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Direct Detection of Bipolar Pulse Amplitude
Modulation
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Abstract—Pulse amplitude modulation (PAM) is a widely
employed digital modulation format. PAM formats are generally
classified as bipolar PAM (BPAM) if using both positive and
negative amplitude levels, and unipolar PAM (UPAM) if using
only non-negative amplitude levels. While BPAM formats are in
principle more energy efficient, they are not compatible with con-
ventional direct detection (DD) schemes, so that UPAM formats
are usually preferred for short-reach optical communications. In
this work, we propose a novel DD scheme that employs oversam-
pling at two samples per symbol to extract both the amplitude
and phase information from the received optical signal, enabling
the detection of BPAM signals. The proposed scheme uses a single
photodetector, has no special requirements in terms of bandwidth,
and requires only some minimal additional processing compared
to a conventional scheme. A theoretical analysis, confirmed by
numerical simulations, shows that, in the presence of optical
amplifier noise, the proposed BPAM/DD transmission technique
provides large optical signal-to-noise ratio gains compared to a
more conventional UPAM/DD transmission and a good tolerance
to group velocity dispersion and non-ideal filtering.

Index Terms—Optical fiber communication, pulse amplitude
modulation, , direct detection, optical interconnections, modula-
tion formats.

I. INTRODUCTION

According to the terminology used in optical communica-
tions, optical systems are commonly divided into two main
categories: coherent detection (CD) systems and direct detec-
tion (DD) systems. The former are characterized by the use of
a local oscillator laser, whose light is mixed with the received
optical signal before photodetection,1 whereas the latter do not
require a local oscillator and employ a single photodiode to
detect the intensity of the received optical signal.

With respect to CD, DD is simpler, cheaper, and has no
issues related to phase and polarization stability, being in
fact insensitive to phase and polarization rotations. For these
reasons, DD systems were the only ones practically used in
optical communications until about a decade ago and are, still
today, the preferred choice for short-reach links and optical
interconnects. However, DD has also some relevant limitations
compared to CD, so that the latter is now preferred for long-
haul and submarine links [2, Sec. 2,6,7,12–14].

A first limitation of DD systems is their sensitivity to
the receiver thermal noise, which is instead typically neg-
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1In wireless systems, “coherent detection” is commonly used with a
different meaning, as it refers to a detection scheme that assumes perfect
knowledge of the carrier phase (see also [1, Footnote 10] for a discussion on
the different terminologies adopted in the optical and wireless communities).

ligible in CD systems thanks to the inherent amplification
mechanism provided by the local oscillator. This limitation
is, however, almost irrelevant for optically amplified systems,
whose performance is dominated by amplified spontaneous
emission (ASE) noise. In fact, due to the greater technological
complexity of CD, the advent of optical amplifiers in the early
nineties has practically stopped the research on CD systems
for nearly two decades [3, Sec. 1.1.2].

A second limitation of DD systems is their ability to detect
only the intensity of the optical signal, apparently losing the
information contained in its phase, whereas CD systems are
able to detect both amplitude and phase of the signal (or,
equivalently, the two quadrature components). This informa-
tion loss puts some constraints on the modulation formats that
can be detected by DD and makes harder, or even impossible,
the compensation of some transmission impairments. Usually,
in DD systems, the baseband modulating signal is constrained
to be real and positive, so that it can be directly mapped to
the field intensity and recovered by the DD receiver: these
systems are referred to as intensity-modulation/direct-detection
(IM/DD) systems.

The aforementioned constraint makes IM/DD systems less
efficient than CD systems. For instance, in a generic pulse
amplitude modulation (PAM) alphabet, the M amplitude levels
are selected to optimize the system performance under some
specific constraints. IM/DD systems, due to the non-negativity
constraint on the amplitude levels set by the square-law
detector, employ a unipolar PAM (UPAM) alphabet A =
{A1, A2, . . . , AM}, with AM > AM−1 > . . . > A1 ≥ 0 [4].
On the other hand, CD systems, which are not constrained
by the square-law detector, usually resort to a more efficient
bipolar PAM (BPAM) alphabet A = {±A1, . . . ,±AM ′}, with
M ′ = M/2 and AM ′ > AM ′−1 > . . . > A1 > 0 [5, Sec.
5.2], [6, Sec. 4.3.1]. In general, BPAM can achieve the same
minimum distance between the amplitude levels as UPAM
with a significantly lower energy per bit—up to 6 dB lower
for large M . This advantage can be exploited by CD systems,
but not by IM/DD systems, making the former much more
efficient than the latter in terms of required signal-to-noise
ratio (SNR), even in the presence of optical amplifiers.

There have been various attempts to overcome also this
second limitation of DD systems and combine the advantages
of amplitude and phase modulation with the simplicity of DD
[7]. Some important results in this sense are discrete multitone
PAM [8], carrierless amplitude and phase modulation [9],
single-sideband (SSB) modulation combined with orthogonal
frequency-division multiplexing (OFDM) [10], [11] and the
Kramers–Kronig (KK) receiver [12]. Typically, the possibility
of detecting both signal amplitude and phase comes at the
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cost of inserting a strong optical carrier (hence frustrating any
benefit in terms of required SNR) and/or increasing the mod-
ulator/demodulator complexity and the receiver bandwidth.

