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Abstract
Increased sympathetic and reduced parasympathetic nerve activity is associated with disease progression and poor outcomes 
in patients with chronic heart failure. The demonstration that markers of autonomic imbalance and vagal dysfunction, 
such as reduced heart rate variability and baroreflex sensitivity, hold prognostic value in patients with chronic heart failure 
despite modern therapies encourages the research for neuromodulation strategies targeting the vagus nerve. However, the 
approaches tested so far have yielded inconclusive results. This review aims to summarize the current knowledge about 
the role of the parasympathetic nervous system in chronic heart failure, describing the pathophysiological background, the 
methods of assessment, and the rationale, limits, and future perspectives of parasympathetic stimulation either by drugs or 
bioelectronic devices.
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Abbreviations
ACh  Acetylcholine
AChE  Acetylcholinesterase
ANS  Autonomic nervous system
BAT  Baroreflex activation therapy
BRS  Baroreflex sensitivity
CHF  Chronic heart failure
CNS  Central nervous system
HF  High frequency
HRV  Heart rate variability
ICNS  Intrinsic cardiac nervous system
LF  Low frequency
LVEF  Left ventricular ejection fraction
MSNA  Muscle sympathetic nerve activity
NTS  Nucleus tractus solitarius

PSNS  Parasympathetic nervous system
pNN50  Percentage difference between adjacent NN 

intervals > 50 ms
rMSSD  Root mean square of successive RR interval
SDNN  Standard deviation of NN intervals
SNS  Sympathetic nervous system
tVNS  Transcutaneous VNS
VLF  Very low frequency
VNS  Vagus nerve stimulation

Introduction

The autonomic nervous system (ANS) plays a key role in the 
neuroendocrine control of the body by adapting vegetative 
functions to support homeostasis.

In healthy conditions, the sympathetic (SNS) and para-
sympathetic nervous systems (PSNS) participate in cardio-
vascular control in a complementary and, at least partially, 
opposite fashion. Of note, while the heart receives both 
innervations, the resistance vessels of the systemic circula-
tion are exclusively controlled by the SNS.

On the other hand, autonomic imbalance is a determinant of 
cardiovascular disorders, such as chronic heart failure (CHF). 
In the acute setting, chemoreflex activation and baroreflex 
deactivation induce PSNS withdrawal and SNS overactivation 
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as compensatory mechanisms to maintain perfusion and res-
piratory efficiency. Over the long term, SNS predominance 
is maladaptive and, also by activating the renin–angioten-
sin–aldosterone system (RAAS), favors salt and water reten-
tion, cardiac remodeling, and life-threatening arrhythmias [1].

Accordingly, several markers of autonomic dysfunction 
retain prognostic significance [2], while counteracting SNS 
improves survival in patients with CHF and reduced left 
ventricular ejection fraction (LVEF) [3]. On the other hand, 
because of the contradictory findings from clinical trials, 
the role of neurohormonal systems seems less consistent in 
patients with CHF and preserved LVEF, as reviewed in [4]. 
Indeed, also the usefulness of beta-blockers has been ques-
tioned in these patients, since they may contribute to chrono-
tropic incompetence and, consequently, to exercise intoler-
ance [5]. Notwithstanding, a growing body of evidence has 
shown that autonomic imbalance characterizes a significant 
subset of CHF patients also in the case of preserved LVEF, 
contributing to disease progression and poor outcomes [4, 6, 
7]. Interestingly, in this context, the interaction between the 
ANS and immune system (i.e., the neuroimmune cross-talk) 
seems to play a crucial role, contributing to the activation of 
pro-inflammatory, pro-oxidative, and pro-fibrotic cascades 
[8].

Therefore, autonomic imbalance and its detrimental con-
sequences persist in many CHF patients despite therapeutic 
advances, fostering research for the development of further 
neuromodulation strategies [9]. Various approaches have 
targeted the SNS, mainly involving denervation, with incon-
clusive results [10]. Stimulating the PSNS represents a valu-
able alternative. Indeed, through either direct (i.e., on car-
diac cells) or indirect (i.e., on pro-inflammatory pathways) 
effects, increasing cholinergic signaling may be beneficial 
to patients with CHF across the whole LVEF spectrum [11].

Nevertheless, the off-target effects of cholinergic drugs 
and the uncertain efficacy of bioelectronic devices have so 
far prevented their clinical translation [10, 12]. Transcutane-
ous vagus nerve stimulation (tVNS) is an emerging oppor-
tunity to achieve neuromodulation non-invasively but is still 
to be tested in large-scale trials [13, 14].

In this review, we aim to summarize the current knowl-
edge about the role of the PSNS in CHF pathophysiology, 
describing the methods to evaluate vagal cardiovascular con-
trol and unraveling the rationale, limits, and perspectives of 
stimulating PSNS to improve outcomes.

Cardiovascular parasympathetic control

Cardiovascular autonomic control relies on a series of reflex 
arcs composed of specialized peripheral receptors, efferent 
and afferent arms, and integrative centers [15].

