
4 
ince the generated transform is diffeomorphic, atlas structures may be
imilarly mapped from MNI space into native space with the same ac-
uracy, hence facilitating precise subcortical segmentations. Here, we
emonstrate the applicability of the tool highlighting qualitative differ-
nces between automated registration approaches (ANTs SyN, protocol
sed in Lead-DBS v2) and combined automated and manual approaches
ANTs SyN + WarpDrive). To this end we performed registration of two
igh-resolution imaging resources, BigBrain ( Amunts et al., 2013 ) and
he 7T MRI ex-vivo human brain template ( Edlow et al., 2019 ), investi-
ating registration performance of landmarks crucial to functional neu-
osurgery, namely STN and anterior commissure. The utility of Warp-
rive in a clinical research context was further showcased in the ex-
mple patient. A quantitative evaluation of WarpDrive will be reported
lsewhere. 

.3. Reconstruction of electrode trajectories 

.3.1. Lead localization and determination of lead orientation 

Electrode localization was carried out in all patients using the ad-
anced processing pipeline of Lead-DBS v2 ( Horn et al., 2019 ). Specif-
cally, leads were first automatically pre-reconstructed using either the
aCER toolbox ( Husch et al., 2018 ) or the (refined) TRAC/CORE ap-
roach ( Horn and Kühn, 2015 ). In cases where these algorithms failed,
re-reconstruction was performed manually using the integrated point-
nd-click tool or the interface between Lead-DBS and 3D Slicer using
he fiducial-based implementation ( Fedorov et al., 2012 ). Electrode lo-
alizations were then visualized in the provided user interface and man-
ally refined. Given that the example patient featured directional leads
n additional step was required to determine the electrode orientation.
ere, version 2.0 of the Directional Orientation Detection (DiODe) algo-

ithm ( Dembek et al., 2021b ) was adapted for inclusion within Lead-DBS
hich allows fully-automated and unambiguous detections of lead ori-
ntation. Based on a postoperative CT scan this algorithm identifies the
lices that feature the strongest electrode artifacts and matches the in-
ensity profile extracted from these artifacts to the expected artifact loca-
ions of the DBS lead. Importantly, DiODe v2.0 has only been validated
or the Cartesia TM directional lead (Boston Scientific, MA, USA). How-
ver, while not phantom-validated, support for the bimodal marker of
egmented SenSight TM electrodes by the manufacturer Medtronic have
een included as well. Also, based on our experience, the algorithm
orks well for other manufacturers, e.g., the St. Jude Medical Infinity TM 

irectional leads (Abbott Laboratories, IL, USA), however, imaging con-
traints would need to be evaluated more carefully for these electrodes
wing to the smaller size of their stereotactic markers. For a detailed
escription and validation of DiODe v2 please refer to ( Dembek et al.,
021b ). 

.3.2. Estimating the stimulation volume, electric field, and pathway 

ctivations 

Computational models that estimate the electric field distribution
nd the extent of stimulated neural tissue are common steps in map-
ing the local and network effects of DBS on both patient-specific and
roup level. Recognizing the need for flexible implementation strategies,
ead-DBS v3.0 features different approaches to approximate the electric
otential and current distribution of electric fields within neural tissue.
n general, excitability metrics have been either based on the electric
eld ( E-field ) ( Åström et al., 2015 ; Baniasadi et al., 2020 ; Horn et al.,
019 ) or computational axon models ( Butenko et al., 2020 ; Butson and
cIntyre, 2005 ; Gunalan et al., 2017 ; McIntyre et al., 2002 ). Owing

o its computational efficiency and ease of implementation, E-fields are
roadly used in neuromodulation research and were applied here to
nvestigate both local and network effects of DBS on a group level.
ased on these, binary stimulation volumes were additionally calculated

n native space using an adaptation of the SimBio/FieldTrip pipeline
 Vorwerk et al., 2018 ) as introduced in Lead-DBS v2 and refined for ro-
ustness and precision. Briefly, using the finite element method (FEM),

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://stnava.github.io/ANTs/
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he static formulation of the Laplace equation was solved in a discretized
omain represented by a tetrahedral four-compartment mesh constitut-
ng gray matter, white matter, metal, and insulating electrode parts (in
ative patient space). Following the approach by Åström et al., a heuris-
ic value of 0.2 V/mm was used to threshold E-Field magnitude values
nto a binary stimulation volume (VTA) ( Åström et al., 2015 ; Horn et al.,
017c ; Vasques et al., 2009 ). In addition, voxel values were represented
s (unthresholded) E-field magnitudes in the E-field approach. Finally,
timulation volumes were transformed into MNI space using the same
efined deformation fields described earlier. 

A more elaborate concept to model the biophysical effects of DBS
s the one of pathway or tract activation models that take into account
nderlying white matter anatomy to estimate electric effects of DBS di-
ectly on the prevalent tracts ( Gunalan et al., 2017 ; Howell et al., 2019 ).
nstead of quantifying a stimulation volume surrounding the electrodes,
his concept places axonal cable models alongside anatomical tracts and
stimates whether the electric current imposed by the electrode would
nduce action potentials. Recently, this concept has entered the open-
ource domain in form of the OSS-DBS toolbox which facilitates a re-
roducible, time-efficient, and automated estimation of pathway/tract
ctivation models ( Butenko et al., 2020 ). The development of a bidi-
ectional interface between Lead-DBS and OSS-DBS platforms, as intro-
uced in the present manuscript, extends the capability and functional-
ty of both tools by allowing a seamless transition between platforms.
ere, we demonstrate the capabilities of this integrated platform in a
ohort of 51 PD patients and further showcase the relationship between
timulation amplitude and extent of activation in a single example case.
etails about the applied field and pathway activation modeling are de-

cribed in ( Butenko et al., 2020 ). 

.4. Connectivity analysis 

While Lead-DBS was originally developed to facilitate the localiza-
ion and reconstruction of DBS electrodes ( Horn and Kühn, 2015 ), sig-
ificant effort in recent years has been directed towards establishing
 reliable and efficient pipeline for group-level neuroimaging analysis.
 key development in this process was Lead Group ( Treu et al., 2020 ),
 toolbox implemented within Lead-DBS which allows visualization of
lectrodes and calculation of stimulation volumes within and across pa-
ient cohorts, as well as rudimentary statistical analyses on a local and
etwork level. As the field of neuroimaging-based DBS research con-
inues to grow, however, novel and increasingly sophisticated methods
ave been developed to make assumptions about the neuroanatomical
nd network substrates underlying electrical stimulation. These meth-
ds can be generally subdivided into three domains – local mapping ap-
roaches, tract level analyses, and network level analyses – each incor-
orating their own, unique pipelines based on a common denominator,
he stimulation volume. To accommodate the richness and diversity of
tatistical methods that have been introduced within each domain, three
istinct toolboxes were implemented in Lead-DBS v3.0, each exhibiting
 graphical user interface tailored towards accurate and reproducible
nalysis of group-level data. First, the Sweetspot Explorer has been devel-
ped to map local hot- and coldspots to anatomy within and around the
BS target region. Second, the Fiber Filtering Explorer can be used to iden-

ify tracts associated with observed changes in clinical (or behavioral)
utcome. These tracts can be derived from a structural connectome or
athway model. Third, the Network Mapping Explorer can be used to as-
ociate observed effects with distributed functional or structural brain
etworks. A classical use-case for all three tools is to map clinical im-
rovement to a local, tract- or network-level. However, virtually any
ffect (e.g., pre- vs. postoperative changes in behavioral variables or
ymptoms such as risk-taking/impulsivity, changes in a behavioral task
omparing ON vs. OFF stimulation, long-term effects such as cognitive
ecline) may in principle be mapped using these tools. All toolboxes fea-
ure a common workflow in the graphical user interface (or command
5 
ine) that can be divided into i) Model Setup , ii) Visualization & Thresh-

lding , and iii) Crossvalidation & Prediction : 
During Model Setup the methods and parameters to generate the com-