A fundamental question that arises when considering DD
is if and how much it reduces the capacity of the additive
white Gaussian noise (AWGN) channel with respect to the
classical CD case studied by Shannon in his seminal work
[13]. The capacity of the DD channel with AWGN has been
investigated in the optical literature in two main scenarios [14,
Ch. 11], depending on whether the AWGN is added before the
photodetector (e.g., optical noise generated by optical ampli-
fiers) [15]–[17] or after the photodetector (e.g., thermal noise)
[18]–[20]. The first case has been studied also in the context
of phase-noise channels [21], [22], whereas a mixed scenario,
with both optical and thermal noise, has been investigated in
[23]. Here, we are specifically interested in the optical-noise
scenario. Formally, the problem can be reduced to comparing
the capacity of two band-limited waveform channels: the
AWGN channel y(t) = x(t)+w(t)—where x(t) and y(t) are,
respectively, the input and output complex waveforms with
(two-sided) bandwidth B, and w(t) is the AWGN noise—and
the corresponding DD channel, y′(t) = |x(t) + w(t)|2. A
similar problem has been widely investigated in the past, but
with specific reference to the discrete-time versions of the
same channels, yk = xk+wk and y′k = |xk+wk|2, where xk,
yk, wk, and y′k are the samples of x(t), y(t), w(t), and y′(t) at
time t = k/B. In this case, the loss of the phase information
nearly halves the available degrees of freedom, approximately
reducing the capacity by a factor of two [15], [16], [21], [22],
[24]. However, a key issue that needs to be considered when
referring to waveform channels—especially in the presence
of a nonlinear element such as the square-law detector—is
if the considered discrete-time channels are correct equivalent
representations of the original waveform channels [25]. In fact,
while sampling the output of the band-limited AWGN channel
at rate B provides a sufficient statistic—indeed, this is the
approach used by Shannon to derive his famous capacity result
on this channel [13]—the output of the DD channel requires
a doubled sampling rate to obtain a sufficient statistic. This is
understood by noting that the square-law detector transforms a
complex signal of bandwidth B into a real signal of bandwidth
2B, so that the phase information is hopefully not completely
lost, but simply transferred at higher frequency. This intuition
is the basis for the demonstration of the following recent result
on the capacity of the DD channel: with a sampling rate of 2B,
the apparently lost phase information is almost fully recovered,
so that the capacity of the DD channel is at most 1 bit (per
channel use) less than the capacity of the AWGN channel [17].

In this work, inspired by the key result on the capacity of
the DD channel [17], we propose a simple DD scheme that
allows to extract both the amplitude and phase information
by employing oversampling: while the samples taken in the
middle of each symbol time provide information about the
symbol amplitude, the additional samples taken at interme-
diate times provide information about the phase difference
between consecutive symbols. The proposed scheme enables
the detection of BPAM signals, with a significant advantage
in terms of required SNR and tolerance to group velocity
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Fig. 1. Basic principle for detection of amplitude and phase by oversampling.

dispersion (GVD) compared to conventional IM/DD systems.
The performance of BPAM/DD systems and their superiority
compared to IM/DD systems is theoretically and numerically
investigated, both in an ideal and in a more realistic scenario.
A preliminary experimental demonstration of these results has
been presented in [26].

The work is organized as follows. Section II introduces the
basic principle of operation of the proposed detection scheme.
Section III describes the modulation and direct detection of
UPAM and BPAM signals, compares the two formats in terms
of energy efficiency, and introduces a semianalytical method
for the evaluation of performance (whose details are provided
in the Appendix). Section IV validates the semianalytical
method and provides some numerical results on the perfor-
mance of UPAM and BPAM and their tolerance to GVD and
non-ideal filtering. The practical implementation of the system
and the comparison with other DD techniques are discussed
in Section V. The conclusions are finally drawn in Section VI.

II. DIRECT DETECTION OF AN AMPLITUDE- AND
PHASE-MODULATED SIGNAL

Before delving into a detailed description of the proposed
transmission technique, we briefly illustrate the basic principle
on which it is based. Fig. 1 shows two consecutive pulses
(green filled lines) amplitude-modulated by symbols with
either the same (upper row) or opposite (lower row) phases.
Coherent detection of the pulses, as illustrated in the left
column of Fig. 1, produces a photocurrent that is proportional
to the complex envelope (blue line) of the optical signal. In this
case, the even samples (circles), taken in the middle of each
symbol time, are a sufficient statistic to determine both the
amplitude and the phase of the transmitted symbols. On the
other hand, direct detection of the pulses, as illustrated in the
right column of Fig. 1, produces a photocurrent that is propor-
tional to the intensity (red line) of the optical signal, so that the
even samples provide information only about the amplitude of
the symbols (always “1” in this example), but not about their
phase. However, the odd samples (squares), which depend on
the constructive or destructive interference between the two
pulses, supply the missing piece of information necessary to
determine the phase difference. In the example of Fig. 1, the
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Fig. 2. Lowpass equivalent representation of the system.

odd sample has a high or low value when the symbols have
the same or opposite phases, respectively. This mechanism can
be extended to symbols with arbitrary amplitudes and phases,
allowing the detection of both amplitude and (differential)
phase modulation.