Efferent axons of the ANS are organized into pregangli-
onic and postganglionic fibers; for the SNS, the pregangli-
onic axons are long and the postganglionic axons are short, 
whereas the reverse is true for the PSNS. Preganglionic neu-
rons of the SNS are located within the lateral horn of the 
thoracolumbar spinal cord, whereas for the PSNS, these are 
located within the sacral spinal cord and in the brainstem. 
With respect to the heart, preganglionic neurons of the PSNS 
are located in the ventrolateral region of the nucleus ambigu-
ous and in the dorsal motor nucleus and project within the 
vagus nerve [16]. These axons originate bilaterally within 
the caudal ventrolateral medulla and exit the brain via the 
jugular foramina [17].

The vagus nerve is a mixed nerve, composed of afferent 
(80–90%) and efferent (10–20%) fibers [18]. Though organ-
ized in different fascicles, at least in the cervical tract, the 
topography of vagal fibers in humans is still an object of 
study [18]. From the cervical and thoracic tracts of the vagus 
nerve arise the cardiac branches, which converge to the car-
diac ganglia, being part of the intrinsic cardiac nervous sys-
tem (ICNS) [18]. Within the ICNS, postganglionic neurons 
are organized in clusters, constituting functional circuits 
with sympathetic neurons and interneurons [19, 20]. Out 
of over 800 cardiac ganglia, seven subplexuses have been 
identified in humans: the dorsal and ventral right atrial plex-
uses, the dorsal and ventral left atrial plexuses, the middle 
dorsal plexus, and the right and left coronary plexuses [21]. 
Though functionally intertwined, atrial plexuses mainly 
modulate chronotropic and dromotropic functions, while 
coronary plexuses modulate ventricle contractility [21].

From the ICNS arise visceral afferent fibers, carrying 
mechanical, chemical, and nociceptive signals [22], whose 
somata are located in the nodose ganglion or the C6–T6 
dorsal root ganglia [23]. The transduction properties of these 
fibers depend on their location but often display multimodal 
properties [24]. Furthermore, the activation of these fibers 
may result in either negative (i.e., inhibiting PSNS and acti-
vating SNS) or positive (i.e., activating PSNS and inhibiting 
SNS) responses [25].

Beyond cardiac fibers, the vagus nerve contains affer-
ences from pulmonary arteries, aortic (left), and brachio-
cephalic artery (right) walls, carrying information from 
chemoreceptors and mechanoreceptors [26]. Though its 
physiological role is controversial, the auricular branch of 
the vagus nerve supplies sensory innervation to the acoustic 
meatus, the conchae, and the tragus. After traversing the 
temporal pyramid and engaging connections with the facial 
and glossopharyngeal nerves, these fibers reach the jugular 
ganglion [26].

Vagal afferents project to the nucleus tractus solitarius 
(NTS) and the area postrema of the medulla. The NTS has 
direct and indirect connections with cortical and subcortical 
structures (e.g., limbic areas, rostral ventrolateral medulla, 
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intermediate lateral medulla, locus coeruleus) [18, 27] and 
is deemed responsible for modulating efferent pathways by 
integrating afferent signals [28].

Role of acetylcholine on the heart

In cardiac ganglia, vagal fibers release acetylcholine (ACh), 
which binds to nicotinic receptors on postganglionic neu-
rons, releasing ACh, which binds to muscarinic (M) recep-
tors on cardiomyocytes. Growing evidence suggests that 
cardiac ganglia are integrative centers, in which parasympa-
thetic and sympathetic signals modulate synaptic transmis-
sion, with contributions of interneurons and glial cells [29].

On cardiomyocytes, ACh induces negative chronotropic, 
dromotropic, inotropic, and bathmotropic effects [30], medi-
ated by M2 and, less abundantly, M3 receptors [31]. The 
activation of M2 receptors results in (1) inhibition of adeny-
lyl-cyclase, decreasing the activity of L-type  Ca2+ channels, 
with negative dromotropic and inotropic effects [32], and 
“funny” current, with negative chronotropic effect [33, 34], 
and (2) stimulation of  Giβγ subunit, activating the inwardly 
rectifying ACh-sensitive potassium channels  (KACh), with 
negative chronotropic, dromotropic, and bathmotropic 
effects [35]. Stimulation of M3 receptors, via a Gq protein, 
activates phospholipase C [36] reducing sinoatrial node fir-
ing [37]. Finally, M1 receptors modulate cardiac control with 
opposite effects to those of M2 receptors [38] and modulate 
norepinephrine release from sympathetic terminals [39].