utational model are defined. This process incorporates decisions about
ohort and subcohort selection, type and extent of stimulation volume,
election of the dependent variable and potential covariates, statistical
ests, and – in the case of connectivity analyses – selection of the con-
ectome to be used for seeding. The generated model can be visualized
nd further adjusted during Visualization & Thresholding. Specifically,
his step allows thresholding of the generated maps based on a pre-
efined significance level and correction for multiple comparison. For
ore advanced post-hoc analyses, Lead-DBS v3.0 offers the option to

xport the generated maps in the NIfTI file format, and additionally as
eighted streamlines in the Fiber Filtering Explorer. Crossvalidation & Pre-

iction constitutes the final step in each of the three tools. This step is
rucial in the workflow as it establishes the validity of generated models
ithin and generalizability across cohorts. Validation strategies include
ermutation-based (Leave-Nothing-Out) approaches, as well as Leave-
ne-Patient-Out, Leave-One-Cohort-Out, and k-fold (randomized) cross-
alidations. In addition, it is possible to customize this process and
enerate predictions for individual patients, as well as predefined (sub-
cohorts and sets. The present study demonstrates the individual frame-
orks in the context of retrospective analysis of the n = 51 patient co-
ort introduced earlier using Leave-One-Patient-Out and 10-fold cross-
alidation as measures for model validity. 

.4.1. Sweetspot Explorer 

To identify local clusters associated with clinical change Lead-DBS
3.0 has harmonized the fundamental methodological choices of mul-
iple prior publications ( Butson et al., 2011 ; Dembek et al., 2019 ;
isenstein et al., 2014 ; Elias et al., 2020 ; Horn et al., 2021 ; Reich et al.,
019 ) within one single tool. These prior publications used different
oncepts, such as t-tests vs. Wilcoxon signed rank tests, N-maps, thresh-
lding, and alternate choices of a null model, yielding an extensive pa-
ameter space of potential settings. These parameters can be freely ad-
usted and explored by the user allowing easy implementation of novel
oncepts, however, to facilitate navigation of methodological choices,
he Sweetspot Explorer features a “inspired by…” dropdown menu that
re-selects choices as they had been made in aforementioned publica-
ions. It is important to note, however, that not all provided presets
onstitute exact reproductions of the analysis pipelines originally used
y these groups, but rather reflect the general methodological choices
nd statistics employed in the different publications. For example, But-
on et al. employed a different approach to derive stimulation volumes
 Butson et al., 2011 ), whereas Eisenstein et al. did not rely on cal-
ulating binary stimulation volumes, at all ( Eisenstein et al., 2014 ).
imilarly, several groups performed additional post-hoc analyses, such
s cluster thresholding ( Reich et al., 2019 ) or permutation statistics
 Dembek et al., 2019 ; Eisenstein et al., 2014 ), which have not been im-
lemented in the tool. A warning dialog notifies the user of these crucial
ifferences and we chose to call the presets “inspired by…” to emphasize
hat exact reproductions of all methods into a single tool are not possi-
le. All but the approach by Horn et al., 2022 , are based on binarized
timulation volumes. Hence, patient-specific E-field vector magnitudes
ere first thresholded at 0.2 V/mm and weighted by their corresponding

elative motor improvement from baseline as assessed using UPDRS-III.
o this end, each voxel within a patient’s stimulation volume was as-
igned the relative improvement score reported in this patient. These
alues were then aggregated across patients in a voxel-wise manner and
depending on the employed method – normalized based on stimula-

ion volume ( Elias et al., 2020 ) or amplitude ( Dembek et al., 2019 ).
he group mean was then computed by averaging the sum of clinically
eighted volumes overlapping a given voxel. In addition to these (bi-
arized) stimulation volume based models, the Sweetspot Explorer also
ncorporates an E-field based approach which has been introduced re-
ently ( Horn et al., 2021 ). This preset calculates the Spearman corre-
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ation coefficient between E-field magnitudes and clinical outcome in
 voxel-wise manner across cohorts. While some approaches used high
hresholds for the raw average improvement maps to control for outlier
oxels ( Butson et al., 2011 ) other approaches relied on the generation of
 -maps. N -maps provide voxel-wise insight into the number of stimula-
ion volumes overlapping each voxel and may be thresholded to penalize
reas encompassed only by a minority of stimulation volumes and re-
ove outlier voxels. In the present study these n -maps were thresholded

mpirically at 30%. Finally, voxel-wise statistics were performed using
ne-sample t -test ( Eisenstein et al., 2014 ), two-sample t -test ( Reich et al.,
019 ), or Wilcoxon-signed rank test ( Dembek et al., 2019 ; Elias et al.,
020 ) to calculate a p -map. This p -map was then used to mask the
 -masked average improvement map. Finally, identified clusters were
alidated using Leave-One-Patient-Out and 10-fold cross-validation. A
omplete description of the presets used to compute hotspots within the
weetspot Explorer is outlined in Supplementary Table 1. In-fold predic-
ions can be obtained from Supplementary Table 2. 

.4.2. Fiber Filtering Explorer 

Note that the terms ‘streamlines’ and ‘fibers’ are used interchange-
bly in the present manuscript. Code and concepts to identify and iso-
ate streamlines associated with clinical outcome during DBS have been
mplemented in prior versions of Lead-DBS ( Baldermann et al., 2019 ).
owever, several methodological advancements have been made subse-
uently, prompting the development of a proper tool for flexible analy-
es, the Fiber Filtering Explorer. Specifically, the tool incorporates the two
ey analysis strategies pioneered by our group, as well as a novel inte-
ration with OSS-DBS for pathway activation modeling ( Butenko et al.,
020 ). The first strategy relies on a combination of binary stimula-
ion volumes and two-sample t-tests to derive streamlines associated
ith clinical outcome ( Baldermann et al., 2019 ). Here, each individual

treamline is iteratively assigned a weight in mass-univariate fashion
ased on a two-sample t -test that compares clinical outcomes between
atients’ stimulation volumes that either traverse or do not traverse the
espective streamline. In other words, for each single streamline, this
ethod divides the investigated cohort into two groups whose underly-

ng stimulation volumes either ‘activate’ it or not. The second strategy
nvolves a combination of (non-binary) E-fields and correlation coeffi-
ients ( Irmen et al., 2020 ). Similar to the first strategy, this approach
terates across streamlines in a mass-univariate manner. However, the
eight assigned to each streamline is determined by the correlation

oefficient calculated between E-field vector magnitudes (‘fiber activa-
ion’) and clinical improvements across patients. The third strategy is
omparable to the first and applies the same two-sample t -test strategy.
owever, instead of splitting the cohort based on intersections between

ract and patient-specific stimulation volumes, binary tract activations
re assessed using the double-cable axon model (( Butenko et al., 2020 ;
utson and McIntyre, 2005 ; Gunalan et al., 2017 ; McIntyre et al., 2002 )
oupled with the extracellular electric field within OSS-DBS. Stream-
ines are then weighted by again comparing clinical outcome across ac-
ivated vs. not activated streamlines. Finally, Lead-DBS also features an
ption to visualize activated streamlines without conducting statistical
ests for both VTA-based and OSS-DBS based approaches. This option
an be helpful to visually compare tracts activated e.g., in the top- vs.
ottom-responding patients within a cohort. 

Using the retrospective patient cohort, the present manuscript
emonstrates and compares different methodological approaches com-
rised within the Fiber Filtering Explorer. Specifically, we employed the
BS tractography atlas by Middlebrooks et al. ( Middlebrooks et al.,
020 ) to seed streamlines associated with PD symptom change from
TAs and E-fields, respectively. The three methods described above
ere then applied. 