Based on the above, we consider a generic system with
linear modulation of the optical field [5, eq. (2.107)] and direct
detection, corrupted by amplifier noise. The lowpass equivalent
representation of such a system is depicted in Fig. 2. The
choice of an ideal linear modulator is due to its amenability
to analytical developments, but a Mach–Zehnder modulator
(MZM) can be used in practical realizations, as explained in
Section V. The complex envelope of the transmitted optical
field is

x(t) =
∞∑

i=−∞
xip(t− iT ) (1)

where p(t) is the supporting pulse with Fourier transform
P (f), T the symbol time, and xi the i-th symbol, drawn from
a given modulation alphabet. The signal, after propagating
through the optical fiber with transfer function Hf (f), is cor-
rupted by ASE noise with power spectral density N0, filtered
by an optical filter with low-pass equivalent transfer function
Ho(f), and photodetected. Defining the overall channel trans-
fer function as H(f) = P (f)Hf (f)Ho(f) with corresponding
impulse response h(t) = F−1{H(f)}, and assuming an
ideal noiseless photodetector with infinite bandwidth and unit
responsivity, the photodetected signal can be expressed as

y(t) =

∣∣∣∣ ∞∑
i=−∞

xih(t− iT ) + w(t)

∣∣∣∣2 (2)

where w(t) is the filtered ASE noise, with power spectral
density N0|Ho(f)|2. The photodetected signal is then sampled
by a couple of parallel symbol-time samplers, offset by T/2,
to obtain two sequences of samples (corresponding to the
even and odd samples when sampling at twice the symbol
rate). Denoting by hk , h (kT/2) the channel coefficients
and wk , w(kT/2) the noise samples, we have

yk = y(kT ) =

∣∣∣∣ ∞∑
i=−∞

h2(k−i)xi + w2k

∣∣∣∣2 (3)

y′k = y(kT − T/2) =

∣∣∣∣ ∞∑
i=−∞

h2(k−i)−1xi + w2k−1

∣∣∣∣2 (4)

In order to simplify the analysis, we assume that all the
coefficients hk vanish for |k| > 1.2 This simplified assumption
is adopted only to illustrate the working principle and to design
the detection strategy, but will be removed in the numerical
results shown in Section IV. With this assumption, letting

nk = 2<{h0xkw∗2k}+ |w2k|2 (5)

n′k = 2<{(h−1xk + h1xk−1)w∗2k−1}+ |w2k−1|2 (6)

the received samples (3), (4) can be rewritten as

yk =
∣∣h0xk + w2k

∣∣2 = |h0xk|2 + nk (7)

y′k =
∣∣h−1xk + h1xk−1 + w2k−1

∣∣2
= |h−1xk|2 + |h1xk−1|2

+ 2|h−1h1xkxk−1| cos(∆φk + θ) + n′k (8)

where ∆φk is the phase difference between the symbols xk−1
and xk, θ the phase difference between the coefficients h1 and
h−1, and (5), (6) are the noise terms affecting the even and
odd samples, respectively. Eventually, the receiver in Fig. 2
computes the auxiliary decision variable

zk = y′k − c−1yk − c1yk−1 (9)

where the real coefficients c±1 = |h±1/h0|2 depend on the
overall channel response. By using (7) and (8), the auxiliary
decision variable (9) can be expressed as

zk = 2|h−1h1xkxk−1| cos(∆φk + θ) + ηk (10)

where ηk = n′k − c−1nk − c1nk−1 is the noise term.
Conventional IM/DD systems employ only the even samples

(3) obtained from the upper branch of the receiver in Fig. 2.
As shown in (7), these samples depend only on the squared
modulus |xk|2 of the corresponding modulation symbols. In
this case, any information about the symbol phase (or even
polarity) is completely lost, so that only alphabets with real
non-negative symbols are usually considered. On the other
hand, as shown in (10), the auxiliary decision variable zk,
obtained from the lower branch of the receiver, depends
also on ∆φk. Thus, once the amplitude information has
been recovered, it can be employed to determine also the
phase difference between consecutive symbols, provided that
−θ ≤ ∆φk ≤ π − θ (θ = 0 in the case of a real or
symmetric response, as it usually occurs in practical cases) and
that the symbol amplitudes are large enough (which excludes
the null symbol from the alphabet). Thus, the proposed DD
scheme gives the possibility to exploit more energy-efficient
modulation formats—for instance by properly distributing the
modulation symbols over the whole real axis or in the upper
complex half-plane—hopefully getting closer to the capacity
bound derived in [17]. This approach is pursued with the
BPAM format in the next section.

2This is a more restrictive assumption with respect to the Nyquist criterion,
which ensures that only the even coefficients h2m, with |m| > 0, vanish. As
an example, two possible choices for the modulation pulse p(t) that satisfy
this condition when combined with the corresponding optical matched filter
in the absence of fiber dispersion (back-to-back), are i) when p(t) is an ideal
rectangular pulse and ii) when its Fourier transform P (f) is a root-raised
cosine function with unit roll-off. In both cases, it can be shown that all the
coefficients vanish but for h0 = 1 and h±1 = 0.5.
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III. UNIPOLAR AND BIPOLAR PAM WITH DIRECT
DETECTION

As shown in the previous section, the DD scheme of Fig. 2
allows the detection of both amplitude and (differential) phase
values. A possible application, discussed in this section, is the
adoption of BPAM alphabets even in DD systems, exploiting
their superior energy efficiency compared to UPAM alphabets.
In the following, we describe the modulation format and detec-
tion strategy of the proposed DD/BPAM system and compare
them to those employed in conventional DD/UPAM systems,
also highlighting the expected advantage of the former over
the latter.

