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ABSTRACT Radio-frequency identification is one of the Internet of Things’ most promising technologies
and has been recently used in combination with mobile robots for logistics in business and retail applications.
This manuscript deals with the localization of passive UHF RFID tags within industrial environments
employing receiving antennas mounted on a mobile robot by using multilateration techniques that exploit
narrowband phase-delay measurements. Two distinct Particle Filter approaches are presented to solve the
3D multilateration problem online and take advantage of a synthetic aperture created by the motion of the
robot in the environment. One of the methods can operate in the presence of acquisition jumps since it does
not rely on an unwrapping technique. Experimental results show promising performance concerning the
recent literature. Moreover, the presented approach enables robust estimations concerning signal loss due to
communication disturbances in noisy environments, typical of the industrial setting.

INDEX TERMS Radio frequency identification (RFID), industry 4.0, mobile robot, phase unwrapping,
warehouse, logistics, particle filter.

I. INTRODUCTION
In the last years, Industry 4.0 aims to advance the current
industrial environment by exploiting emerging pillar tech-
nologies to automate some human jobs like bin picking [1] or
quality inspection [2] throughout autonomous and intelligent
systems [3] and computer vision endowed with artificial
intelligence techniques [4], even though many companies
view such technologies as ‘‘black boxes’’ [5]. Furthermore,
the Internet of Things (IoT) [6] has brought widespread ben-
efits to machine-machine communication, self-monitoring,

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessandro Pozzebon.

reliability in robot localization [7], and visual control
technologies for enabling remote operations [8].

Wi-Fi and Bluetooth signal strength indicators [9], [10],
as well as time of flight metrics common to optical [11],
ultrasonic [12], and Ultra Wide Band (UWB) communica-
tions [13], [14], have recently been used to stimulate the
adoption of successful IoT solutions in industrial environ-
ments. Due to its low cost, radio-frequency identification
(RFID) is one of the Internet of Things’ most promising
technologies and it is frequently used in business and retail
services. Furthermore, it has the advantage of associating a
unique identifier to each tag and it is not impacted by lighting
conditions like machine vision techniques, allowing it to be
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used even in dark surroundings. It is worth mentioning the
possibility of robot tracking algorithms development based
on passive RFID landmarks as in [15].

This work addresses the challenge of RFID tag localiza-
tion, namely the 2π phase-cyclicity [16] and the presence of
phase offsets [17], by employing multilateration algorithms
that use narrowband phase-delay measurements exploiting
RFID signals to estimate the location of passive RFID tags.
A synthetic aperture is obtained by moving the receiving
antenna in the environment through a mobile robot platform.
The system gets the RFID tag phase readings and develops a
distance model. In 3D space, the solution of a multilateration
problem is comparable to the computation of the intersection
of two-sheeted hyperboloids. The hyperboloid surface can
be obtained by knowing the robot pose at two separate time
instants and the phase difference between the two measure-
ments. With further measurements, additional hyperboloid
surfaces can be generated and, computing intersections
between them, the positions of the tags can be reconstructed
with an increasing degree of accuracy.

In formulating the multilateration problem through a
Taylor series expansion, particle filteringmethods are applied
for localization estimation. One of the presented methods
exploits direct phase measurements thus overcoming con-
sistency issues that are typical of phase-unwrapping based
methods. Experimental tests employing synthetic and real
measurements have been conducted to evaluate the perfor-
mance of the proposed methods. Virtual measurements have
been generated analytically in a simple scenario simulated in
Matlab and in a complex warehouse simulation through the
use of the Gazebo simulator. On such datasets, Monte Carlo
simulations have been run with varying noise conditions
comprising effects related to signal reflections, multipath
routing, thermal, and electrical noises. Real acquisitions
have been conducted in a laboratory environment to validate
further the methods concerning real noise conditions on a
specific setup.

Recent literature on radiofrequency identification in local-
ization and tracking applications is discussed in section II.
Section III will introduce the proposed four different particle
filter methods, and it will be followed by a discussion on
the performed tests and experimental results in section IV.
Conclusions and final remarks are drawn in the closing
section V.