Through all these actions, the PSNS exerts beneficial 
effects on cardiac function. Indeed, by reducing cytoplas-
matic  Ca2+ concentration, hyperpolarizing cardiac cells, 
and decreasing sympathetic activity, ACh reduces the risk 
of ventricular arrhythmias [40]. Furthermore, cholinergic 
stimulation contributes to the inhibition of pro-hypertrophic, 
pro-fibrotic, and pro-apoptotic cascades, by reducing the 
activation of the mitogen-activated protein kinase and 
transforming growth factor-β pathways and activating the 
phosphoinositide 3-kinase/Akt signaling [41, 42]. Beyond 
these direct effects of cardiomyocytes, ACh influences car-
diac function also indirectly, by modulating the immune 
system, through the cholinergic anti-inflammatory path-
way [43]. Although the precise mechanisms are unclear, 
vagal efferences seem to promote the homing of choliner-
gic T-cells in the spleen. These cells release ACh, which 
binds α7-nicotinic receptors on macrophages, favoring their 
shift to the anti-inflammatory phenotype and reducing the 
secretion of tumor-necrosis-factor-α and other inflammatory 
cytokines [44]. While the physiological impact of this reflex 
on cardiac function is unknown, its dysfunction, second-
ary to sympathovagal imbalance, may be crucial in disease 
conditions such as CHF [45]. Indeed, increased circulating 
levels of inflammatory cytokines and immune cell infiltrates 
have been reported in patients with CHF, in which they have 

been associated with clinical severity and risk of adverse 
events [46, 47].

Notably, all the effects of ACh are characterized by an 
instantaneous (“rapid-off”) modulation due to the presence 
of acetylcholinesterase (AChE) in the synaptic cleft, which 
is responsible for the dynamic transduction properties of 
PSNS activity [48].

Methods of assessment 
of the parasympathetic nervous system

Muscle sympathetic nerve activity (MSNA) in accessible 
peripheral nerves is considered the gold standard for assess-
ing sympathetic function [49]. However, given that cardiac 
sympathetic axons cannot be accessed by microelectrodes, 
measuring norepinephrine spillover into cardiac veins is 
the only means by which cardiac sympathetic drive can be 
assessed in humans [50]. Notably, there is a strong correla-
tion between MSNA and noradrenaline spillover to the heart 
[51].

As for the PSNS, the responses to Ewing’s battery, heart 
rate variability (HRV), and baroreflex sensitivity (BRS) are 
used as indirect markers [52].

Ewing’s battery

Developed to assess diabetes-related ANS dysfunction [53], 
the Ewing’s battery is also used in patients with CHF [54] 
and consists of evaluating heart rate and blood pressure 
responses to specific challenges (namely, Valsalva maneu-
ver, standing-up, deep breathing, and sustained handgrip). 
According to the results of each test, a score is calculated to 
identify autonomic dysfunction [53].

Heart rate variability

HRV refers to the fluctuations in the time between consecu-
tive heartbeats, reflecting the ability of the cardiovascular 
system to adapt to endogenous/exogenous changes (Fig. 1) 
[55]. A comprehensive description of HRV measures is pro-
vided elsewhere [55, 56]. Briefly, in resting conditions, heart 
rate shows beat-to-beat changes following linear patterns, 
due to ANS modulation, influenced by visceral feedback and 
triggered by changes in respiratory activity, vascular tone, 
body temperature, hormones, and circadian fluctuations.

HRV can be measured in its time and frequency domain 
[55, 57, 58]. Among the time-domain measures, the stand-
ard deviation of normal-to-normal (NN) intervals (SDNN) 
expresses the overall variability of heart rate. While the root 
mean square of successive NN interval differences (rMSSD) 
and the percentage of successive NN intervals that differ 
more than 50 ms (pNN50) reflect vagal modulation, no 
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time-domain measure specifically expresses SNS modula-
tion [55, 57–59].

The frequency-domain analysis relies on spectral meth-
ods to decompose the whole variability of a signal into 
frequency bands [60]. For heart rate, the main spectral 
components are high frequency (HF, 0.15–0.4 Hz), low fre-
quency (LF, 0.04–0.15 Hz), and very low frequency (VLF, 
0.003–0.04 Hz) [61]. While HF expresses vagal modulation 
mainly linked to respiratory sinus arrhythmia, both SNS and 
PSNS contribute to the LF component, centered on the 0.1-
Hz oscillations, observable also at the vascular level (i.e., 
Meyer waves). Body temperature, hormones, and altered 
respiratory patterns (periodic breathing) contribute to VLF 
[61].

Several other HRV parameters have been proposed, 
including non-linear and entropy indices [56].

Baroreflex testing

Arterial baroreflex modulates autonomic response to blood 
pressure changes. The reflex arc consists of stretch-sensitive 
receptors, mainly located in the carotid sinus in humans, an 
afferent arm to the brain via the glossopharyngeal nerve, 
and efferent vagal and sympathetic pathways [62]. Since 
the baroreflex-mediated modulation of sinus node activity 
mostly relies on rapid vagal signaling, BRS is considered a 
surrogate of PSNS function [15].

The use of pharmacological challenges to evoke con-
trolled changes in blood pressure has been used to assess 
BRS [63, 64], showing prognostic value [65, 66]. To avoid 
the effects of drugs on end-organ function, different methods 
to assess the “spontaneous” BRS have been developed. The 
sequence method relies on the identification of the sequences 
of consecutive heartbeats with a parallel increase/decrease 
in heartbeats and blood pressure [67]. Other methods rely 
on the cross-correlations between the spectral components 

of heartbeats and blood pressure [67]. Though each of these 
measures showed predictive value, a simple ratio between 
the standard deviations of NN intervals and systolic blood 
pressure was the most accurate and reproducible among 
six methods [68] and a strong outcome predictor in a large 
cohort of CHF patients (Fig. 2).