A. Bipolar PAM
The typical PAM constellation considered in many text-

books is a bipolar constellation with an even number M
of equispaced levels symmetrically arranged around zero, so
that xk ∈ A = {±A,±3A, . . . ,±(M − 1)A} [5, Sec. 5.2],
[6, Sec. 4.3.1]. The spacing between adjacent levels is 2A
and the amplitude A is selected to obtain the desired average
energy per bit Eb. This constellation maximizes the minimum
distance between levels for a given Eb, minimizing the error
probability with coherent detection. The same constellation,
however, turns out to be non-optimal when combined with the
DD strategy in Fig. 2. On the other hand, a nearly optimum
performance is obtained by the slightly modified alphabet

ABPAM = {±A,±2A, . . . ,±M ′A} (11)

where the spacing between the two innermost levels is still 2A
while the spacing between any other two adjacent levels is A.
An intuitive explanation and a numerical validation of this fact
are reported in Sec. III-C and Sec. IV, respectively. Hereafter,
we refer to (11) simply as the BPAM alphabet (levels).

Due to the inherent differential nature of the DD scheme
in Fig. 2, the bit-to-symbol mapping requires a slight mod-
ification with respect to the conventional case. The symbol
transmitted at discrete time k is expressed as xk = ake

jφk ,
where ak ∈ {A, . . . ,M ′A} is the (positive) amplitude,
φk = φk−1 + ∆φk is the phase, and ∆φk = {0, π} is
the phase difference between consecutive symbols. A total of
m = log2M bits are encoded on each transmitted symbol,
with m − 1 = log2(M ′) bits mapped to the M ′ positive
amplitude levels according to a Gray map, and one bit encoded
on the two phase difference values.

At the receiver side, each transmitted amplitude ak and
phase difference ∆φk are recovered by processing the corre-
sponding even sample (3) and auxiliary decision variable (9),
respectively. Each even sample depends only on ak, which is
detected as in a conventional PAM by means of a (multiple)
threshold detector

âk =


A1, yk ≤ γ1
A2, γ1 < yk ≤ γ2
...

...
AM ′ yk > γM ′−1

(12)

where γ1, . . . , γM ′−1 are the optimized thresholds. On the
other hand, the sign of the auxiliary decision variable depends

only on ∆φk, which is detected by a second threshold detector
according to

∆̂φk =

{
0, zk ≤ β
π, zk > β

(13)

where β is an optimized threshold. In general, the optimal
thresholds are not located at the intermediate points between
the signal levels. Due to the square-law detection, both the ISI
and noise-noise beating terms are not zero-mean and affect
the position of the optimal thresholds, with a complicated
dependence on the SNR and filter bandwidth. Therefore, in
our simulations, all the thresholds have been numerically
optimized.3 Eventually, information bits are recovered from
âk and ∆̂φk according to the encoding rule specified above.
Equations (3), (9), (12), and (13) show that decisions are made
symbol by symbol, with no decision feedback, so that no error
propagation takes place at the receiver. Note that the detection
strategy (12)–(13) is not optimal in a maximum a posteriori
probability sense, but it is selected for its low implementation
complexity and good performance.

B. Unipolar PAM

Conventional DD systems, due to the square-law detection,
usually employ UPAM alphabets. A typical choice is selecting
the amplitude levels of the optical signal as

AUPAM−I = {0, A,A
√

2, . . . , A
√
M − 1} (14)

so that, after square-law detection, the corresponding intensity
levels are equally spaced starting from zero. The UPAM-I
alphabet in (14) asymptotically guarantees the minimum error
probability when the performance is dominated by electronics
noise, modeled as AWGN that is added to the signal after the
square-law detection.

On the contrary, when the performance is dominated by
optical noise—AWGN that is added to the signal before the
square-law detection—the best performance is obtained by
equally spacing the amplitude levels according to

AUPAM−A = {0, A, 2A, . . . , (M − 1)A} (15)

so that the minimum distance between the amplitude levels is
maximized [27]. The practical implementation of (14) and (15)
is discussed in Section V. However, the significant advantage
of (15) with respect to (14) may reduce or disappear in the
presence of transceiver imperfections [27] or, as we will show
in Section IV, transmission impairments.

In both the UPAM alphabets, a Gray map is used to encode
m = log2M bits on each symbol. At the receiver side, only
the upper branch of the detection scheme depicted in Fig. 2 is
required to recover the transmitted symbols. The photodetected
signal is sampled at symbol rate, and each sample is compared
with M − 1 threshold levels to determine which symbol has
been transmitted.

3It can be shown that in the absence of ISI and with matched filtering, the
thresholds in (12) are given by γn = (n+ 1/2)2A2E2

p , n = 1, 2, . . . ,M ′,
where Ep is the energy of the supporting pulse p(t) in (1). However, even in
this simplified case we did not succeed in obtaining an analytical expression
for the optimum threshold in (13).
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C. Energy Efficiency

In order to get an idea of the performance gain that we can
expect by employing the proposed BPAM system, we consider
the ideal conditions h0 = 1, h±1 = 0.5 (see Footnote 2) and
follow a simple heuristic approach. Since optical amplifiers
introduce AWGN in the optical domain, we assume that the
performance is mainly determined by the minimum distance
between the different values taken by the optical signal at the
sampling times [5, Sec. 4.3.6]. Thus, we compare the mean
energy per bit that is required by the three alphabets to obtain a
prescribed minimum distance in the optical domain. While this
simple approach would be rigorously justified only for the op-
timal CD strategy, we conjecture that it provides a reasonable
indication of the performance difference between the various
formats even for the proposed DD strategy, also providing
some insight on the BPAM format and its optimization.