To identify sensible models of structural connectivity, different com-
inations of the parameters contained within the Fiber Filtering Explorer

ere iteratively applied across the parameter space using results of a 10-
old cross-validation as an objective function (for a full description of pa-
6 
ameters please refer to Supplementary Table 2). For example, for a pre-
efined set of n-thresholds (‘Tracts connected to > X % of VTAs’) R-values
ased on 10-fold cross validation were derived by iterating through the
ull parameter space (i.e., all other parameter choices) while keeping
he threshold fixed. This process yielded a distribution of R-values asso-
iated with each defined parameter and – when plotted against the re-
aining set of parameters – would allow assumptions regarding the con-

ribution of a specific parameter to the overall performance of a model.
he best performing models (defined based on the highest correlation
trength using 10-fold cross-validation) were visualized and compared
cross analysis streams. 

.4.3. Network Mapping Explorer 

While localized hotspots and tracts associated with optimal improve-
ent are meaningful conceptual surrogates to improve DBS target-

ng and programming, a different question is which whole-brain net-
ork should optimally be modulated. Derivation of these estimates in-
olves projections to the cortical surface and calculation of cortico-
ubcortical connectivity strength by means of voxel-wise correlation.
he resulting maps have the potential to inform noninvasive neuromod-
lation strategies ( Fox et al., 2014 ; Weigand et al., 2018 ) and lead to
 better understanding of diseases and therapeutic strategies ( Horn and
ox, 2020a ). The DBS network mapping framework was established in
017 ( Horn et al., 2017c ) and further developed into a dedicated ex-
lorer tool in the latest version of Lead-DBS to facilitate group-level
nalyses of functional connectivity. 

By seeding from calculated stimulation volumes within a func-
ional connectome (derived from resting-state functional MRI (rs-fMRI)
ata either in the individual patient or in a reference cohort of sub-
ects/patients), estimates of polysynaptic network connectivity across
he brain may be derived using the Network Mapping Explorer . The tool
nternally calls Lead Connectome Mapper ( Horn et al., 2019 ) and has
een updated to accommodate the methodological advancements of re-
ently published work ( Ganos et al., 2022 ; Li et al., 2021 ; Sobesky et al.,
021a ). Furthermore, the Network Mapping Explorer allows to effectively
enerate, explore, and statistically validate network models in a sin-
le graphical user interface. Normative functional connectivity maps
fingerprints) seeded from patient-specific stimulation volumes were
stimated with the aim of computing an R-map associated with opti-
al outcome in our retrospective patient cohort. For this purpose, a
ormative, high-resolution rs-fMRI connectome derived from the Brain
enomics Superstruct Project ( Yeo et al., 2011 ) was used to seed av-
rage blood-oxygen level dependent (BOLD) signal fluctuations com-
rised within patient-specific bilateral stimulation volumes from a to-
al of 1000 healthy subjects. The strength of correlation between the
eeded time series and every other voxel outside the stimulation vol-
me was then calculated, averaged across the normative sample, and
isher z-transformed to derive a normalized connectivity fingerprint for
ach patient. The resulting fingerprint maps were then correlated with
linical outcome in a voxel-wise manner across the cohort to derive an
-map model associated with optimal connectivity. To this end, sev-
ral established and robust correlation coefficients were investigated,
amely Pearson, Spearman, and Percentage Bend correlation. Model
erformance was evaluated using Leave-One-Patient-Out and 10-fold
ross-validation on unthresholded, p-thresholded ( 𝛼= 0.05), and false
iscovery rate (FDR) corrected ( q < 0.05) R-maps. Of note, while not
emonstrated here, the Network Mapping Explorer also allows analysis of
WI-derived connectivity maps and their correlation with clinical out-
ome in the context of whole-brain connectivity analysis. This adjust-
ent can be easily made by choosing the respective DWI dataset during

onnectome selection. However, use cases for structural connectivity
nalysis with Network Mapping Explorer maximally overlap with the
iber Filtering Explorer. The former would calculate voxel-wise statis-
ics, the latter tract-wise statistics, which could be statistically advanta-
eous (since the same tract can be modulated in different regions). 
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.5. A novel storage format conforming to the brain imaging data structure 

BIDS) standard 

In the past decade DBS research has evolved radically with studies
cquiring rich and complex data ranging from electrode types, stim-
lation parameters, patient demographics, and outcome measures to
ultidimensional electrophysiology, imaging, and behavioral datasets.
his source data typically serves as the starting point for a multitude
f image-processing pipelines that yield highly specific and heteroge-
eous files and data formats. Although the number of DBS studies us-
ng multimodal datasets has drastically increased over the past years
here has been no consensus on how to organize and share this data.
urrently, DBS data are stored in many different structures, with labs
dopting their own methods for data and metadata organization. An
xtension to the brain imaging data structure (BIDS) standard for iEEG
ata has been proposed ( Holdgraf et al., 2019 ), but primarily focuses on
lectrophysiological data. The growth of Lead-DBS and the continuous
mplementation of methods developed by external contributors and our
wn group alike has yielded complex folder structures that have been
teratively advanced and extended, albeit at the cost of comprehensibil-
ty. This imposes a substantial barrier to data sharing, reproducibility,
nd efficiency in a highly collaborative field that frequently relies on
ata exchange across centers to confirm, validate, and generalize find-
ngs ( Li et al., 2020 ). Overall, there is a clear need in the community
or a standard to better describe DBS imaging data and its experimental
ontext. 

In 2016, Gorgolewski et al. introduced BIDS as a standard for
rganizing and describing neuroscience data and metadata with the
im to make datasets more reproducible, transparent, and reusable
 Gorgolewski et al., 2016 ). BIDS features a standardized specification
or folder and file naming, the choice of data formats, and the repre-
entation of metadata. Importantly, it is modality-agnostic, offering the
pportunity for community-driven extension to new modalities. As a re-
ult, BIDS has been successfully extended to fields outside the original
pecification (written for MRI) including EEG ( Pernet et al., 2019 ), MEG
 Nisoet al., 2018 ), and intracranial EEG ( Holdgraf et al., 2019 ). This pa-
er introduces the extension of the BIDS specification for Lead-DBS with
he goal of modularizing single-subject and group-level data imported
nd generated within Lead-DBS. Specifically, while Lead-DBS has been
apable of importing BIDS datasets for a while, the present addition
ncludes storage of a BIDS derivatives format of output files created by
ead-DBS, necessitating a much more thorough rewrite of the code-base
295.4k code line additions and 59.4k deletions). 

.6. Methods summary 

Fig. 1 features a comprehensive overview of novel tools, that have
een implemented in Lead-DBS v3.0. Walkthrough tutorials demon-
trating the capabilities of the herein presented modifications, in-
luding preprocessing, lead localization, statistical analysis, as well
s transition to the BIDS format are available at https://www.lead-
bs.org/helpsupport/knowledge-base/walkthrough-videos/ . 

. Results 

.1. Clinical improvement 

The cohort of 51 PD patients featured a marked alleviation of parkin-
onian symptoms following DBS with a 45.3 ± 23.0% improvement on
he UPDRS III motor scale and a consecutive 52.8% reduction in lev-
dopa equivalent daily dosage (LEDD). For a detailed description of pa-
ient outcomes please refer to Horn et al. ( Horn et al., 2017c , 2019).
 similar response in clinical outcome was observed in the 57-year-old
xample patient who demonstrated a 55.2% UPDRS III improvement
2-months following surgery. 
7 
.2. WarpDrive 

While normalization algorithms have advanced in recent years
emonstrating accuracies comparable to manual expert segmentation
 Ewert et al., 2019b ; Vogel et al., 2020 ) their overall performance may
ary across subjects, brain regions, imaging modalities, and template
paces. This is demonstrated in example cases in Fig. 2 A-D, where au-
omatic registration of high-resolution templates yielded distinct mis-
atches at the level of the mesencephalon and the anterior commis-

ure, respectively. Similarly, the low contrast-to-noise ratio within the
asal ganglia may impede accurate registration in clinical research set-
ings, resulting in a blurry amalgamation of anatomical structures that
ack precision and anatomical detail ( Fig. 2 E-F). Importantly, poor reg-
stration accuracy as a result of poor imaging contrast directly trans-
ates into lead localization errors and biased models of DBS response
 Neudorfer et al., 2022 ). WarpDrive allows users to account for the in-
ccuracies introduced by the normalization algorithm in the region of
nterest ( Fig. 2 , right column) reaching expert-level registration accu-
acy by means of fiducial-based manual refinement of the deformation
eld ( Sharp et al., 2010 ). While future studies are needed to quantify dif-

erences in registration accuracy and determine the amount of variance
xplained in clinical outcome across normalization strategies, Warp-
rive has the potential to pave the way towards clinical applications
f registration-dependent methodologies. Specifically, accurate trans-
ormation of atlas resources, high-resolution templates, hotspots, and
onnectivity derived targets into patient-space may be crucial in com-
lementing clinical decision making and informing DBS programming as
ell as surgical targeting ( Oxenford et al., 2021 ). Furthermore, the ad-

usted deformation transform allows for a more refined group-level anal-
sis in normalized (e.g., MNI) space. A demo application of WarpDrive
emonstrating the refinement of patient-to-atlas fit in a surgical case is
rovided at https://www.youtube.com/watch?v = VcBXu5BURVI . 