Finally, a further possibility relies on the appliance of 
positive or negative pressure to the neck to assess the car-
diac and vascular consequences of baroreceptors loading/
unloading [69].

Vagus nerve microneurography recording

While MSNA is the gold standard method to assess SNS 
function, only recently, the first recordings from the human 
vagus nerve were obtained through ultrasound-guided inser-
tion of a tungsten microelectrode into fascicles of the vagus 
nerve in the neck (Fig. 3) [70]. This allowed the identifica-
tion and classification of tonically active neurons directed to 
the sinoatrial node [70] and to document the cardiac and res-
piratory modulation of multiunit nerve activity [71]. Though 
preliminary, these findings pave the way for future experi-
ments to study vagus nerve functions in health and disease. 
Indeed, given that it is possible to identify intrafascicular 
sites exhibiting cardiac rhythmicity, it will be very interest-
ing to use this technique to identify changes in afferent and 
efferent vagal activity in CHF, for example.

Parasympathetic dysfunction in heart failure

The neurohormonal model is a cornerstone of CHF patho-
physiology. Accordingly, the pharmacological antagonism 
of SNS and RAAS has shown significant prognostic benefits 
and is a pillar of CHF treatment in patients with reduced 
LVEF [72].

Fig. 1  Heart rate variability in a healthy individual vs. a patient with chronic heart failure. As shown in the RR series, the patient with chronic 
heart failure (CHF) showed a significant reduction in either circadian or beat-to-beat heart rate variability (HRV)
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Notably, sympathovagal imbalance is only partially 
reversed by current therapies. Indeed, increased MSNA 
and reduced HRV, sustained by feedback resetting, sleep 
disorders, and abnormal central control, feature in many 
CHF patients [73]. While increased MSNA showed a lin-
ear relation with disease severity and outcomes, the sig-
nificance of abnormal vagal control is more controversial 
because of the absence of a gold standard marker [73]. 
Accordingly, most of the evidence derives from studies 
assessing HRV and/or BRS, which mirror the PSNS influ-
ence on the sinus node.

All the measures of HRV are depressed in CHF patients 
and related to disease severity and outcomes. Of note, 
patients with CHF and preserved LVEF show an interme-
diate phenotype between patients with reduced LVEF and 
healthy controls [74–76].

The underlying mechanisms are still to be completely 
understood. While the reduction in HF reflects blunted vagal 
modulation [77], also VLF [78] and LF components are 
often decreased or absent in CHF patients, proportionally to 
disease severity [77], and predict mortality [79]. Baroreflex 
desensitization and abnormal central control, also associated 

Fig. 2  Clinical and prognostic significance of baroreflex sensitivity 
in patients with chronic heart failure. Abnormal baroreflex sensitiv-
ity (BRS) is frequently (36%) observed in patients with chronic heart 

failure (CHF) patients (n = 267), in which it is associated with func-
tional impairment, lower heart rate variability, and a higher risk of 
cardiac death [9]

Fig. 3  Microneurography recording of the vagus nerve. A tungsten 
microelectrode is inserted into the dorsolateral cervical region (A). 
Ultrasound guidance allows for the identification of the vagus nerve 
among muscular and vascular cervical structures (B). Direct visuali-

zation of the microelectrode through the probe allows for its precise 
direction toward the vagus nerve area, while avoiding vascular struc-
tures. CCA common carotid artery, ICA internal carotid artery, IJV 
internal jugular vein
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with cardiorespiratory interactions, are possible explanations 
[80, 81]. Decreased arterial compliance, alterations in sen-
sory transduction, abnormal central mediation of the reflex, 
and efferent neurotransmission may be the mechanisms of 
reduced baroreflex function, while increased angiotensin-II 
and aldosterone signaling, as well as oxidative stress, are the 
proposed molecular pathways [82–86].

Beyond BRS, other sites of vagal dysfunction may be 
identified, from the generation of central outflow to gangli-
onic and postganglionic synapses to neurotransmission effi-
ciency. In this respect, the presence of antibodies against the 
M2 receptors has been documented in patients with dilated 
cardiomyopathy [87] and associated with cardiac remodeling 
in rat models of CHF [88]. Nevertheless, a series of land-
mark studies showed that, despite the reduction of vagal tone 
and the response to electrical vagus nerve stimulation, the 
number and activity of cardiac M2 receptors are preserved 
or upregulated in CHF, while AChE is downregulated, prob-
ably as compensatory mechanisms [89–91]. On the other 
hand, an abnormal transmission at the ganglionic level was 
identified and proposed as a key mechanism [92].

Future studies, e.g., through direct vagal recordings, are 
expected to shed light on the complex mechanisms behind 
PSNS dysfunction in CHF patients.

Targeting parasympathetic dysfunction 
in heart failure

Targeting the PSNS represents an unmet need in CHF 
patients (Fig. 4). Indeed, beyond restoring neurohormonal 
balance, improving cholinergic stimulation also exerts anti-
inflammatory actions, which is beneficial in CHF across the 
whole LVEF spectrum [11] and particularly in patients with 
preserved LVEF, in whom the efficacy of beta-blockers has 
been questioned [4, 8]. Nevertheless, the clinical trials con-
ducted so far have not confirmed the expectations derived 
from preclinical and preliminary clinical studies (Tables 1, 
2, and 3) [10].