II. STATE OF THE ART
Due to their low cost and the possibility of being employed
in massive quantities, passive RFID tags are favored options
since they require minimal electronic components and no
power supply. RFID tags produce a backscatter signal with
a specific strength (RSS - Received Signal Strength) in dBm
when interrogated. Additionally, the propagation of their
signal in free space may be predicted using a conventional
radio frequency propagation model [18]. This indicator could
be used to estimate the tag’s approximate distance from
the reading antenna. Since omnidirectional antennas present

homogeneous radiation patterns, the signal attenuation can
be formulated as a function of the distance. This signal is
commonly affected by destructive or constructive interfer-
ence phenomena, absorption, and reflection. Unfortunately,
the antennae of tags and readers are directional, adding yet
another source of error that, when combined with multipath
effects, may render the distance estimation unreliable. Hence,
due to the requirement to accurately characterize several
parameters like reader and tag antenna radiation patterns
and alignments, RSS measurements are often combined with
other approaches in recent literature [19].

RFID phase-based distance estimations rely on quick,
repeated measurements of the RFID signal phase. The time
of arrival (TOA) and Time difference of arrival (TDOA)
are not applicable with commercial RFID devices due to a
lack of signal bandwidth and synchronization between the
reader and tags. The phase difference of arrival (PDOA) [20]
can be used to estimate distances (although with ambiguity).
PDOA permits measurements that can be collected using
equipment already used in industries for logging items and
that are relatively insensitive to reflections and multipath
effects. The angle of arrival (AOA) approach [21] helps
to determine the direction in which tags are traveling and
requires specialized setups to achieve acceptable accuracy.
However, their use in industrial applications is constrained
by the need for particular setups and an understanding of the
antenna properties.

Concerning PDOA, an important aspect to take into
consideration is that the computed phase difference will
surpass 2π if the robot motion is greater than a quarter of
wavelength between two subsequent measurements, gener-
ating ambiguity with the same received value at different
distances. In situations where the reader value exhibits jumps,
the phase angle signal should be conveniently unwrapped
to become continuous to employ the phase difference
measurement effectively. Unwrapping is a technique that
has been used in RFID localization to remove phase cycle
ambiguity and achieve promising results [22].

Alternatively, strategies that utilize a single moving
antenna to simulate a synthetic aperture radar (SAR), have
been suggested in recent years to minimize the necessity
for numerous antenna systems and to improve the accuracy
of localization [23] while solving the phase-measurements
ambiguity. SAR techniques were originally intended for
offline reconstruction due to the grid-based nature of such
algorithms [24]. Recently, online estimation results have
been obtained using optimization algorithms like Particle
Swarm Optimization (PSO) [25], which, however, do not
guarantee convergence of the result due to the non-convexity
of the objective function investigated to find the position of
the tag. A mobile robot can move the antenna around the
environment, making it possible to sort RFID tags in libraries,
production lines, or offices [26] and even localize itself [27].
In any case, the RFID tag localization problem exceeds that
of sorting in complexity and requires more effort from an
algorithmic and computational burden point of view.
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FIGURE 1. Simplified scheme of the elements involved in an RFID
communication scheme. r is the range between the reader and tags
antennas. θTX , θRX , and θTag are characteristics that depend upon the
electronic circuits and are contained in the phase offset φ0. TX represents
the transmitting electronics and RX the receiving electronics components.

A different PDOA approach offering limited issues caused
by phase ambiguity consists of exploiting geometrical
relations for the localization of RFID tags and results in
computing or estimating the intersections between multiple
hyperbolae [28]. A hyperbola is mathematically defined as
a set of points that have a specific geometrical relation
with other two points in the space, called foci since the
difference of their distance with each of them is constant.
By this definition, if two antennas are exactly located on
the foci, then the tag belongs to the associated hyperbolic
curve and accurate position estimation can be obtained
by the intersection of multiple conics. Compared to the
SAR approaches, these techniques typically exhibit lower
elaboration time.