For the even samples, relevant for amplitude detection and,
hence, both for UPAM and BPAM systems, the minimum
distance can be expressed as

de = min
m6=n
|Am −An| (16)

while for the odd samples, relevant for phase detection and,
hence, only for BPAM systems, the minimum distance can be
expressed as

do = min |Am| (17)

First of all, we note that in these ideal conditions the BPAM
alphabet in (11) achieves the same minimum distance on
both samples, do = de = A, guaranteeing the best per-
formance trade-off between amplitude and phase detection.
This is why we prefer this alphabet over the classical PAM
{±A,±3A, . . .} that, on the other hand, would give do =
de/2 = A, favoring amplitude detection over phase detection.

Then, we consider the UPAM-I and UPAM-A alphabets
in (14) and (15), for which the minimum distances are
de = A(

√
M − 1 −

√
M − 2) and de = A, respectively.

Eventually, by choosing the parameter A such that to have the
same minimum distance d for each format, the corresponding
required average energy per bit turns out to be

Eb =



(M/2 + 1)(M + 1)

6 log2M
d2, BPAM

(M − 1)d2

2 log2M(
√
M − 1−

√
M − 2)2

, UPAM-I

(M − 1)(2M − 1)

6 log2M
d2, UPAM-A

(18)
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Fig. 4. BER vs the ratio between the amplitude levels of a BPAM-4 signal
for Eb/N0 = 13dB (symbols: simulations; solid lines: KLSE method).

By comparing the corresponding Eb in (18), we see that
BPAM has a potential advantage over UPAM-A of approx-
imately 1.4 dB, 3.6 dB, and 4.8 dB for M = 4, 8, 16,
respectively, asymptotically approaching 6 dB for M → ∞.
The potential advantage of BPAM over UPAM-I is even larger:
7.7 dB, 10.8 dB, and 12.3 dB for M = 4, 8, 16, respectively,
asymptotically approaching 13.8 dB for M →∞.

In the next section, these potential gains, obtained by the
heuristic approach described above, will be compared to the
actual results obtained by numerical simulations. We defer to
a future work the derivation of analytical expressions for the
error probability in the BPAM ideal case, while very accurate
analytical approximations for the UPAM-I and UPAM-A for-
mats can be found in [27]. Observing that the receiver part in
Fig. 2 is equivalent to the receiver in Fig. 3, in the general case
the error probability can be computed by a straightforward
extension of the Karhunen–Loéve series expansion (KLSE)
method described in [28]. Indeed, it suffices incorporating the
transfer function of the (analog) 3-tap equalizer into the post-
detection filter and deal with two parallel detectors. The KLSE
method is outlined in the Appendix and validated in the next
section.

IV. NUMERICAL RESULTS

In this section, we first validate the theoretical predictions
of Section III-C and the accuracy of the semianalytical KLSE
method described in the Appendix by a comparison with
Monte Carlo simulations and direct error counting. Then, we
investigate the performance of the proposed BPAM/DD system
and compare it to that of UPAM/DD systems. This is done
first in the ideal scenario considered in Section II, and then
in a more realistic scenario. In the ideal scenario, P (f) has a
root-raised-cosine shape with unit roll-off, the optical filter is
matched to the pulse shape Ho(f) = P (f), the photodetector
has no band limitations, and both the optical signal and the
noise are in a single polarization. The coefficients c±1 are
set to the exact value indicated after (9). A large gain optical
amplifier is considered, so that the performance is dominated
by the ASE noise and depends on the Eb/N0 ratio, while
the receiver noise is negligible. The realistic scenario, on the
other hand, is described later in greater detail and includes
non-ideal pulse shaping, non-matched optical filtering, band-
limited postedetection filtering, channel dispersion, and mis-
matched values of c±1. No adaptive equalization is used in any
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Fig. 5. Performance of BPAM, UPAM-A, and UPAM-I with (a) 4 levels (b) 8 levels, and (c) 16 levels (symbols: simulations; solid lines: KLSE method).
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Fig. 6. GVD tolerance of BPAM, UPAM-A, and UPAM-I with (a) 4 levels (b) 8 levels, and (c) 16 levels (symbols: simulations; solid lines: KLSE method).

scenario. In Monte Carlo simulations, the BER is estimated by
direct error couting, averaging over up to 108 random symbols
to ensure a good accuracy down to BER values of the order
of 10−6.

First of all, we verify if the amplitude levels considered in
(11) are optimal for the BPAM-4 format in the back-to-back
case (without fiber dispersion). Given the mean energy per bit
Eb, the BPAM-4 alphabet is fully defined by the ratio between
the two positive amplitude levels A2/A1. Fig. 4 reports the
BER as a function of the amplitude ratio A2/A1 for a fixed
Eb/N0 ratio of 13 dB. The results obtained by the KLSE
method (solid line) and by Monte Carlo simulations (symbols)
are in excellent agreement, but for some statistical fluctuations
of the latter at low BER values. Besides the average BER,
the BER on the even and odd samples (for amplitude and
phase detection, respectively) are also reported. The minimum
average BER is obtained around the optimal ratio A2/A1 ≈
2.15. This value is close to the theoretical value A2/A1 = 2
that has been heuristically predicted in Sec. III-C. However,
since the optimal ratio slightly changes for different pulse or
filter shapes and in the presence of GVD, we decided, for the
sake of simplicity, to consider a fixed ratio A2/A1 = 2 in
all results of the paper, corresponding to the BPAM alphabet
defined in (11).