Pharmacological approaches

Many of the drugs recommended for CHF treatment improve 
sympathovagal balance [93–96]. On the other hand, no 
molecule acting specifically on the cholinergic pathway is 
approved for this purpose (Table 1).

As reviewed elsewhere [97], AChE inhibitors showed 
protective effects in CHF rodents, by increasing HRV and 
BRS and reducing SNS activity [97]. Since some AChE 
inhibitors are used for neurological conditions (donepezil 
in the treatment of Alzheimer’s disease and pyridostigmine 
of myasthenia gravis), their cardiovascular effects have been 
investigated.

In two randomized, cross-over, double-blind studies, oral 
pyridostigmine improved heart rate recovery in 20 (30 mg, 
single dose) and 23 (45 mg, 3 t.i.d., for 1 day) CHF patients, 
respectively [98, 99]. In another study, pyridostigmine (30 
mg, 3 t.i.d. for 2 days) lowered the incidence of premature 
ventricular beats and increased rMSSD and pNN50 in 20 
CHF patients [100]. In a randomized, double-blind study, 
enrolling 21 CHF patients with heart rate > 70 bpm, pyri-
dostigmine (30 mg, 3 t.i.d. for 6 months) reduced heart rate, 
natriuretic peptide levels, and inflammatory markers and 
improved symptoms and exercise capacity [101]. While the 
high rate of systemic effects (mainly gastrointestinal) due 
to systemic cholinergic stimulation may limit compliance 
to AChE inhibitors, the risk of long-term effects, including 
QT prolongation, is unknown in CHF patients [97]. While 
no studies have specifically investigated the effect of these 
molecules on clinical endpoints in patients with CHF, in an 
observational study on patients with Alzheimer’s disease 
without a history of CHF, the use of AChE inhibitors was 
associated with a significantly lower risk of new-onset CHF 
and cardiovascular death compared to propensity-score-
matched non-users [102]. Similarly, in another observational 
study, patients with dementia treated with AChE inhibitors 
showed a lower risk of major adverse cardiovascular events, 
including heart failure-related hospitalization, compared 
with controls [103].

A potential alternative to AChE inhibitors is represented 
by two antimuscarinic agents, namely, scopolamine and 
pirenzepine, whose low-dose administration is associated 
with vagotonic effects, due to a greater affinity for M1 recep-
tors, favoring ACh binding to M2 receptors and reducing 
norepinephrine release [104, 105]. The application of a 
scopolamine patch for 24 h in 21 CHF patients increased 
RR interval and HRV [106]. Similar findings were repli-
cated in a randomized, cross-over, double-blind study, in 
which transdermal scopolamine increased HRV and BRS 
in 15 CHF patients [107]. Also, the intravenous adminis-
tration of pirenzepine in 15 CHF patients increased SDNN 
and HF power [104]. The effects of these molecules were 
compared in a single-blind, placebo-controlled, cross-over 
trial in 20 post-myocardial infraction patients. While both 
drugs increased HRV and BRS, pirenzepine use yielded a 
lower rate of adverse effects (only 5% of patients reported 
nausea vs. 50% of patients reporting dry mouth, drowsiness, 
blurred vision, or nausea on scopolamine) [108].

Despite these findings, no study has investigated the effi-
cacy of these molecules on clinical endpoints.

Vagus nerve stimulation

Initially approved for drug-resistant epilepsy, VNS relies on 
an implantable neurostimulator activating cervical vagus fib-
ers via a pulse-delivering electrode [109].
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After the promising findings of preclinical research and 
preliminary human studies [110–112], VNS was tested in 
large-scale clinical trials, namely, the CardioFit [113], the 
ANTHEM-HF [114], the NECTAR-HF [115], the INO-
VATE-HF [116], and the ANTHEM-HFpEF study [117]. 
Despite some improvement in qualitative endpoints (e.g., 
symptoms and quality of life), no significant benefits were 
observed in terms of cardiac remodeling, neurohormonal 
activation, hospitalizations, and mortality [118]. Moreo-
ver, many patients experienced some discomfort secondary 
to VNS, while the risk of either procedural or long-term 
device-related complications raised safety concerns [118].

Although technological reasons (e.g., delivered currents, 
stimulation frequency, duty cycles) may have contributed 
to such results, the clinical efficacy of VNS has been ques-
tioned and the ANTHEM-HFrEF, designed to test a new-
generation device, has been stopped prematurely for finan-
cial reasons (NCT03425422).

Transcutaneous vagus nerve stimulation

A series of anatomical studies have shown that afferent 
fibers of the auricular branch of the vagus nerve may be 
found on the surface of the external ear [119]. The electri-
cal stimulation of these fibers increased activity in central 
areas involved in autonomic control, including the ipsilateral 
NTS, dorsal raphe, locus coeruleus, contralateral parabra-
chial area, amygdala, and nucleus accumbens [119].