A large number of RFID approaches deal with tag localiza-
tion in two dimensions since application environments like
warehouses store goods and products in scaffolds, shelves,
or boxes and thus 2D solutions can efficiently localize them.
However, recent approaches to 3D localization can be found
in the literature. For instance, in [29] and [30] the authors
use backscattered signal phase and synthetic apertures to
estimate the 3D position of passive RFID tags using two
RFID reader antennas on amobile robot. Neither large phased
array antennas nor reference tags are needed. However, the
method proposed in [29] requires a large elaboration time
for large spaces due to the exhaustive grid-search approach
for pinpointing tag location. Reference [30] relies on phase
unwrapping to get faster results with an iterative algorithm
exploring a convex function, but it is subject to unwrapping
failures.

In [31], the authors have put forth a novel technique for
localizing 3D RFID tags that involves driving the motion
of an antenna coupled to a mobile robot along non-straight
paths. Results show a 35 cm mean error in a case where
tags are positioned on several vertical planes. The work
in [32] has reported an improved Interferometric SAR-based
3D localization that enables quick estimations with a mean
accuracy of 18.4 cm on a moving single antenna system.
A recent approach exploited synthetic apertures and phase
unwrapping together with least square methods to solve the

FIGURE 2. Two sheeted hyperboloid in canonical form.

multilateration problem [33], obtaining an accuracy of around
12 cm, further improving localization accuracy with respect
to previous works.

Following this trend, this work will introduce particle
filter methods for the 3D localization of goods in warehouse
and retail scenarios [34]. Opposed to previous results,
the presented approach proposes a solution to address
situations when a correct unwrap of the phase signal is not
possible. Moreover, the usage of Particle Filtering leads to a
reliable method capable of operating within more complex
environments. Compared to other optimization algorithms
that can be employed for tags’ position estimation, such as
PSO, the particle filter is aMonte Carlo estimator that aims to
reconstruct a probability density function (pdf), which allows
for greater control over the output of the algorithm and in the
validation of performance.

III. METHODS
By considering a reader antenna on a moving robot, and
considering a given RFID tag, the relative distance r between
the antenna and the tag changes. The moving reader antenna
can interrogate the tag numerous times to acquire a phase
observation sequence, and the signal phase variation can be
used to determine the relative phase history of the signal. The
mathematical relation between the effective distance ri and
the measured phase signal φi at time instant i is given by:

φi =

(
2π
λ

2ri + φ0

)
mod 2π, (1)

whereλ is the free spacewavelength andφ0 is the phase offset
(see Figure 1). To eliminate the dependence on the phase
offset φ0, differential measurements can be employed

1(φi) =

(
2π
λ

21(ri)
)
mod 2π (2)

where the operator 1(·) is defined as the difference between
successive timesteps values, i.e., i and i− 1.

The multilateration problem can be solved by comput-
ing the intersection of two-sheeted hyperboloids (quadric
surfaces) in three dimensions. The location of the tag on
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FIGURE 3. A tag position can be estimated as the intersection among
three hyperboloids.

the hyperboloid surface can be determined by exploiting
two successive robot poses and the corresponding measured
phase difference. Figure 2 shows the solution space of
possible tag positions generated by moving the antenna
from one position to another, which corresponds to a two-
sheeted hyperboloid. Exploiting additional measurements,
a more accurate approximation of the tag’s location can be
obtained by intersecting multiple hyperboloids generated by
the antenna and robot motion. Figure 3 illustrates this concept
graphically for the minimal case of three hyperbolae.