Fig. 5 shows the BER as a function of the Eb/N0 ratio
for the BPAM, UPAM-A, and UPAM-I formats. The 4-level,
8-level, and 16-level formats are considered in cases (a),
(b), and (c), respectively. The agreement between the KLSE
method and Monte Carlo simulations is confirmed in all
the cases. As expected, when the dominant source of noise
is the ASE, UPAM-A performs better than UPAM-I [27].
More importantly, the proposed BPAM format has an even
better performance. For instance, the Eb/N0 ratio required by

BPAM-4 at a BER of 10−3 is about 1.9 dB and 6.8 dB lower
than that required by UPAM-4A and UPAM-4I, respectively.
The gains respectively increase to 3.9 dB and 9.4 dB for the
8-level formats, and to 5 dB and 10.7 dB for the 16-level
formats. Thus, despite the use of a non-conventional and non-
optimal detection strategy based on the interference between
consecutive pulses, the theoretical advantage of the BPAM
alphabet over the UPAM ones predicted by (18) effectively
translates into a relevant performance gain. Note that the actual
gains gets closer to the theoretical ones predicted by (18) for
lower BER values.

Another important characteristic that we want to test is
the robustness of the format to GVD. Fig. 6 shows the
Eb/N0 ratio required by the three formats to achieve a BER
of 10−3 as a function of the chromatic dispersion index
γ = −2β2R

2
bL, a dimensionless parameter that measures the

accumulated GVD normalized to the bit-rate [29]. The 4-
level, 8-level, and 16-level formats are considered in cases
(a), (b), and (c), respectively. The agreement between the
KLSE method and Monte Carlo simulations is confirmed also
in this scenario. As a useful reference, the upper horizontal
and right vertical axes report, respectively, the corresponding
transmission distance and the required optical SNR (OSNR)
for a 50 Gb/s transmission over a standard fiber with a GVD
parameter β2 = −21.7 ps2/km. From this figure, we note
two important things. First, UPAM-A, though very convenient
compared to UPAM-I in back-to-back, is much more sensitive
to GVD and loses its initial advantage for γ ≈ 0.8 (i.e.,
after about 8 km at 50 Gb/s). This, combined with its lower
resilience to transceiver imperfections [27], makes UPAM-
A a rather inconvenient choice, so that UPAM-I is usually
preferred. On the other hand, BPAM has both the best back-
to-back performance (as already shown in Fig. 5) and a good
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tolerance to GVD. Thus, in the presence of GVD, BPAM keeps
its large advantage compared to UPAM-I, and increases its
advantage compared to UPAM-A. As an example, in back-to-
back configuration, BPAM-16 requires about the same Eb/N0

ratio (20 dB) as UPAM-4I and UPAM-8A. Moreover, when
allocating 5 dB more (Eb/N0 = 25 dB) for GVD tolerance,
BPAM has twice and three times their reaches, respectively.

Finally, we investigate the performance of the proposed
strategy in a more realistic scenario—i.e., considering non-
ideal pulse shaping, a non-matched optical filter, and a limited
electrical bandwidth. In particular, we consider a rectangular
nonreturn-to-zero signal filtered by a Gaussian lowpass filter
with 3-dB bandwidth Rb/3, a fourth-order super-Gaussian
optical bandpass filter, a Gaussian electrical lowpass filter, and
include ASE noise on both polarizations. The contour plots
in Fig. 7(a)–(c) show the Eb/N0 ratio required in a back-
to-back case by BPAM-4, UPAM-4A, and UPAM-4I (at a
BER of 10−3) as a function of the optical and electrical 3-
dB bandwidths, Bo and Be, normalized to the bit-rate Rb.
The parameters c±1 in (9) have been held fixed to the (ideal)
common value c±1 = 0.25 for all bandwidth values.

Even in this more realistic scenario, BPAM-4 has an ad-
vantage of about 2.2 dB and 7.3 dB over UPAM-4A and
UPAM-4I, respectively, when considering their respective op-
timal configurations. Indeed, BPAM-4 has a wider optimal
electrical bandwidth (∼ 1.9Rb) and is slightly more sensitive
to deviations of the optical bandwidth from the optimal value
compared to UPAM-4A and UPAM-4I. This peculiar behavior
is due to the fact that the detection of the odd samples is
based on the interference of adjacent pulses in the optical
domain, which is favored by narrowing the optical band-
width but not the electrical bandwidth. Moreover, the fixed
choice c±1 = 0.25 is nearly optimal only around the best
combination of optical and electrical bandwidth. Nevertheless,
even reducing the electrical bandwidth to more realistic values
and considering a reasonable range of values for the optical
bandwidth (e.g., Be = 0.6Rb and 0.65Rb ≤ Bo ≤ 0.75Rb),
the penalty experienced by BPAM-4 is less than 0.5 dB and
its advantage over the UPAM-4 formats only slightly reduced.