The cardiovascular consequences of tVNS have been 
studied almost exclusively in healthy individuals. While 
short-term tVNS increased HRV and BRS [120, 121], het-
erogeneous protocols and stimulation parameters contrib-
uted to the mixed findings reported by other works [122]. A 
single study showed that tVNS may reduce MSNA [123].

Based on the encouraging findings derived from pre-
clinical studies of ischemic CHF models, in which tVNS 
improved cardiac remodeling and lowered arrhythmic risk 

Fig. 4  Vagal dysfunction as a therapeutic target in patients with 
chronic heart failure. Although different approaches have been 
already tested to improve vagal cardiovascular control in patients 
with chronic heart failure (CHF), no specific treatment has entered 

the clinical scenario so far. BRS baroreflex sensitivity, HRV heart 
rate variability, LVEF left ventricular ejection fraction, NT-proBNP 
N-terminal pro-B-type natriuretic peptide, NYHA New York Health 
Association. Created with BioRender.com
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[124, 125], tVNS was tested in patients with acute myocar-
dial infarction, showing a reduction in ischemia–reperfu-
sion injury [126]. Furthermore, in 50 patients with CHF and 
preserved LVEF, 1-h daily tVNS for 3 months improved left 
ventricular longitudinal strain and quality of life and reduced 
inflammatory markers [14], confirming and extending pre-
clinical findings [127].

Further studies are ongoing to evaluate the effects of 
tVNS on various endpoints in CHF patients (Table 2).

Baroreflex activation therapy

Considering the pathophysiological and prognostic sig-
nificance of decreased BRS in CHF, enhancing this reflex 
has a solid rationale for improving outcomes [12]. Indeed, 
the direct activation of the afferent arm of baroreflex could 
maximize cardiovascular benefits, limiting off-target effects. 
Baroreflex activation therapy (BAT) involves a subcutane-
ous pulse generator with an extravascular lead placed on the 
carotid sinus. Developed to treat resistant hypertension, BAT 
increases markers of vagal control and reduces MSNA, with 
anti-remodeling cardiac effects [128, 129].

The clinical efficacy of BAT was tested in two ran-
domized, open-label clinical trials, enrolling patients 
with CHF and reduced LVEF symptomatic despite thera-
pies. In the Barostim HOPE4HF study (n = 146), BAT 
improved the distance walked, quality of life, symptoms, 

and neurohormonal activation [130]. Similar findings were 
obtained in the BeAT-HF (n = 408), leading to the approval 
of the device for clinical use [131]. Considering these find-
ings, the use of BAT in selected patients was acknowledged 
in CHF guidelines [132]. While the safety and efficacy of 
BAT on symptoms and quality of life were confirmed in the 
postmarket phase of the BeAT-HF (n = 323, median follow-
up 3.6 years/patient), the risk of cardiovascular mortality 
and hospitalizations did not differ between BAT and control 
[133].

An alternative to BAT is the implantation of an endo-
vascular device into the carotid sinus to amplify the nor-
mal pulse-driven activation of carotid baroreceptors [134]. 
Developed for hypertensive patients, the Mobius HD device 
was tested in a small study (HF-FIM) enrolling 29 CHF 
patients, improving the distance walked, quality of life, 
LVEF, and natriuretic peptides [134].

A similar approach, but targeting aortic baroreceptors, is 
under investigation (NCT02633644).

Spinal cord stimulation

The electrical stimulation of the dorsal spinal cord rep-
resents the most ancient bioelectronic neuromodulation 
strategy, first proposed for neuropathic pain and refrac-
tory angina [135]. Though the precise mechanisms remain 
unknown, this approach improved vagal tone and reduced 

Table 1  Clinical studies evaluating pharmacological approaches to 
target the parasympathetic nervous system in patients with chronic 
heart failure. BRS baroreflex sensitivity, HF high frequency, HR heart 
rate, HRV HR variability, LF low frequency, NT-proBNP N-terminal 

pro-B-type natriuretic peptide, QOL quality of life, RCT  randomized 
controlled trial, SDNN standard deviation of normal-to-normal inter-
vals

Drug/device Study Design Population Main findings

Pyridostigmine Androne et al. 2003 RCT, vs. placebo n = 20, LVEF ≤ 40%, NYHA I–III ↑ HR recovery after exercise
Behling et al. 2003 RCT, vs. placebo n = 23, LVEF < 45%, NYHA I–III ↓ ventricular ectopic beats; ↑ RR 

interval
Serra et al. 2008 RCT, vs. placebo n = 23, LVEF 29 ± 7% ↓ cholinesterase activity and chrono-

tropic response; ↑ HR reserve, HR 
recovery after exercise, and oxygen 
pulse

Villacorta et al. 2021 RCT, vs. ivabradine n = 21, LVEF 33 ± 8%, NYHA I–III ↓ NYHA class, HR at rest, HR 
recovery, NT-proBNP, inflammatory 
markers