The distance range between the tag coordinates
P = [x, y, z]T and the i-th position of the moving antenna
Pi = [xi, yi, zi]T can be computed as:

ri = ∥Pi−P∥ =

√
(xi − x)2 + (yi − y)2 + (zi − z)2 (3)

It is usually convenient to work with the pseudo-ranges
mi representing the time difference of a traveling wavefront
touching each antenna position, and that can be defined
starting from the first reading r1 as:

mi = ri − r1 , i = (2, 3, 4, . . . , n) (4)

Concerning phase measurements, it is usually important to
employ an unwrapping procedure to address the uncertainty
caused by the phase cycle. When the absolute jumps between
successive phase samples are more than or equal to the
jump tolerance π , the phase angles are adjusted by adding
additional cycles. Naming the unwrapped phase φu, the
procedure is equivalent to:

φu1 = φ1 (5)

φui = φi − 2π ∗

⌊
φi − φui−1

2π
+

1
2

⌋
(6)

However, it is important to notice that to successfully use
an unwrapping procedure the tag readings acquired from
the antennas should be continuous and not present large
holes, i.e., the spatial sampling must be below λ/4. This is
a limitation of many existing methods that rely on such a
technique and thus require highly reliable antenna readings.

The following paragraphs will introduce particle filter (PF)
methods for the estimation of tag positions either relying on
an unwrapped phase signal or exploiting a direct phase signal,
thus allowing the tag position estimation even in the presence
of signal loss or occlusions of tags during the acquisition.
These filters exploit a Taylor series expansion formulation
of the pseudo-ranges system of equations as presented in the
following.

A. TAYLOR SERIES EXPANSION
Defining the function h(P) = hi(x, y, z) = mi + ϵi with
i = 2, 3, . . . , n where mi are the pseudo ranges in (4) and ϵi
are the estimation errors of range difference with covariance
matrix Q. Given the tag position P and an initial estimation
of it Pv = [xv, yv, zv]T , affected by an estimation error
4 = [ξx , ξy, ξz]T , this could be obtained by expanding the
function hi as

hi(P) ≈ hi(Pv) + ai,1ξx + ai,2ξy + ai,3ξz = mi + ϵi (7)

where

ai,1 =
∂hi
∂x

∣∣∣
Pv

=
x1 − xv
r1

−
xi − xv
ri

, (8)

ai,2 =
∂hi
∂y

∣∣∣
Pv

=
y1 − yv
r1

−
yi − yv
ri

, (9)

ai,3 =
∂hi
∂z

∣∣∣
Pv

=
z1 − zv
r1

−
zi − zv
ri

. (10)

The equations can be combined in matrix form as

A4 = D+ E , E =


ϵ2
ϵ3
. . .

ϵn

 (11)

A =


a2,1 a2,2 a2,3
a3,1 a3,2 a3,3
. . .

an,1 an,2 an,3

 ,D =


m2 − h2(Pv)
m3 − h3(Pv)

. . .

mn − hn(Pv)

 (12)

and an estimation of the 4 vector can be found as

4 = (ATQ−1A)−1ATQ−1D (13)

This allows finding a new estimation, and by iterating the
procedure, the estimation error can be reduced below a
desired threshold, which should be lower than the noise
measurement reading.

B. PARTICLE FILTERS
Starting from the solution found with the Taylor expansion,
a PF can be designed considering typical process and
observation models defined as:

xi = f (xi−1, ui,wi) (14)

zi = h(xi, vi) (15)

where xi is the state at time instant i, ui is the input at
time i, zi is related to the measured phase signal at time
i, wi and vi are white noises independent of each other.
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f is a function representing the evolution of the state of the
process and h is an observation function as defined in the
previous paragraph. The process model is used to compute
the state that is expected at a certain instant in time, given all
measurements up to such an instant. Measurements are used
in the observation model to refine the expected state estimate
using Bayes’ theorem and obtain a posterior distribution.

A PF represents the posterior probability bel(xi) of the
system state xi at time instant i with a distribution of samples
called particles. Such distribution is an approximation of
the real posterior and can assume any shape and be
multi-hypothesis. Each particle xki is a hypothesis of xi.
In our approach, in order to reduce the computational
cost of the particle filter, each particle represents the
state vector composed only by the position of the RFID
tag [x, y, z]T .
A typical PF is composed of three steps. In the first step,

each particle estimation is updated by sampling a new value
from the state transition distribution probability function
p(xi|ui, xi−1). In our methods, this first step is omitted since
the positions of the RFID tags are considered fixed in time
and do not require any update during the antenna motion
(xi = xi−1).
The second step of the filter concerns the computation of

the importance factor wki for each particle k . This factor is
used to embed the measurement zi in the set of particles and
is defined as wki = p(zi|xki ).