.3. Sweetspot Explorer 

To identify areas associated with greatest clinical improvement and
etermine the neuroanatomical substrates subserving outcome in PD
ymptom severity we employed and evaluated six different mapping
trategies as previously described ( Butson et al., 2011 ; Dembek et al.,
019 ; Eisenstein et al., 2014 ; Elias et al., 2020 ; Horn et al., 2022 ;
eich et al., 2019 ). Inspection of these maps revealed clusters within

he diencephalon encompassing the motor aspect of STN, extending
osteriorly into zona incerta (ZI) and inferiorly into associative STN
 Fig. 3 ). Clusters featured a mean volume of 95.1 ± 19.0 mm 

3 (range:
6.4 – 102.9 mm 

3 ). The peak intensities of each respective cluster con-
istently broadly converged onto the sensorimotor aspect of STN, with
pproaches by Butson, Elias, Dembek, and Horn each localizing to the
orsoposterolateral aspect of STN ( Fig. 3 ). More dorsal intensity peaks
ere identified by the Eisenstein method, whereas the approach by Re-

ch yielded peak intensities at the border between sensorimotor and
ssociative STN. The centers of gravity of all investigated approaches
ormed a distinct cluster within the sensorimotor aspect of STN in close
roximity to the center of gravity of the subdivision (average Euclidean
istance: 1.61 ± 0.2 mm) and an optimal PD target as meta-analytically
efined by Caire et al. ( Caire et al., 2013 ) (converted to MNI space in
 Horn et al., 2017a ); average Euclidean distance: 1.27 ± 0.22 mm). Val-
dation of robustness by means of Leave-One-Patient-Out and 10-fold
ross-validation revealed significant correlations for all investigated ap-
roaches with the approaches by Elias et al. and Butson et al. explain-
ng the highest amount of variance in Leave-One-Patient-Out ( R = 0.48,
 < 1.0e-16) and 10-fold cross-validation ( R = 0.46, p < 1.0e-16) designs,
espectively. These results, however, were similar and not significantly
ifferent to other methods, e.g., the only E-field-based approach (Leave-
ne-Patient-Out: R = 0.36, p = 0.001; 10-fold cross-validation: R = 0.36,
 = 0.001). A detailed overview of out-of-sample validations across ap-
roaches can be obtained from Fig. 3 . 

https://www.lead-dbs.org/helpsupport/knowledge-base/walkthrough-videos/
https://www.youtube.com/watch?v=VcBXu5BURVI
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Fig. 2. Comparison of registration accuracy between fully automated non-linear registration (ANTs Syn) and registration employing additional manual 

refinement using WarpDrive in research and clinical use-case scenarios. (A-D) Research scenario demonstrating high-resolution imaging resources ( Amunts et al., 
2013 ; Edlow et al., 2019 ) featured on coronal (A-B) and sagittal sections (C-D) were transformed into MNI space using a state-of-the art non-linear registration 
pipeline (ANTs SyN) (left column) and manually refined using WarpDrive (right column). Red outlines feature atlas structures in MNI space ( Ewert et al., 2018b ; 
Neudorfer et al., 2020 ). Note the mismatch between outlines and underlying anatomical structures during automated registration that can be accounted for by 
means of manual refinement of deformation fields using WarpDrive. (E-H) Clinical research scenario demonstrating the effect of WarpDrive-based refinement on lead 
localization. (E-F) Atlas structures (red outlines) overlaid on axial T2w MRI scans before (left) and after (right) refinement with WarpDrive. (G-H) 3D representation 
of reconstructed leads overlaid on the DISTAL atlas in a sample PD patient. 

8 
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Fig. 3. Hotspot maps of areas associated with clinical improvement in the retrospective patient cohort ( n = 51 patients). Stimulation maps were calculated 
using methodological approaches previously published in the literature (columns) and implemented into the Sweetspot Explorer . Note that the presets within this 
tool do not constitute exact reproductions of the original analysis pipelines but are merely ‘inspired’ by the methods reported in the published manuscripts. The 
sweetspot score constitutes the score calculated by overlapping left-out VTA(s) with the sweetspot generated from the remaining stimulation volumes and averaging 
the sweetspot values (i.e., voxel-wise improvement scores or R-values) encompassed by the left-out VTA(s). Maps are projected on axial (top row) and coronal (second 
row) slices of a 100 μm resolution 7T brain ( Edlow et al., 2019 ) in Montreal Neurological Institute (MNI) space and aligned at the centers of gravity (crosshairs) of 
the identified clusters. Color changes denote voxel-wise changes in average clinical outcome and – in the case of the approach by Horn et al. – correlation strengths 
between E-field magnitude and motor improvement (right column). Peak intensities representing greatest clinical improvement associated with each approach are 
featured in the center row. Spearman-Correlation coefficients as calculated using Leave-One-Patient-Out (LOOCV) and 10-fold (10xCV) cross-validation are provided 
in the bottom panels. 
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.4. Fiber Filtering Explorer 

The Fiber Filtering Explorer complements the sweetspot analysis by
dentifying streamlines associated with changes in clinical outcome. In
ontrast to the sweetspot analysis, which was informed empirically by
reviously published approaches ( Butson et al., 2011 ; Dembek et al.,
019 ; Eisenstein et al., 2014 ; Elias et al., 2020 ; Horn et al., 2021 ;
eich et al., 2019 ), a data-driven approach was employed to derive
uitable preset choices for fiber filtering. Specifically, the parameter
pace of this methodological framework was probed by iteratively ad-
usting each tunable parameter without any a-priori assumptions. This
pproach yielded 2552 models returning predictions, that were val-
dated using 10-fold cross-validation to identify variables that drove
odel performance and determine the best performing models across

nalysis streams. 
Fig. 4 features the distribution of correlation coefficients associated

ith 10-fold cross-validation of probed fiber filtering models. By fix-
ng the variables underlying a specific tuning parameter, variables driv-
ng model performance could be identified. For example, retention of
 50% of streamlines consistently yielded better performing models
cross analysis streams. In contrast, transformation of arbitrary stream-
ine value distributions to normal distributions by means of Fisher Z
9 
r van Albada transformation yielded less consistent models as com-
ared to no normalization. This was highlighted in particular in the VTA
nd pathway activation model approaches, where normalization yielded
imodal distributions. The Fiber Filtering Explorer allows the omission
f streamlines that were only encompassed by a minority of stimula-
ion volumes. Adjustment of this threshold in the range between 10%
nd 50% yielded overall similar distributions in the E-field and path-
ay activation model approach suggesting an overall minor effect of
-thresholding on model performance. For the E-field approach, a trend
owards improved model performance was observed when using Pear-
on correlation, followed by Percentage Bend and Spearman correlation.