The combined effect of non-ideal pulse shaping and fil-
tering, GVD, and imperfect knowledge of the coefficients
c±1 is eventually investigated in Fig. 8, which shows the
contour plots of the Eb/N0 required by BPAM-4 to achieve
a BER of 10−3 with a chromatic dispersion index γ = 0.9
(corresponding to a standard fiber of about 8.3 km and a bit-
rate of 50 Gb/s) and three different fixed values of c±1. All
other parameters are the same as in Fig. 7. Two important
observations can be made. First, the choice of the parameters
c±1 in (9) is not at all critical: an increase of 20% and 40%
of their value causes, respectively, a negligible change in the
required Eb/N0 in Fig. 8(b) and only a small (less than 0.4 dB
in the interesting area) increase in Fig. 8(c). Second, the 1 dB
penalty caused by GVD in this realistic scenario (measured
by comparing Fig. 8(a) with Fig. 7(a) around the optimal
configuration points) is similar to the penalty predicted by
Fig. 6(a) in the ideal matched filtering scenario, though the
absolute values of Eb/N0 clearly differ.

V. DISCUSSION

In Sections II and III, in order to introduce the theoretical
foundations of the BPAM/DD technique, we have considered
an ideal implementation of the proposed system. In a practical
implementation, the ideal modulator can be replaced by a
conventional push–pull MZM, whose optical field transfer
function can be written as [30]

T (∆V ) = cos

[
π(∆V − Vbias)

2Vπ

]
(19)

where ∆V is the (zero-mean) voltage difference applied at
the two arms of the MZM, Vbias the constant bias voltage,
and Vπ the halfwave voltage of the modulator. In order to
obtain the BPAM modulation in (11), which takes both positive
and negative values symmetrically distributed around zero,
the MZM is biased at the null point, Vbias = Vπ . When a
small driving voltage ∆V (t) � Vπ is applied, (19) ensures
an approximately linear modulation of the optical amplitude

T (∆V ) = sin

(
π∆V

2Vπ

)
≈ π∆V

2Vπ
(20)

This is also the typical configuration employed to generate
various zero-mean formats, such as BPSK or (on each arm
of a nested MZM structure) QPSK and quadrature amplitude
modulation. Often, to minimize the insertion loss of the
modulator, the full characteristic of the MZM is exploited,
−Vπ ≤ ∆V (t) ≤ Vπ . In this case, the MZM nonlinear-
ity in (20) causes a compression of the outer levels with
respect to the inner ones. If needed, this compression can
be compensated for by properly predistorting the modulation
levels of the driving signal ∆V (t). For BPAM, however,
such a predistortion may be unnecessary, since the nonlinear
compression induced by the MZM is useful to obtain the
correct level distribution in (11). This is particularly evident
in BPAM-4, which can be directly obtained by driving the
MZM with four voltage levels evenly spaced over the whole
transmission characteristic

∆V =

{
±Vπ

3
,±Vπ

}
⇒ T (∆V ) =

{
±1

2
,±1

}
(21)

The same MZM can be used also for UPAM-I and UPAM-
A modulation, but with different settings. For UPAM-I, the
bias is set at the so-called quadrature point, Vbias = Vπ/2,
corresponding to 50% power transmission. When a small
driving voltage is applied, this ensures an approximately linear
modulation of the optical intensity around its average value

|T (∆v)|2 = cos2
(
π∆V

2Vπ
− π/4

)
≈ 1

2
+
π∆V

2Vπ
(22)

On the other hand, to maximize the extinction ratio, the driving
voltage should range between the minimum and maximum
transmission points, −Vπ/2 ≤ ∆V (t) ≤ Vπ/2, while a proper
predistortion should be applied to compensate for the MZM
nonlinearity. Finally, UPAM-A requires a linear modulation of
the optical amplitude as BPAM, but only positive amplitude
levels as UPAM-I. This requires using the same portion of the
MZM characteristic as UPAM-I, but with modulation levels
asymmetrically distributed around the bias point—a somewhat
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more complicated configuration that makes UPAM-A harder
to generate than BPAM and UPAM-I.

The optimal pulse shaping and filtering considered in Sec-
tion II to obtain an ISI-free operation are not essential to imple-
ment a practical system and obtain relevant gains compared to
conventional IM/DD systems. In fact, Fig. 6, Fig. 7, and Fig. 8
consider more realistic scenarios and include the impact of ISI
due to propagation and/or filtering effects. The advantage of
BPAM over both UPAM formats is confirmed also in these
conditions.

Apparently, BPAM detection requires knowledge of the
channel response to determine the coefficients c±1 in (9).
This is also not a critical issue, as it is sufficient to select
reasonable values for c±1 to obtain a good performance,
as shown for instance in Fig. 7(a) and in Fig. 8(a)–(c). In
practice, there are two possible choices: to select some fixed
prescribed values for c±1 (e.g., the ideal values c±1 = 0.25
or some other values based on reasonable assumptions about
the system components) or to optimize c±1 to obtain the
best performance. In the latter case, Fig. 3 shows that the
auxiliary decision variable in (9) can be seen as the output
of a 3-tap linear equalizer with tap coefficients {c−1, 1, c1}.
The coefficients c±1 can thus be efficiently optimized (or even
adaptively controlled, if desired) by using one of the several
methods available for adaptive equalization [5, Chap. 8], [6,
Chap. 11].