The third step of a PF is the resampling phase, in which
particles are sampled from the original set based on
their importance factor to obtain a new set of particles
with the same dimension as the original one but with
a probability distribution that better resembles bel(xi).
The aim is to prevent the degeneracy of the propa-
gated particles and improve the exploration of the state
space.

It has to be considered that by skipping the first step of
the PF no randomness is introduced in the particle position.
Thus, randomness is introduced during the resampling phase.
A random indetermination is added to the position of the
particles that should replace existing ones while winning
particles remain unchanged.

Since the process model is stationary (p(xi|xi−1) = 1), it is
possible to formulate the problem by recursion as a sequential
estimate of the distribution states at time i− 1 as:

p(xi|z1:i) ∝ p(zi|xi)
∫
p(xi−1|z1:i−1)dxi−1 (16)

The following paragraphs will present two different PFs
based on the presented formulation.

The first filter employs the phase unwrapping technique,
and it needs to control its consistency. The other PF has
been designed to run without unwrapping and it only requires
the first phase measurement and the first antenna position to
compute future PDOA. The advantage of such a method is
that there is no need to verify the antenna positions to check
the unwrapping consistency.

C. PF WITH KALMAN FILTERING AND PHASE UNWRAP
(PF-KU)
Since there is no a-priori knowledge of the correct initial
hypothesis, the proposed PF starts creating a random
distribution of N tag position hypothesis (particles) in the
3 dimensions. In this filter, the particle state contains the
position of the tag [x, y, z]T .

An independent Extended Kalman Filter (EKF) is associ-
ated with each particle. As previously introduced, since there
is no control input, the predicted state will be equal to the
previous one plus a certain process Gaussian noise.

At each reading, the antenna position and phase are stored
and a new position of each particle is generated.

The update of the particle positions is realized with a
Kalman filter that uses as input the unwrapped distance
that corresponds to the ri − r1 difference and the following
expected measure:

z̄i = hi(x, y, z) = mi · η + v̂i (17)

with v̂i the measurement noise, and the constant η that
converts the expected distance in the expected phase and it
is equal to:

η =
4π
λ

(18)

Computing the Taylor expansion of the h function at the
actual point Pi it is possible to write:

z̄i = hi(Pi) + Hi(P− Pi) (19)

with Hi the matrix of partial derivatives of hi.
The effective measure results equal to the difference

between the first unwrapped phase (φu1 ) and the actual
unwrapped phase (φui ) readings:

zi = φui − φu1 (20)

TheH matrix has been computed by converting the phases
into lengths. Hence, it is possible to write:

1Pi = Ki(zi(t) − z̄i(t))/η (21)

P̂i = Pi + 1Pi (22)

where Ki is the Kalman gain

Ki = CiHT
i (HiCiH

T
i + Ri)−1 (23)

with Ri the measurement noise covariance matrix and Ci the
prior estimate uncertainty predicted at the previous step.

In this way, the particle position is corrected by the EKF
filter that tries to set to zero the innovation. The importance
factor is given by the measurement probability:

wki =
1

√
2πσ 2

e−
1
2

1z2i
σ2 (24)

where the standard deviation σ 2 represents the phase
measurement indetermination.

Finally, the weight factor wi is filtered with a low-pass
filter to reduce the sensitivity to localization errors or spurious
readings.
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FIGURE 4. Evolution of the PF-KU method in estimating a tag position in
the plane employing 1600 particles. The exact tag location is shown as a
red X marker. Color mapping has been chosen to distinguish between
different iterations (4) of the PF algorithm. In all iterations, the particles
are arranged along the last hyperbola hypothesis that depends upon the
current position of the antenna. All the hypotheses have a common
intersection in the actual solution.