In a final step, we sought to compare the best performing models de-
ived from each of the three data-driven analysis streams. Identified top
erforming models were able to explain at least 12% of the observed
ariance ( R = 0.30, p = 0.011) during Leave-one-out cross-validation
nd at least 20% of the observed variance ( R = 0.33, p = 0.008) dur-
ng 10-fold cross-validation, respectively ( Fig. 4 , correlation plots). A
etailed description of the settings used for model setup, visualization,
hresholding, and prediction can be obtained from Supplementary Table
. Investigation of discriminative tracts revealed overlapping connectiv-
ty patterns across models associating streamlines within the hyperdirect
athway with optimal clinical improvements along the motor UPDRS III
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Fig. 4. Model performance probing the parameter space of the Fiber Filtering Explorer. A data-driven approach was employed to derive distributions of model 
performance using the correlation coefficient derived from 10-fold cross-validation as target. For each analysis stream, the parameter space was probed by iteratively 
changing the presets contained within the Fiber Filtering Explorer ; for each analysis stream the distribution of R-values is featured fixing the variables underlying a 
specific tuning parameter. For each analysis stream (volume of tissue activated vs. E-Field vs pathway activation model) the top performing model was selected and 
visualized. Note the overall agreement of identified discriminative streamlines despite methodologically different approaches and presets. Correlation plots feature 
the model performance based on Leave-One-Patient-Out and 10-fold cross-validation. A detailed description of the settings used for model setup, visualization, 
thresholding, and prediction can be obtained from Supplementary Table 3. 
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cale. Similarly, models identified the ansa subthalamica as well as cere-
ellar streamlines that were likely engaged by encroachment of stim-
lation volumes onto the cerebellothalamic tract within the posterior
ubthalamic area (PSA). These streamlines were particularly prominent
n the pathway activation model ( Fig. 4 C). Finally, both the E-field ap-
roach and the pathway activation model sparsely identified streamlines
onnecting STN to prefrontal and temporal cortex, suggesting involve-
ent of non-motor regions with optimal clinical outcome. 

Taken together, results across fiber filtering analysis streams were
verall consistent, revealing comparable models with similar structural
onnectivity despite employment of different tuning parameters for
odel generation. Furthermore, we identified a trend of more complex
odels (OSS-DBS based pathway activation models) yielding slightly
ore predictive models. Finally, our findings suggest that specific vari-

ble presets (see Supplementary Table 3) may be associated with im-
roved and more consistent model performance. These have now been
ncluded as default parameter settings within Lead-DBS v3.0. 

.5. Pathway activation modeling in individual patients 

As OSS-DBS is optimized for pathway activation modeling, its inte-
ration within Lead-DBS generates an efficient workflow for the calcula-
ion, visualization, and analysis of fibers activated during DBS. Beyond
he aforementioned group-level analysis, this was further demonstrated
n an example patient where the dose-response relationship between
10 
timulation amplitude and extent of pathway activation was modeled
ollowing electrode localization and reconstruction in Lead-DBS ( Fig. 5 ).
timulation particularly emphasized the hyperdirect pathway motor
bers, that featured strong activation at low amplitudes that quickly sat-
rated as stimulation currents were increased ( Figs. 5 A-B). Surrounding
racts demonstrated a sigmoidal activation profile that typically reached
ts maximum activation at amplitudes > 4 mA ( Fig. 5 C) emphasizing the
ncreased potential for adverse side effects that are commonly observed
nder these stimulation conditions (Dayal et al., 2017). 

.6. Network Mapping Explorer 

To derive estimates of polysynaptic functional network connectiv-
ty across the brain we leveraged the parameter space of the Network

apping Explorer ( Fig. 6 ). A detailed description of the settings used for
odel setup, visualization, thresholding, and prediction can be obtained

rom Supplementary Table 5. In-fold predictions for the best performing
odel based on 10-fold cross-validation are featured in Supplementary
able 6. Of note, the Network Mapping Explorer features the overall low-
st user degrees of freedom across mapping tools. One reason for this
ay be that the field of rs-fMRI has already converged on many commu-
ity standards such as the preprocessing pipelines ( Esteban et al., 2019 ),
r the choice of how to calculate functional connectivity from time se-
ies (typically Pearson correlation instead of alternative metrics such
s mutual information or spectral coherence). Out-of-sample validation
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Fig. 5. Pathway activation modeling in an example patient undergoing STN-DBS. (A) Dose-response curves featuring the relationship between stimulation 
current and extent of pathway activation as modeled using OSS-DBS. Note the sigmoidal activation profiles that quickly saturate in the motor hyperdirect pathway 
(HDP). (B-C) 3D visualization of pathway activations during stimulation at contact 1 with current amplitudes of 1.0 mA (B) and 5.0 mA (C), respectively. Streamlines 
were derived from the DBS tractography atlas by Middlebrooks et al. ( Middlebrooks et al., 2020 ). 
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Fig. 6. Investigation of the parameter space underlying the Network Mapping Explorer. R-map models were generated using different correlation coefficients 
and thresholds (unthresholded, p-thresholded ( 𝛼= 0.05), false discovery rate (FDR) corrected ( q < 0.05)) and validated using Leave-One-Patient-Out (top row) and 
10-fold cross-validation (bottom row) designs. Functional connectivity associated with optimal outcome emphasized premotor (PMA) and supplementary motor area 
(SMA), anterior cingulate cortex, medial prefrontal cortex (mPFC), thalamus, and cerebellum. The best performing R-map models for uncorrected (left column) and 
FDR-corrected (right column) models are visualized. Overall, models employing FDR correction yielded the best out-of-sample estimations. 
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dentified significant network predictors of clinical outcome across all
nvestigated models with FDR corrected models yielding the highest pre-
ictive power in Leave-One-Patient-Out (R Bend = 0.46, p < 1.0e-16) and
0-fold cross-validation (R Pearson = 0.34, p = 0.005) designs. 

Identified functional connectivity profiles were consistent across
ethodologically different approaches featuring activity patterns com-
arable to previously published literature ( Horn et al., 2017c ;
obesky et al., 2021a ). Specifically, models identified a positive cor-
elation of clinical outcome with connectivity to premotor (PMA) and
upplementary motor area (SMA), anterior cingulate cortex, medial pre-
rontal cortex (mPFC), thalamus, and cerebellum. In contrast, connec-
ivity to M1 correlated negatively with clinical outcome. In contrast,
onnectivity to M1 correlated negatively with clinical outcome. The ob-
erved anticorrelation may be attributed to reduced positive connectiv-
ty to M1, i.e., clinical outcome improved more strongly in patients in
hich DBS electrode connectivity to M1 was less positive. Alternatively,
ositive outcome may be associated with stronger negative connectivity.
o disambiguate between the two scenarios, we plotted voxel-wise cor-
elations of connectivity to stimulation volumes with clinical improve-
ent (Supplementary Figure 1). Correlation plots revealed that reduced

onnectivity in M1 was associated with improvement in clinical out-
ome (Supplementary Figure 1). This has been demonstrated in numer-
us prior studies ( Boutet et al., 2021b ; Fox et al., 2014 ; Horn et al.,
019b , 2017d; Sobesky et al., 2021b). 

