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Abstract. In life sciences, deriving insights from dynamical systems can
be challenging due to the large number of state variables involved. To
address this, model reduction techniques can be used to project the sys-
tem onto a lower-dimensional state space. CLUE is a tool that computes
exact reductions for rational systems of ordinary differential equations.
In this paper, we present an extension of CLUE to include approximate
reductions which allow for larger aggregating power at the expense of
a bounded error. Additionally, our extension includes new functionali-
ties such as an interface to the model database ODEBase repository and
simulation techniques for exploratory analyses.
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1 Introduction

Dynamical systems are used to model biochemical systems [9,29], performance
models [12,31,32,34], electrical circuits [7] and even neural networks [14]. Model
reduction is a family of techniques that that provides a modeler with a lower-
dimensional dynamical system, while preserving properties of interest of the
original system. In biology, e.g., it is key to preserve physical interpretability as
these models validate mechanistic insights [2,6,22,26,28].

Lumping is a set of model reduction techniques for different mathematical
formalisms [1,4,6,10,11], including ODEs. Given an original model, lumping
produces a self-consistent system of ODEs involving macro-variables, each given
in terms of combinations of the original ones [9,13,23,27]. In linear lumping, the
reduction is a linear transformation of the original state variables. To avoid a
complete loss of physical intelligibility, constrained lumping restricts the reduced
state space so that previously defined linear combinations of state variables are
preserved in the reduction [20].
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The tool CLUE1 was introduced along with a theoretical framework to effi-
ciently compute the smallest constrained linear lumping for polynomial ODEs
(i.e., ODEs with polynomial derivatives) that preserves the evolution of an arbi-
trary combination of state variables given by the user [24]. The efficiency of
this framework with respect to previous work [19,20] stems from the fact that
it does not rely on the symbolic computation of eigenvalues of a non-constant
matrix. By leveraging this, the first version of CLUE (v1.0) was used to analyse
models with several thousands of equations on standard hardware [24]. While
it is possible to apply the polynomial theory to rational systems by means of
symbolic computations, this approach quickly becomes computationally unfea-
sible [16]. This problem can be avoided by efficiently creating a representation
of the dynamics by sampling it at different points using automatic differentia-
tion [16], as implemented in the current version of CLUE (v1.5).

In this paper, we introduce a new version of CLUE (v1.7), extending [16,
24]. We add support for approximate reductions from [18] which have greater
aggregation power at the expense of the exactness of the reduction. Moreover,
we provide importing support from the public online repository ODEBase [21],
as well as analysis capabilities by means of model simulation for exploratory
purposes. Last but not least, we present the updated architecture of the new
version of CLUE, and illustrate how the tool can be applied on a concrete model
from the literature. The presented version of CLUE is publicly available and can
be installed via pip with the following command

$ pip install git+https :// github.com/clue -developers/CLUE@v1 .7

2 Preliminaries

Constrained lumping is a reduction method that allows to reduce an ODE system
in a way that it preserves a given linear combination of variables of interest.
Suppose we are interested in the evolution of xobs = x2 + 2x3 for the following
system of ODEs

ẋ1 =
x2
2 + 4x2x3 + 4x2

3

x2
1 + 1

, ẋ2 =
2x1 − 4x3

x2 + 2x3 + 1
, ẋ3 =

−x1 − x2

x2 + 2x3 + 1
. (1)

The matrix L = (1 0 0, 0 1 2)T is an exact constrained lumping of dimension
2, since it allows the construction a smaller self-consistent system in terms of
the two macro-variables y1 = x1 and y2 = x2 + 2x3, given by (ẏ1, ẏ2)T =
(y22/(y

2
1 + 1),−2y2/(y2 + 1))T .

The matrix L is a constrained lumping since the evolution of xobs can be
directly recovered from the evolution of y2. It is exact, as the evolution of xobs

can be recovered exactly without any errors by using the lower dimensional
system. In general, given a system of ODEs ẋ = f(x) and an exact lumping L,
a self-consistent reduced system is given by y = Lf(L̄y), where y = Lx, and L̄
is a right-pseudo inverse of L. In this case, L̄ = (1 0, 0 0.2, 0 0.4)T .
1 https://github.com/clue-developers/CLUE.

https://github.com/clue-developers/CLUE
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Now, suppose that the evolution of xobs is described by a slightly modified
system with 4.05x2x3 in the numerator of the first equation:

ẋ1 =
x2
2 + 4.05x2x3 + 4x2

3

x2
1 + 1

, ẋ2 =
2x1 − 4x3

x2 + 2x3 + 1
, ẋ3 =

−x1 − x2

x2 + 2x3 + 1
. (2)

In this case, it is not possible to construct an exact approximate constrained
lumping. However, by relaxing the conditions for lumping, the matrix L =
(1 0 0, 0 1 2)T can be used to compute a smaller system that preserves xobs

up to an error, given by (ẏ1, ẏ2)T = (1.004y22/(y
2
1 + 1),−2y2/(y2 + 1))T .

Fig. 1. xobs in original (blue) and
reduced (orange) model. (Color
figure online)

This means that the evolution of xobs will
be recovered up to an error. Figure 1 shows
the evolution of xobs computed via the origi-
nal and reduced system for initial conditions
x = (1, 1, 1)T . Note that, by using an approx-
imate reduction, it is possible to reduce a sys-
tem that was not exactly reducible while still
obtaining a simulation with low error. The
detailed theory of approximate constrained
lumping for polynomial systems, including the
algorithm to compute them and how to bound
the introduced errors, can be found in [18].

3 Implementation

CLUE is designed as an open source python library to boost model analysis and
exploration. Its architecture, summarized in Fig. 2, has been planned for efficient
interaction and data handling through three main components: model input,
core functionalities, and outputs. The model input component handles the steps
of model acquisition and processing, while the core functionalities component,
instead, contains all the logic to apply model reduction or approximation onto the
models. The outputs component conducts simulations and allows for preliminary
data analysis. We now proceed to explain each component in detail.

ODEBase

.ode

.py

Model InputModel Input
odebase_io.py

ode_parser.py

Core FunctionalityCore Functionality

linalg.py

lumpingFODESystem LDESystem

Subspace NumericalSubspace

OutputspOutputs
create_figure

.ode

.jpg

.clue

simulations.py

rational_function.py

Fig. 2. Architecture of CLUE (red). The arrows indicate data flow. The main compo-
nents of CLUE (blue) are composed of modules (green) of which the main classes and
methods (e.g., lumping) are reported (orange) .External files and sources are displayed
in purple. (Color figure online)



Approximate Reductions of Rational Dynamical Systems in CLUE 111

Model Input. The main goal of this component is to construct instances of the
FODEsystem class from the supported sources: ODEBase [21], whose support has
been added in this version of the tool, and ERODE [8] .ode files, and systems
of ODEs symbolically written using sympy. The modules realizing the import
functionalities of aforementioned formats are, respectively, odebase io.py,
ode parser.py and rational function.py. Regardless of the format, the cre-
ation of FODESystem instances relies on the efficient representation of polynomi-
als and rational functions provided in the module rational function.py.

Core Functionalities. The core functionalities of CLUE are available in the
module clue.py. In this module, the main class is FODEsystem which contains all
necessary information to represent a model, e.g., equations, observables, param-
eters and initial conditions. Simulations can be computed via the simulate
method. Additionally, FODESystem offers export functionality to .ode files and
to serialized .clue files.

Given an observable, a constrained lumping is computed by finding the small-
est invariant subspace from which the evolution of the observable can be recov-
ered. Following the theory presented in [16,18], lumpings are computed using the
lumping and app lumping methods which find exact and approximate lumpings,
respectively. The outputs of these methods are instances of LDESystem. This
class inherits from FODEsystem, while including lumping information, e.g., the
lumping subspace and mappings from the original to the lumped variables.

Exact lumping subspaces are instances of the Subspace class, which stores
them as matrices in row-echelon form. In contrast, approximate lumping sub-
spaces are instances of the NumericalSubspace class, which stores them as
orthonormal matrices. Both these classes are described in the module linalg.py.
It should be noted that all exact computations are carried out using the ratio-
nal numbers implementation provided by sympy. For both numerical and exact
computations, we use our own implementation of matrix arithmetic. Matrices
are stored as hash tables where the keys are the nonzero rows and the values
are SparseVectors representing the actual row. Instances of SparseVector are
hash tables storing the number of the nonzero value as keys and the actual vector
values as values.