Due to the efficacy of the Kalman filter, there is no need
for a resampling procedure. Only the particles that move out
of the workspace are re-sampled randomly.

With this method, the particles tend to arrange along the
actual hyperbola as shown in Figure 4.

D. PF WITH KALMAN FILTERING WITHOUT UNWRAP
(PF-KW)
The main idea of this filter builds upon the EKF concept of
innovation, which is the difference between the sensor mea-
surement and the expected measurement model output.When
the estimate of the tag position is correct, the innovation value
will be close to zero. Hence, it is possible to consider phase
differences (appropriately converted to lengths) as input for
the innovation. Removing the dependency on the unwrapped
phase allows for using measurements that are not continuous
in time and improving the estimations even in the presence of
few sensor readings. In this way, we can consider the expected
measure as:

z̄i = hi(x, y, z) = (mi · η)mod2π + v̂i (25)

and the measure as:

zi = φi − φ1 (26)

As in the previous filter, each particle corrects its position in
the update phase towards a direction computed starting from
the measurement zt .
It is important to notice that since the phase is not

unwrapped, the probability measurement is periodic with
period π . Moreover, the PF is sensible to symmetry in the
solutions. For this reason, the direction in which the antenna
is facing is used to solve the ambiguity introduced by the
symmetry.

IV. METHOD VALIDATION
The performances of the suggested approaches have been
examined by using three different datasets. Two datasets

include artificial data that was produced with different
simulation techniques. A third dataset was obtained from
an indoor testing environment. All of the datasets offer
locations of two moving antennas attached to a mobile
robot and of the corresponding phase signals that were
recorded by the antennas detecting a set of tags fixed to the
surroundings.

Multiple Monte Carlo simulations over various noise
circumstances, taking into account signal reflections, multi-
path, electrical, and thermal disturbances, were run thanks
to synthetic datasets. The actual dataset demonstrates how
closely the estimated performance matches the informa-
tion. The 3D error metric employed to assess the accu-
racy of the proposed methods on the conducted tests
is:

E3D =

√
(x − x̂)2 + (y− ŷ)2 + (z− ẑ)2 (27)

where the tag actual location has coordinates P =

[x, y, z]T while the tag estimated position is referred as
P̂ = [x̂, ŷ, ẑ]T .

A. MATLAB SYNTHETIC DATASET
A simulation has been created with Matlab by generating
motion trajectories for two antennas and phase signals pattern
considering a free workspace and a passive RFID tag with
coordinates P = [1, −0.5, 1.5]T m. The motion of the
antennas is coupled since they are considered attached to
the body of a mobile robot that moves in the environment.
The antennas’ coordinates in the simulation present an offset
from the ground (z-axis) of 0.95 m for the lower antenna
and 1.2 m for the upper one. The top antenna motion starts
at P1 = [0.5, −2.0, 1.2]T m moving on a straight line
to the coordinates P66 = [3.75, −2.0, 1.2]T m generating
new coordinates every 5 cm. The motion continues with a
change of orientation (on the y-axis), reaching the position
P133 = [3.75, 1.35, 1.2]T m with the same stride of 5 cm
and moves again on the x-axis toward the tag reaching the
final position P200 = [0.4, 1.35, 1.2]T m with 67 additional
steps. An equivalent path is generated for the lower antenna.
The motion of the antennas and the tag coordinates are shown
in Figure 5. A 1 mm random noise has been added to the z-
coordinates of the antennas to improve the numerical stability
of the algorithms.

The simulation considers an empty environment with
straight signal path propagation, and to globally account for
environmental disturbances, a zero-meanGaussian noisewith
0.1 rad standard deviation is added to the generated phase.
Repeated simulations have been conducted in 100 runs to
statistically validate the robustness of the presented methods
under varying noise conditions considering not modeled
phenomena like thermal fluctuations.