.7. Towards integration of the brain imaging data structure (BIDS) 

Aiming to standardize folder and file naming conventions and en-
ance user accessibility, Lead-DBS was modified to (i) read in BIDS for-
ated input data (raw data) and (ii) write out data as a BIDS derivative
12 
n a format inspired by existing BIDS standards. Especially the latter
art constituted a major effort (800 commits, 770 changed files with
95.4k additions and 59.4k deletions) within our group, which led to a
edesigned folder structure including a graphical-user-interface to con-
ert DICOM data into BIDS-conform raw data. Fig. 7 features a com-
arison between the original data structure implemented in previous
ersions of Lead-DBS and the updated format conforming to the BIDS
tandard. Of note, while the raw data folder follows the published BIDS
tandard, the derivatives folder of Lead-DBS has been adjusted in ac-
ordance with the Lead-DBS processing pipeline and passes the BIDS
alidator. The folder structure follows a logical order incorporating pre-
rocessing, coregistration, normalization, brain shift correction, elec-
rode reconstruction, and stimulation volume modeling steps. Within
he Lead-DBS /derivatives folder, image files are stored in the NifTI
.nii) format, whereas metadata are stored either in MATLAB format
or tabular data (.mat) or JavaScript Object Notation (JSON) format for
key:value’ pairs (.json). Going forward, we aim to further migrate all
mat files with a low data component to .json format. Support of the com-
ressed NIfTI (.nii.gz) format is currently only implemented in parts of
he pipeline since core components heavily build upon reading in head-
rs or single slices / probing NifTI files at specific coordinates. This is
ot possible in the .gz format without decompressing (and hence reading
n) the entire volume, which would lead to extensive speed decrease and
/O load for some of the high-resolution applications that were incor-
orated within Lead-DBS. While this limitation of the .gz standard does
ot impede most pipelines, it does so for the precision-imaging case of
BS, where fast and repeated access to uncompressed files is needed

n some steps. Finally, log files generated during registration and nor-
alization use the text file format (TXT) extension (.txt). For a detailed

verview of how folder and file naming conventions changed and how
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Fig. 7. Adoption of the brain imaging data structure (BIDS) standard into Lead-DBS v3.0. With the introduction of the BIDS standard into Lead-DBS, the 
conventional folder structure (left column) underwent radical reorganization yielding a modularized layout that features separate folders for each processing step 
within the Lead-DBS pipeline. In addition, the naming convention for imaging data, tabular data, and metadata was revised. A translation of the original naming 
convention to the BIDS specification is provided in the figure. For an itemized overview please refer to Supplementary Table 7. 
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Table 1 

Overview of novel neuroimaging resources added to Lead-DBS v3.0 since v2.0. Please refer to https://www.lead-dbs.org/about/data-code-inclusion-philosophy/ 
for our position on inclusion of external resources into Lead-DBS. 

Name Description Reference 

Atlases Subcortical White 
Matter Pathways 

Tractograms describing the main trajectories of thalamocortical, mesocorticolimbic, and 
cerebellothalamic projections based on surgical interventions in depression, 
obsessive-compulsive disorder, and essential tremor. 

( Avecillas-Chasin et al., 2019 ) 

Atlas of the Human 
Hypothalamus 

Segmentation of the diencephalon into 13 hypothalamic and 12 extrahypothalamic gray 
and white matter structures based on a minimum deformation averaging pipeline that 
produced high-resolution MRI templates for segmentation. 

( Neudorfer et al., 2020 ) 

Hybra PD Atlas Parcellation map featuring 12 bilateral subcortical structures heavily implicated in 
Parkinson’s disease pathophysiology. The atlas was constructed based on QSM and T1w 

images in n = 87 PD patients. 

( Yu et al., 2021 ) 

Connectomes HCP 1000 normative 
rs-fMRI connectome 

Matrix connectome based on time series of resting state fMRI of 612 healthy subjects 
from the 1000 HCP cohort. 

(Al-Fatly et al. 2022) 

Pediatric Normative 
Functional Connectome 

A resting-state functional connectome generated from scans of 107 neurotypical 
pediatric-age subjects from the nyu2 sub-cohort of the Consortium for Reliability and 
Reproducibility. 

(Al-Fatly et al. 2022) 

Hotspots Cluster Headache Atlas DBS effect map associated with symptom relief in 40 patients suffering from cluster 
headache. 

( Nowacki et al., 2020 ) 

Essential Tremor 
Hypointensity 

The atlas features a (normative) hypointensity marker derived from FGATIR sequences 
in n = 46 subjects that coincides with the optimal DBS target for essential tremor. The 
probabilistic hot- and coldspots used for validation are provided as well. 

( Neudorfer et al., 2022 ) 

Essential Tremor 
Probabilistic Mapping 
Atlas 

Hotspot map associated with optimal clinical outcome in essential tremor derived from 

n = 119 DBS patients across five European centers. 
( Nowacki et al., 2022 ) 

Pallidal Dyskinesia Atlas Sweetspot map featuring regions associated with stimulation-induced dyskinesia during 
pallidal DBS in n = 20 Parkinson’s disease patients 

( Tsuboi et al., 2021 ) 

STN Sweetspots Symptom-specific probabilistic sweetspots obtained from n = 21 PD patients who 
underwent monopolar test stimulation (449 different stimulation settings) following 
lead implantation. 

( Dembek et al., 2019 ) 

TOR-PSM Probabilistic maps associated with clinical outcome of DBS across stimulation sites in 
Parkinson’s disease, dystonia, essential tremor, and depression/anorexia nervosa 
obtained from a total of n = 482 patients over a period of 15 years. 

( Elias et al., 2020 ) 

TOR-signPD Probabilistic maps associated with symptom-specific improvement (bradykinesia, 
rigidity, tremor, and axial symptoms) in n = 275 Parkinson’s disease patients. 

( Boutet et al., 2021a ) 

Connectivity 
maps 

Cognitive Decline 
Network Atlas 

Functional whole brain network map associated with cognitive decline during STN-DBS 
in n = 44 patients suffering from therapy-refractory Parkinson’s disease. 

( Reich et al., 2022 ) 

Dystonia response tract 
atlas 

Subcortical pathway atlas featuring streamlines associated with optimal treatment 
response in a total of n = 80 patients with generalized and cervical dystonia. 

( Horn et al., 2022 ) 

ET Lesion Network Atlas Lesion network map derived from n = 11 patients with ischemic stroke lesions, who 
experienced relief of pre-existing essential tremor following stroke. 

( Joutsa et al., 2018b ) 
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o translate the original naming convention into the BIDS specification
lease refer to Fig. 7 and Supplementary Table 7. A walkthrough tuto-
ial demonstrating the migration of Lead-DBS datasets to the BIDS stan-
ard is available at https://www.lead-dbs.org/helpsupport/knowledge-
ase/walkthrough-videos/ . Material and tutorials for implementation
f the BIDS standard in the broader context of neuroscience can be ob-
ained from https://bids.neuroimaging.io/get_started.html . 

Given that the herein presented BIDS derivative has not been re-
iewed and accepted by the BIDS community as of yet, our addition
hould be considered a proposal (or derivatives extension) on how to
tore DBS imaging data. We explicitly welcome developers of similar or
ccompanying tools to adopt or refine our standard going forward. We
rgue that adhering to the same storage format could facilitate using
ultiple different tools on the same dataset and help to further maxi-
ize reproducibility and standardization. 

.8. Additional resources 

Lead-DBS hosts a large variety of atlases and resources provided
y the DBS and neuroimaging community. A general overview of
ll resources available in Lead-DBS is featured at https://www.lead-
bs.org/helpsupport/knowledge-base/atlasesresources/ ; table 1 pro-
ides a summary of atlases, connectomes, hotspots, and connectivity
aps that have been included in Lead-DBS v3.0. Inclusion of datasets

nto Lead-DBS does not mean endorsement or approval of these exter-
al resources by the Lead-DBS development team ( https://www.lead-
bs.org/about/data-code-inclusion-philosophy/ ). 
14 
. Discussion 