↑ QOL and oxygen consumption
Pirenzepine Pedretti et al. 1995 RCT, vs. placebo n = 20, LVEF 48 ± 6%, 19 ± 6 days 

post-MI
↑ all HRV measures and BRS

Hayano et al. 1999 Single-arm, open-label n = 30, LVEF 42 ± 9%, NYHA I–III ↑ RR interval, all HRV measures, and 
BRS

Scopolamine La Rovere et al. 1994 Single-arm, open-label n = 21, LVEF 23 ± 1%, NYHA II–III ↑ RR interval and HRV (SDNN and HF 
power); restoration of all the param-
eters after scopolamine withdrawal

Venkatesh et al. 1996 RCT, vs. placebo n = 12, LVEF 27 ± 9%, NYHA II–IV ↑ all HRV measures
Casadei et al. 1996 RCT, vs. placebo n = 23, LVEF 28 ± 2%, NYHA II–III ↓ HR at rest and submaximal exercise; 

↑ HRV
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Table 2  Clinical studies evaluating bioelectronic devices to target the 
parasympathetic nervous system in patients with chronic heart failure. 
6MWD 6-min walked distance, ATN aortic thoracic neuromodulation, 
BAT baroreflex activation therapy, BRS baroreflex sensitivity, HF 
high frequency, HR heart rate, HRV HR variability, LF low frequency, 
LVEDD left ventricular end-diastolic diameter, LVEF left ventricular 

ejection fraction, NSVT non-sustained ventricular tachycardia, NT-
proBNP N-terminal pro-B-type natriuretic peptide, NYHA New York 
Health Association, QOL quality of life, RCT  randomized controlled 
trial, SCS spinal cord stimulation, SDNN standard deviation of nor-
mal-to-normal intervals, tVNS transcutaneous vagus nerve stimula-
tion, VNS vagus nerve stimulation

Drug/device Study Design Population Main findings

VNS De Ferrari et al. 2011 Single-arm, open-label n = 32, LVEF < 35%, NYHA 
II–IV

↑ 6MWD and LVEF; ↓ NYHA 
class

ANTHEM-HF, 2014 RCT, open-label n = 60, LVEF < 40%, NYHA 
II–III

↑ HRV, LVEF, and 6MWD; ↓ 
NYHA class

NECTAR-HF, 2015 RCT, vs. stimulation off n = 96, LVEF < 35%, NYHA 
II–III

↑ QOL; ↓ NYHA class; no effects 
on LVEF, remodeling, and NT- 
proBNP

INOVATE-HF, 2016 RCT, open-label n = 707, LVEF < 40%, NYHA III ↑ QOL and 6MWD; ↓ NYHA 
class; no effects on mortality or 
heart failure events

ANTHEM-HFpEF, 2023 Single-arm, open-label n = 52, LVEF > 40%, NYHA, 
II–III

↑ QOL and 6MWD; ↓ NYHA 
class and LF/HF; ↑ HR turbu-
lence slope; ↓ T-wave alternans 
and heterogeneity; ↓ NSVT; no 
effects on cardiac function

NCT03425422, stopped prema-
turely

RCT, open-label n = 533, LVEF < 35%, NYHA II–
III, LVEDD < 8.0 cm

Adverse events; LVEF, remod-
eling, NYHA class, 6MWT, 
QOL, HR, and HRV

tVNS Tran et al. 2019 RCT, vs. sham tVNS n = 24, LVEF > 49% ↑ frequency-domain HRV and ↓ 
global longitudinal strain

Stavrakis et al. 2022 RCT vs. sham tVNS n = 52, LVEF > 49% and 2 among 
obesity, diabetes, hyperten-
sion, ≥ 65 y.o

↑ QOL; ↓ global longitudinal 
strain and TNF-α; no effects on 
diastolic function; no effects on 
NYHA and BNP

NCT02898181, ongoing RCT vs. sham tVNS n = 19, LVEF < 40%, in hospital 
phase

↓ IL-6 levels and endothelial cell 
oxidative stress. No effects on 
HR, blood pressure, and renal 
function

NCT05789147, ongoing RCT, open-label n = 40, LVEF > 40%, NYHA 
II–III

HRV and BRS

NCT05230732, ongoing RCT, vs. sham tVNS n = 158, LVEF < 40% 6MWD, QOL, HRV, C-reactive 
protein, NT-proBNP, TNF-α, 
and IL levels

BAT Barostim HOPE4HF, 2015 RCT, open-label n = 146, LVEF < 35%, NYHA III ↑ 6MWD and QOL; ↓NYHA class 
and NT-proBNP

BeAT-HF, 2020 RCT, open-label n = 408, LVEF < 35%, NYHA 
II–III

↑ 6MWD and QOL; ↓ NT-proBNP

BeAT-HF, 2024 RCT, open-label n = 332, LVEF < 35%, NYHA 
II–III

↑ 6MWD and QOL; ↓ NYHA 
class; no effects on mortality or 
heart failure events

HF-FIM, 2022 Single-arm, open-label n = 29, LVEF < 40%, NYHA 
II–III

↑ 6MWD, LVEF and QOL; ↓ NT-
proBNP

ATN NCT02633644, ongoing Single-arm, open-label N = 30, NYHA II–III Adverse effects, NYHA, 6MWT, 
QOL, LVEF, remodeling