Analyzing the localization error, the results demonstrate
accurate predictions using both approaches, with values in the
centimeter range. The boxplot of the resulting errors is shown
in Figure 6.
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FIGURE 5. Trajectories of the two antennas and the tag position in the
Matlab synthetic dataset.

FIGURE 6. Boxplot of the E3D error of the methods in the Matlab
synthetic dataset.

B. GAZEBO SYNTHETIC DATASET
A second testing campaign has been run on a dataset gener-
ated in Gazebo under ROS thanks to an RFID plugin [35] that
allows placing tags and antennas freely inside any simulation.
The RFID phase model equation used in the simulator is
consistent with eq. (2). Two antennas have been attached on
top of a mobile robot that has been moved inside a warehouse
environment to generate synthetic apertures and estimate the
position of 10 tags placed at different heights within the
environment. Six tags are attached to a scaffold at a height
of 2.05 m, with the remaining tags on a second scaffold at a
lower height of 1.85 m.

To collect statistical information on the localization
methods’ performance, a Monte Carlo simulation has been
performed on the same warehouse environment without
altering the location of the tags but generating 100 different
paths for themotion of themobile robot. The simulator allows
specifying model noise properties to account for possible
disturbance sources and phenomena and a Gaussian Noise
with zero mean and 0.1 rad standard deviation has been
selected for the generation of the data. Figure 7 shows one
example trajectory motion of the simulated robot and the

FIGURE 7. Example trajectories performed by the two virtual antennas of
the Gazebo synthetic dataset. The plot illustrates the position of 10 tags
deployed in the simulated environment.

FIGURE 8. Boxplot of the E3D error obtained from the presented methods
on the Gazebo synthetic dataset.

10 tags placed in the synthetic environment, while Figure 8
depicts the E3D errors obtained by the proposed methods as
a bar plot. With respect to the prior dataset, the estimation
error variability is higher for all presented methods. This
could be due to the variety of the robot’s motion trajectories
generated, which differ in the produced synthetic apertures,
and by the various positions of the tags in the surrounding
environment. In fact, depending on how close the antenna
was to each tag during the robot’s motion, a trajectory
might be good for estimating one tag but bad for predicting
another.

For both approaches, the median error values were below
8 cm, making them competitive in light of recent academic
research in the area.

It has to be noticed that if there is a jump in the reading
of a certain tag due to excessive distance from the powering
antenna or due to occlusions, the PF-KU method could fail,
and the error estimation reported in the boxplot statistics
refers to optimal conditions where tags are read continuously
by the antennas. If this is not the case, the error could easily
shift above 3 meters. Figures 9 and 10 show what happens
to the tag position estimation when the measurements are
not continuous in the case of employing the PF-KU and the
PF-KW respectively.
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FIGURE 9. Estimation values of a tag position using the PF-KU method.
The estimation error is small until step 220 when there is a first jump in
the reading. Due to this discontinuity, the successive estimations are not
correct anymore.

FIGURE 10. Estimation values of a tag position using the PF-KW method.
In this case, even in the presence of multiple jumps starting at step 220,
the estimation error remains bounded.

C. EXPERIMENTAL DATASET
An indoor environment has been used to carry out an
experimental campaign using a mobile robot manufactured
by the MobileRobots firm, the Pioneer 3-AT UGV. The
robot has been equipped with an antenna system com-
posed of two circularly polarized UHF-RFID antennas
(WANTENNAX019) manufactured by C.A.E.N. RFID and
a reader platform by Impinj (Speedway Revolution R420).
Figure 11 shows the setup of the antennas mounted on
the mobile robot at a 125 cm and 71 cm height from the
ground.

The robot has a zero-radius rotation capability and
skid-steers on four wheels. It has a computer linked to a
microcontroller and 16 sonars distributed across its four sides.
The microcontroller on the robot employs sonar sensing
to detect obstacles, is responsible for the position update
from the wheels’ encoders, and it interfaces with the motors
for the actuation commands. An additional input source for
the robot localization is provided by a laser range finder
device, the Hokuyo UTM-30LX. The tags employed for the
measurement campaign are Impinj Monza R6 chips with a
-22.1 dBm sensitivity. The acquisition has been performed

FIGURE 11. Hardware equipment employed for the experimental dataset.
The mobile robot is a Pioneer3-AT with two RFID antennas on top.