Based on support by a broad international community, Lead-DBS
as evolved into a comprehensive software platform that seamlessly
ntegrates a wide array of neuroimaging tools dedicated to lead local-
zation, reconstruction, and visualization ( Horn et al., 2019 ; Horn and
ühn, 2015 ). However, as the field of neuroimaging-based DBS, the
umber of available research tools, and the community continue to
row there is an ongoing need to maintain, update, and standardize
he code base of Lead-DBS. These efforts have culminated in the present
anuscript which aims to summarize these major changes and amend-
ents to the Lead-DBS pipeline in recent years. With this new release,

he largest coding effort in the history of the tool was undertaken and
hree comprehensive analysis tools as well as two preprocessing tools
nd an interface to a sister toolbox for electric modeling were devel-
ped. Lead-DBS now also adheres to a more systematic input and out-
ut file structure within the BIDS framework, which required extensive
e-writes of major parts of the software. To demonstrate these modi-
cations, results of various processing steps were visualized in a sin-
le patient example and at the group level in a cohort of 51 patients
hat underwent STN-DBS for treatment-refractory PD. In the former, im-
ortant changes to the Lead-DBS preprocessing pipeline were demon-
trated, namely manual refinement of deformation fields using Warp-
rive, unambiguous detection of segmented electrode orientation us-

ng DiODe v2, pathway activation modeling, and implementation of the
IDS standard. In the latter, we demonstrated different analysis streams
or group-level analysis, their underlying methodological choices, and

https://www.lead-dbs.org/about/data-code-inclusion-philosophy/
https://www.lead-dbs.org/helpsupport/knowledge-base/walkthrough-videos/
https://bids.neuroimaging.io/get_started.html
https://www.lead-dbs.org/helpsupport/knowledge-base/atlasesresources/
https://www.lead-dbs.org/about/data-code-inclusion-philosophy/
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heir overall convergence onto a consistent profile of optimal outcome
cross mapping tools. Finally, we showed that the amount of variance
xplained varies based on the methodological choices. 

Consistent with previous reports, analysis streams derived from
weetspot, Fiber Filtering , and Network Mapping Explorers identified pro-
les of clinical improvement within the dorsolateral motor region of
TN ( Dembek et al., 2019 ; Elias et al., 2020 ) connecting to PMA, SMA,
CC, mPFC, and cerebellum, ( Boutet et al., 2021b ; Horn et al., 2017c ;
hen et al., 2020 ; Sobesky et al., 2021a ) and mediating the treatment
esponse by means of hyperdirect pathways from SMA and cerebel-
othalamic tract modulation ( Akram et al., 2017 ; Gunalan et al., 2017 ;
ambu et al., 2002 ; Neumann et al., 2018 ). Overall these findings are
ot novel and have been validated previously by independent groups us-
ng different modeling approaches ( Horn, 2019c ; Horn and Fox, 2020b).
he established PD circuit model, however, allowed us to leverage a well
haracterized PD cohort ( Horn et al., 2017c , 2019; Sobesky et al., 2021a ;
reu et al., 2020 ) to demonstrate the spectru m of methodological ap-
roaches contained within Lead-DBS v3.0. 

Previous publications have addressed and compared methodologi-
al choices in neuroimaging-based DBS scenarios. For example, Dembek
t al. derived local predictors of clinical outcome using simulated data

 Dembek et al., 2021a ). By defining the sensorimotor aspect of STN as
he optimal stimulation target, the authors noted marked differences
ith respect to the spatial distribution of hotspots. Methods employing
oxel-wise statistics against average outcomes yielded the best overall
erformance as evaluated using Dice coefficient and linear regression.
n the present study we relied on a well characterized clinical cohort to
dentify local predictors of DBS response. While all investigated models
ed to significant correlations during cross-validation, differences were
bserved with respect to the amount of variance explained across mod-
ls and the location of peak intensities ( Fig. 3 ). 

Taken together, our local mapping findings demonstrate the versatil-
ty of the Sweetspot Explorer in investigating the impact of fundamentally
ifferent methodological approaches, but also highlight distinct limita-
ions that need to be addressed in future research. Indeed, in our anal-
sis, we noted stark differences in solutions when applying different
ethodological concepts. For example, one key issue during sweet spot
apping (when relying on binary VTAs) is that ‘rim regions’ only receive
ata from a small number of patients and have the tendency to artifac-
ually drive peak intensities ( Dembek et al., 2021a ). Given that there is
urrently no solution to this statistical limitation, we chose to mitigate
his issue by employing comparatively high n-thresholds. Overall, this
nding illustrates, however, that the optimal method to calculate DBS
otspots has not yet been found or converged upon. Furthermore, it is
nclear how well the parameter choices in the present sweetspot analy-
is generalize to other outcome measures, indications, and DBS targets.
his holds especially true given that the Sweetspot Explorer features
 vast parameter space that has only been explored in the context of
he six previously published presets in the present study ( “inspired by ”
arameter suggestions), not probing the entire parameter space of the
ool. Indeed, a proper study exploring exactly why different methods
ield different results and which one of them is superior should be un-
ertaken – optimally across multiple datasets, targets, and diseases –
n the future. While in prior work, research labs implemented their own
ode and concepts to map hotspots for research studies, the open-source
ramework of the Sweetspot Explorer facilitates studies that compare
ifferent approaches and could ultimately lead to a gold standard and
onsensus on how DBS hotspots should be mapped to maximize their
alidity and reliability. 

Structural connectivity analysis was performed using a data-driven
pproach, which identified the best performing models across three
ethodologically distinct analysis streams. Investigation of distributions

ssociated with each methodological choice revealed trends with respect
o improved model performance when omitting streamlines based on
ignificance and number of stimulation volumes encompassing a stream-
ine. Furthermore, Fisher Z and van Albada transformation yielded less
15 
onsistent models as compared to no normalization. The reason for this
ould be that both concepts add a transformation of the results that is
ifferent in each cross-validation step. For instance, when the first of
he ten folds of patients was left out, the fiber model was created on
he remaining nine and the results were z-scored / Gaussianized. In the
econd fold, the same happened, but this transform was potentially dif-
erent, adding noise to the final estimates across folds. It is noteworthy
hat streamlines associated with clinical improvements based on path-
ay activation models bore similarity to the ones calculated based on

implified models, albeit yielding the overall highest predictive ability
 Fig. 4 ). This finding is in alignment with recent work by Gunalan et al.
ho identified field cable models to be most accurate for estimating ax-
nal pathway activation as compared to driving force and VTA-based ap-
roaches ( Gunalan et al., 2018 ). This finding has relevant implications
or future studies seeking to model structural connectivity, since axon
ctivation models come with computational cost and technical demands.
ere – depending on the underlying research question – less compu-

ationally demanding approaches may serve as an acceptable middle
round to derive estimates of structural connectivity. This could prove
specially relevant in clinical settings where access to high performance
omputers is typically limited, albeit at the cost of a (potentially substan-
ial) decline in predictive accuracy. In contrast, biophysical modeling
f DBS associated structural connectivity may provide a more accurate
nd comprehensive approach to quantify theoretical responses to stim-
lation at the cellular level ( Duffley et al., 2019 ). 

The modeling choices for voxel-wise connectivity estimates as imple-
ented in the Network Mapping Explorer are constrained to the choice

f correlation coefficient, p-threshold, and method to correct for multi-
le comparison. Validation of models using Leave-One-Patient-Out and
0-fold cross-validation yielded spatially comparable predictors of out-
ome, with FDR corrected models demonstrating the overall best per-
ormance ( Fig. 6 ). This finding is not surprising, as the removal of false
ositive voxels likely yields fewer type I errors, hence increasing statis-
ical power. 

The mapping tools introduced here offer an extensive range of
ethodological choices that can be leveraged for model generation,

alidation, and prediction. This holds especially true for the Sweetspot

nd Fiber Filtering Explorer that each offer a larger parameter space that
ay introduce a risk for bias and confounding. To mitigate this bias for

weetspot mapping, we adopted previously published methodological
hoices reported by other groups. It is important to note, however, that
o unambiguous or conceptual ‘ground truth’ exists for many of the tun-
ble parameters chosen by these authors. Even if such thresholds existed
ne could never be certain that the generated models genuinely reflected
linical reality. In consequence, while the methodological choices in the
resent manuscript may guide future exploration of DBS data, they do
ot constitute mandatory parameters to be followed rigorously. Since
ead-DBS is a scientific tool, we chose to provide users with the oppor-
unity to instantiate their models in the most sensible fashion to address
heir scientific questions in use-case scenarios without making a-priori
ecisions on exactly how data should be analyzed. This opens the pos-
ibility for flexible and transparent research where models reported in
he literature could be reliably reproduced and expanded on. Indeed, the
deal modeling strategy may not rely on fixed and arbitrary thresholds
wing to their sensitivity to idiosyncrasies in use-case scenarios. As such,
ne could envision disease-, target-, and symptom-specific models that
re first tuned and cross-validated within training cohorts, confirmed in
ut-of-sample hold-out test datasets and finally confirmed in prospective
ashion within clinical studies. 