SCS SCS-HEART, 2015 Single-arm, open-label n = 21, LVEF 20–35%, NYHA III ↑ LVEF and QOL; ↓ NYHA 
class; ↔ NT-proBNP

DEFEAT-HF, 2015 RCT, vs. stimulation off n = 66, LVEF < 35%, NYHA III No effects on remodeling QOL, 
6MWD, NYHA class, all-cause 
mortality, or hospitalization for 
HF
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SNS activity [135]. On the base of preclinical evidence 
[136, 137], spinal cord stimulation was tested in two trials 
enrolling patients with CHF and reduced LVEF. While it 
was effective on symptoms, quality of life, and cardiac 
remodeling in the SCS-HEART study (n = 22) [138], no 
significant benefits were observed in the larger (n = 66), 
randomized, and single-blind DEFEAT-HF study [139]. 
Differences in surgical approach and current delivery 
contributed to this discrepancy.

Non‑pharmacological and non‑bioelectronic 
approaches

Exercise training represents one of the most efficacious 
ways to improve sympathovagal balance (Table 3). In 17 
patients with advanced CHF, an 8-week exercise training 
improved HRV and norepinephrine spillover [140]. Fur-
thermore, in patients with a history of myocardial infarc-
tion, a 4-week training period increased BRS, lowering 
cardiac mortality during follow-up [141]. The improve-
ment in sympathovagal balance hence represents a key 
mechanism behind the benefits provided by physical 
training in CHF patients.

Yoga and meditation have beneficial effects on auto-
nomic cardiovascular control, too. The slow breathing 
that characterizes these practices reduced heart rate and 
increased HRV and BRS in healthy subjects [142], while 
a downward modulation of chemoreflex sensitivity was 
described as well [143].

A few studies have evaluated these approaches in 
patients with CHF [144]. Among 19 CHF patients, med-
itation (two 1-h training sessions, followed by 30-min 
b.i.d. sessions for 12 weeks) reduced norepinephrine lev-
els and improved quality of life and ventilatory efficiency, 
but did not affect oxygen consumption and LVEF [145]. 
Similar benefits were also attributed to yoga [146] and 
tai chi [147].

Conclusions and perspectives

Despite therapeutic advances, the prognosis of CHF 
patients remains poor, with autonomic imbalance contrib-
uting to disease progression and life-threatening events. 
Implementing the current therapeutic armamentarium with 
novel neuromodulation strategies may prove valuable. 
Although enhancing vagal control holds promise, tailored 
pharmacological strategies remain underexplored, while 
technological uncertainties and conflicting findings have 
hampered the transition of bioelectronic devices into clini-
cal scenarios.

Several issues should therefore be addressed [148]. 
A return to physiology seems mandatory to deepen our 
understanding of PSNS function in healthy and disease 
conditions. In this respect, direct recordings from the 
human vagus nerve offer a unique chance to optimize 
neuromodulation devices, shifting toward closed-loop pro-
tocols aligned with physiology to maximize benefits and 
minimize off-target effects. Battery duration, biocompati-
bility, and miniaturization are other obstacles to overcome.

In the meantime, abandoning the possibility of pharma-
cological PSNS stimulation, despite promising prelimi-
nary findings, appears a missed opportunity. Encourag-
ing future studies to examine the efficacy of pirenzepine 
or scopolamine in CHF patients on modern treatments is 
hence warranted.

Finally, improving patient selection is paramount. 
Although neglected in the main trials conducted so far, 
assessing residual autonomic dysfunction, even by HRV 
and/or BRS, is crucial to identifying patients who could 
benefit from neuromodulation. Indeed, this is expected 
to maximize treatment effectiveness, limit biological and 
economic costs, and even decrease the number of patients 
needed for enrollment in clinical trials.
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Table 3  Clinical studies evaluating nonpharmacological/non-bio-
electronic approaches to target the parasympathetic nervous system 
in patients with chronic heart failure. BRS baroreflex sensitivity, HF 

high frequency, HR heart rate, HRV HR variability, LF low frequency, 
LVEF left ventricular ejection fraction, NYHA New York Heart Asso-
ciation, QOL quality of life, RCT  randomized controlled trial

Drug/device Study Design Population Main findings

Exercise Coats et al. 1992 RCT, open-label n = 17, LVEF 20 ± 2%, NYHA II–III ↑ HRV; ↓ norepinephrine spillover
La Rovere et al. 2002 RCT, open-label n = 95, LVEF 51 ± 13%, 28 ± 2 days post-

MI
↑ BRS; ↓ 10-year cardiac mortality among 

responders
Meditation Curiati et al. 2005 RCT, open-label n = 19, CHF, LVEF 57 ± 14%, NYHA I–II ↓ norepinephrine and VE/VCO2 slope; ↑ 

QOL; no effects on cardiac function and 
oxygen consumption

Yoga Krishna et al. 2014 RCT, open-label n = 130, CHF, LVEF 30–50%, NYHA I–II ↓ HR, blood pressure, LF, and LF/HF ratio; 
↑ HF
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