FIGURE 12. Trajectories performed by the two antennas of the mobile
robot during the experimental session. 38 RFID tags were displaced on
the walls and attached to carton supports in the middle of the
scenario.

at a frequency of 865.7 MHz (ETSI Channel 4) and with a
transmission power of 27 dBm.

A Simultaneous Localization and Mapping (SLAM)
method [36] predicted the antennas’ pathways with centime-
ter order accuracy as the robot was maneuvered around the
indoor environment using a joystick interface. Robot motion
followed curved paths inside an office scenario moving
around some tags displaced at the center of the environments
and facing several tags mounted on the office walls. Figure 12
shows the acquired motions of the antennas and the tags’
positions.

The trials were carried out in an office with metallic
elements such as structural beams, computers, electronic
gadgets that might induce electrical interference, reflective
surfaces such as walls, and office desks that produced
multipath phenomena.
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FIGURE 13. Localization errors obtained in the experimental tests with
the proposed methods.

TABLE 1. A comparison with state-of-the-art methods concerning 3D
location error.

Figure 13 depicts the localization error obtained in the
experimental dataset 3. The obtained accuracy is competitive
concerning the most recent literature. The presented methods
obtained a median accuracy lower than 2 cm. Approaches
based on the Kalman filter exhibit good repeatability of the
estimation in comparison to earlier results achieved using
synthetic datasets. This might be because Gaussian noise
was injected into the synthetic data for each Monte Carlo
run, while for the 10 experiments, the noise conditions were
presumably similar.

Table 1 presents a comparison with SOTA algorithms con-
cerning 3D localization accuracy summarizing the obtained
results on similar setups.

D. IMPORTANT REMARKS
Analyzing the results and the methods’ behavior in the per-
formed tests, some interesting points could be drawn. The
synthetic aperture strategy is used by all methods, and the
final obtained estimation accuracy depends on the antenna’s
trajectory. Particularly, the particle predictions are more
accurate close to where the actual tags are located. Therefore,
a thorough exploration of the environment will be an effective
procedure. Another importantmatter is the aperture size in the
z-coordinate. In fact, even though the proposed algorithms
may be used with either a single antenna or multiple
antenna configurations interchangeably, the performance of
single antenna setups is worse than double antenna ones
due to the larger set of solutions that satisfy the phase
equation (a big portion of an ellipsoid). Finally, compared
to previous approaches in the literature, the algorithms can
operate without the need for a phase unwrapping procedure

because the observed phase signal is sufficient to calculate the
likelihood of the created particles thus resulting as suitable
even when the measured phase signal is discontinuous due to
the missing reception of a tag information.

V. CONCLUSION
One of themost critical tasks in Industry 4.0 for logistics is the
automatic management of inventory. Accurate localization,
mapping, and environmental awareness are necessary for
effective robot motion and planning, and goods position
estimation. The overall efficiency mainly relies on sophis-
ticated sensing technologies to track the robot’s mobility
and measure items’ placements. This article introduces
particle filter techniques that use phase measurements and
synthetic apertures to estimate the 3D positions of tags
by solving a multilateration problem formulated through
a Taylor series expansion. Experimental tests have been
run on synthetic and real datasets showing state-of-the-
art results. It is worth noticing that since the approaches
utilize synthetic apertures, the performance of the methods
depends both on the trajectory of the reading antenna and
the distribution of particles in the surrounding environment.
In light of these considerations, forthcoming efforts will focus
on enhancing the motion dynamics of the mobile platform,
aiming to minimize the ambiguity in tag location estimation.
Additionally, there will be an exploration of innovative
tactics for particle sampling within the environment aimed at
circumventing local minima and directing predictions toward
areas of high probability.
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