Outputs. Utilities to handle simulations are provided in the simulations.py
module. Basic manipulation of simulations and data is supported. This cor-
responds to merging, comparing and applying matrices to simulation results.
Similarly, basic plot functionality is supported, namely, exporting plots (e.g.,
Fig. 1), and simulation data (as CSV files).

4 Illustration of Model Workflow Using CLUE

In this section, we show an example workflow displaying the main features of
CLUE on a simple, yet informative, model from the literature. A full listing of
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this section is available as a Jupyter notebook2. Suppose we want to study the
signaling mechanism in apoptosis, as described by the kinetic model in [17].

Step 1: Model Retrieval. To access the required model from ODEBase, we
use the following line

>>> model = ode_scrapper(name="BIOMD0000000102")
>>> model = model.remove_parameters_ic ()

In general, CLUE treats parameters as variables of the differential sys-
tem. We can replace each known parameter by its value using the method
remove parameters ic.

Step 2: Model Validation. Having retrieved the model, we can examine its
attributes:

>>> print(model.name) # Outputs the name of the model
>>> print(model.size) # Outputs the size of the model
>>> print(model.equations) # Shows the model equations

In particular, we infer that the original model size is 13.

Step 3: Analyses and Lumping. Following the original paper presenting the
model [17], we are interested in studying the evolution of the observable C3,
formally given by the variable x7 in the model. As a first step, we compute the
respective exact lumping which has x7 as observable:

>>> exact_lump = model.lumping ([’x7’])

This command raises a warning that the system could not be reduced.
[lumping] Warning: lumped size (13)
and original size (13) are the same.

This means that it was impossible to find an exact reduction.
We can use the approximate lumping functionality of CLUE to increase the

aggregation power with the following command:
>>> app_lump_1 = model.app_lumping ([’x7’])

This command relaxes the conditions of exact lumping until it finds a reduction
that is smaller than the exact one. In this case, the resulting reduction is of size
12. To find more compact reductions, it is possible to add a size limit as follows:

>>> app_lump_2 = model.app_lumping ([’x7’], max_size =10)

The output will be the largest reduction possible having at most 10 lumped
variables (species), following the approach of [18]. The resulting lumped model
in this case is of size 9.

2 https://github.com/clue-developers/CLUE/tree/v1.7/notebooks/
ODEBase example.ipynb.

https://github.com/clue-developers/CLUE/tree/v1.7/notebooks/ODEBase_example.ipynb
https://github.com/clue-developers/CLUE/tree/v1.7/notebooks/ODEBase_example.ipynb
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Step 4: Simulating and Comparing Models. To evaluate the effectiveness
of the lumpings, we can simulate the original model and its reduction with the
initial conditions and the time horizon from the original paper [17].

>>> exact_sim = model.simulate(0, 2500, view=["x7"])
>>> app_sim_1 = app_lump_1.simulate(0, 2500,

view=app_lump_1.observe (["x7"]))
>>> app_sim_2 = app_lump_2.simulate(0, 2500,

view=app_lump_2.observe (["x7"])

It is possible to choose the observable of interest with the third argument in
the simulate method. The method observe computes the value of a given
observable based on the lumped variables. We now merge all simulations into
one.

>>> merged = merge_simulations(exact_sim ,app_sim_1 ,app_sim_2)

Step 5: Visualizing the Results. To visualize the merged results (Fig. 3), we
use the following line.

>>> create_figure(merged ,names=[’Exact’,’App_12’,’App_9’])

Figure 3 shows that it was possible to find further reductions beyond the
exact one. We have two exemplary situations: on one hand, the reduction with 12
species provides a small error. On the other hand, the one with 9 is too aggressive,
being close to the original only for a few units of time. This example shows that
approximate reductions provide a trade-off between the aggressiveness of the
reduction and the error of the reduced model. Depending on the modeller’s goals,
any of the reduced models can be further analyzed in Python or ERODE [8].

Fig. 3. Time evolution of C3 using approximate constrained lumping.

5 Conclusion

We presented an extension of the tool CLUE [16,24] to support approximate
reductions. The underlying theory increases the aggregation power of exact
lumping approaches [3,15,30,33] by relaxing the exactness criteria of aggrega-
tions. The extension also included simulation functionalities which allow for the
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exploration of different model reductions, and importing capabilities for popu-
lar online model repositories. Future work will extend the functionalities of the
CLUE tool to include analytic functions and to support importing and exporting
other formats such as SBML [25] and BioNetGen [5].
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