.1. Use of Lead-DBS beyond the field of DBS 

While the key focus of Lead-DBS is on facilitating DBS imaging
esearch, in many of the tools could be interesting to the broader
euroimaging community. For instance, Lead-DBS unites a multitude
f coregistration and normalization algorithms in a single convenient
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ool (such as FSL’s FLIRT/FNIRT, SPM’s Segment, DARTEL & SHOOT
nd multiple presets for BRAINSfit and ANTs based registrations) as
ell as WarpDrive, which was introduced here. Taken togehter, these

ools make Lead-DBS a versatile “normalization toolbox ” that could
e useful for most registration problems in the field. The sister ap-
lication lead connectome is a fully fledged structural and functional
onnectivity pipeline that is integrated with Lead-DBS, but has been
sed for other purposes (such as general resting-state, tractography and
ubsequent modeling analyses as carried out here ( Deco et al., 2021 ;
orn et al., 2019b ; Kringelbach et al., 2020 )). Finally, the new tools,
amely Sweetspot, Fiber Filtering, and Network Mapping Explorer could
e modified to map brain lesions associated with specific symptoms,
orresponding to a form of voxel-based lesion mapping, disconnectome
nalysis and functional lesion network mapping analysis. While the Lead
apper tool has already been used for functional lesion network map-

ing on multiple occasions ( Darby et al., 2017 ; Ganos et al., 2022 ;
outsa et al., 2018a ), first reports have applied it for structural lesion
etwork mapping, as well ( Bowren et al., 2022 ; Trapp et al., 2022 ). 

. Limitations 

This present version of Lead-DBS constitutes a major update of the
ead-DBS pipeline, however, despite ongoing development, several lim-
tations persist, which will be described and discussed as follows: 

i) Accuracy. In DBS research ‘millimeters matter’ ( Horn et al., 2019 )
and considerable effort has been invested in the Lead-DBS pipeline
to reduce errors associated with image registration, normalization,
and lead localization ( Dembek et al., 2021b ; Horn et al., 2019 ;
Husch et al., 2018 ). Despite sophisticated tools, however, residual
errors may remain, especially in patients featuring changes in brain
morphology. Manual refinement tools, such as WarpDrive, may also
introduce observer bias and hold the potential of reducing repli-
cability and reproducibility across users and groups. This is fur-
ther emphasized by the fact that manual refinement of deforma-
tion fields requires expert-level understanding of both local anatomy
and neuroimaging acquisition/processing. Moving towards poten-
tial clinical applications of registration and normalization pipelines
( Oxenford et al., 2021 ) the consideration of residual errors and the
quantification thereof remain crucial factors to be addressed. 

ii) Stimulation volume modeling. Modeling of DBS E-field distributions
is based on multiple assumptions and thresholds, many of which
have been defined empirically and remain poorly validated. The
findings of the present study indicate that E-field based models per-
form equally as well as VTA-based models during sweetspot mapping
and functional connectivity analysis, while explaining more vari-
ance during structural connectivity analysis. Hence, E-field based
approaches could be considered a viable alternative to VTA-based
approaches. With the introduction of OSS-DBS, sophisticated tools
for pathway activation modeling have become openly available that
are able to account for some of these limitations, albeit at the cost
of computational complexity and cost, as well as necessity of addi-
tional prior assumptions. In a research setting, computational cost
may have less relevance; in clinical practice, however, there is a
need to strike a balance between model tractability and accuracy
calling for optimized solutions for stimulation volume modeling in
the future. 

ii) Statistical methods. Lead-DBS v3.0 introduces three distinct map-
ping tools, each endowed with a large parameter space. Probing this
space currently constitutes a challenge given the need for empirical
data, prior assumptions, parameter choices, and thresholds, many of
which are poorly validated. In addition, it is currently unclear how
well the methodological choices of the Explorer tools generalize to
other targets, diseases, and outcome parameters. Hence, it is impor-
tant to emphasize that Lead-DBS aims to provide useful tools for
data analysis without making a-priori decisions on exactly how data
16 
should be analyzed. Stated bluntly, Lead-DBS should be considered
a tool that enables users to carry out scientific analyses, not a tool
that carries out these analyses for them. Further research is neces-
sary to evaluate the performance, robustness, and generalizability of
demonstrated statistical methods. 

v) Normative connectomes. While the employment of normative con-
nectomes was able to validate clinical outcome in out-of-sample data
( Al-Fatly et al., 2019 ; Germann et al., 2021 ; Horn et al., 2017c , 2022 ;
Johnson et al., 2020 ; Li et al., 2020 ) it is important to note that these
datasets lack patient- and pathology-specificity. In contrast to native
imaging, however, connectomes offer superior data quality owing to
acquisition on specialized hardware, optimized acquisition parame-
ters, and specialized image-processing pipelines ( Glasser et al., 2016 ,
2013 ; Yeo et al., 2011 ). 

. Future directions 

While Lead-DBS v3.0 has been greatly improved ever since the re-
ease of v2.0, further development is planned to address current lim-
tations. During volume registration a major focus will be the opti-
ization and acceleration of registration and normalization routines

y means of parallel computing and implementation of neural net-
orks. Recognizing the need for patient-specific analysis, we have fur-

her started the implementation of tools to accurately parcellate deep
rain structures and reconstruct surfaces in native space using Freesurfer
 http://surfer.nmr.mgh.harvard.edu/ ). Another major focus will be the
efinement and expansion of statistical methods available in the intro-
uced Explorer tools. Specifically, we are currently investigating the
ast parameter space contained within Sweetspot, Fiber Filtering, and
etwork Mapping Explorer to identify methodological choices driving
odel performance. Understanding of these relationships may aide in

he optimization of existing tools by e.g., discarding parameter choices
hat do not contribute to changes in model performance, or refining pa-
ameters driving predictions. Finally, novel tools are planned to identify
ymptom-specific treatment targets with the goal to optimize and tailor
timulation to an individual patient’s symptom profile and subjective
riorities (Hollunder et al., 2021). As the landscape of neuroimaging and
unctional neurosurgery continues to evolve and change, further adap-
ations of the existing pipeline will be required. For example, Lead-DBS
urrently does not support reconstruction of surface electrodes and elec-
rocorticography (ECoG) arrays. The increased employment of cortical
ecordings in the field of DBS will, however, requires the implementa-
ion of such tools in the future ( Gilron et al., 2021 ; Merk et al., 2021 ).
uture updates will have to address these limitations. 

. Conclusions 

In conclusion, we present a thoroughly revised and updated version
f the Lead-DBS platform extending its functionality beyond image reg-
stration and lead localization to mapping and validation DBS effects
o local and network predictors of clinical outcome. Open-source code,
ersion-controlled development, and adherence to widely adopted data
tandards allow excellent reproducibility necessary to fulfill commonly
pplied key criteria of good scientific practice. Such transparent research
ractices constitute crucial steps in validating models prior to transla-
ion into clinical practice. 

ata and code availability statement 

All code used to analyze data presented in the present manuscript
s openly available within the Lead-DBS software suite ( https://github.
om/netstim/leaddbs ; https://www.lead-dbs.org/ ). A detailed descrip-
ion of the settings used for model setup, visualization, thresholding,
nd prediction for Sweetspot, Fiber Filtering, and Network Mapping
xplorer is available in the Supplementary Material of the present
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anuscript. Raw data (patient MRI and postoperative CTs) cannot be
penly shared because they contain identifiable patient information. 

ata Availability 

All code is openly available (https://github.com/netstim/leaddbs;
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