With respect to a conventional DD scheme, which can oper-
ate with one sample per symbol, the detector in Fig. 2 requires
two samples per symbol. In a practical implementation, this
requires either two parallel symbol-time samplers operating

with a relative delay of half a symbol time, or a single sampler
operating at twice the sampling rate. This is the price to pay to
obtain the large sensitivity gain shown in Section IV. However,
as explained below, the increase of the sampling rate does
not entail a corresponding increase of the required bandwidth.
Moreover, the use of a fractionally-spaced (at two samples per
symbol) feed-forward (or more complex) equalizer is often
included in the implementation of conventional IM/DD sys-
tems to compensate for the transmitter and receiver bandwidth
limitations [7]. In this case, the oversampling and additional
processing in (9) required by BPAM come at no extra cost with
respect to conventional PAM, though a separate equalization
of the even and odd samples should be performed.

A preliminary experimental demonstration of BPAM, based
on the practical implementation described above, is provided
in [26]. The results show that, even employing standard
devices and in the presence of a significant implementation
penalty, the advantage of BPAM over UPAM is almost fully
preserved.

The proposed system uses oversampling at two samples per
symbol to extract some additional phase information from the
photodetected signal. This information is, in part, contained
at high frequencies after the square-law detector. Therefore,
one may be tempted to conclude that BPAM requires twice
the bandwidth of conventional IM/DD systems. This is not
true. In fact, from a theoretical standpoint, the bandwidth
increase caused by square-law detection takes place after
photodetection, hence not at optical level. Thus, as it can
be clearly appreciated from the behavior of the contour lines
in Fig. 7(a)–(c) with respect to the horizontal axis Bo/Rb,
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BPAM does not require more optical bandwidth than a con-
ventional IM/DD system. Moreover, even if the total signal
bandwidth is theoretically doubled after square-law detection,
the receiver bandwidth need not be doubled to extract the
desired information. This, too, can be verified in Fig. 7(a)–(c):
while the optimal receiver bandwidth is indeed nearly doubled,
the penalty experienced by the BPAM format when operating
at a much lower bandwidth is very small.

In this work, we have compared the proposed BPAM/DD
solution with more conventional IM/DD solutions based on
UPAM-I and UPAM-A formats. There are two main reasons
for that: the first reason is that UPAM-4I (simply known as
PAM4 in the optical literature) is a widely deployed standard
for optical transmission [31]—UPAM-A being just a minor
variant of UPAM-I. The other reason is that BPAM requires
only a minor system modification with respect to UPAM-I and
UPAM-A and is, therefore, directly comparable with them.
Many other transmission techniques have been proposed in
the last years to improve the performance of DD systems.
Two relevant examples are SSB-OFDM [10], [11] and the
KK receiver [12]. Even if all these techniques share the same
idea of extracting phase information from a DD receiver, they
are based on different approaches and have quite different
characteristics. In fact, both SSB-OFDM and KK require the
insertion of a strong optical carrier and significant additional
complexity to extract the full phase information as in CD. On
the other hand, the solution proposed in this work is based
on the transmission of a carrierless BPAM signal, requires
only minimal additional processing, and extract only partial
phase information to allow the use of more energy efficient
(zero-mean) constellations. In conclusions, these formats have
different scope and applications. On one hand, BPAM/DD
offers improved sensitivity compared to conventional IM/DD
with only minimal additional complexity. On the other hand,
KK and SSB-OFDM enables some useful features of CD
(e.g., higher spectral efficiency and digital compensation of
propagation impairments) at the cost of a higher required
optical power and complexity.

VI. CONCLUSION

We have proposed a novel DD scheme that employs over-
sampling at two samples per symbol to detect an optical BPAM
signal. With respect to a conventional UPAM/DD system, the
proposed BPAM/DD system provides high OSNR gains and
GVD robustness at the cost of minimal additional processing
at the receiver, while still using a single modulator and a
single photodetector. In an ideal optical-noise-limited regime,
BPAM-4, BPAM-8, and BPAM-16 respectively provide OSNR
gains of 6.8 dB, 9.4 dB, and 10.7 dB compared to UPAM-
I formats with the same number of equally spaced intensity
levels. Similar gains are observed also in a more realistic
scenario, including GVD, non-ideal pulse shaping, and prac-
tical transceiver bandwidth limitations. The gains are still
relevant, though lower (1.9 dB, 3.9 dB, and 5 dB, respectively),
compared to UPAM-A formats with equally spaced amplitude
levels. UPAM-A formats are, however, much more sensitive to
GVD and other transceiver imperfections, being in fact rarely
used in practice.

The proposed transmission technique is particularly appeal-
ing for optically-amplified DD links, in which the detrimental
impact of signal-noise interaction limits the system perfor-
mance and makes UPAM formats with more than four ampli-
tude levels impractical. By contrast, the proposed BPAM/DD
technique, thanks to its lower OSNR requirements and good
GVD tolerance, allows the use of higher-level formats, increas-
ing the system reach and decreasing the bandwidth require-
ments. For instance, for a fixed bit rate of 50 Gb/s, BPAM-16
requires an OSNR of about 23 dB in back-to-back, nearly the
same as UPAM-4I and UPAM-8A. Moreover, by allocating
5 dB of OSNR margin for GVD tolerance, BPAM has twice
and three times their reaches, respectively.

A preliminary experimental demonstration of the novel
optical transmission technique introduced in this work can be
found in [26]. We defer to a future work a more extensive
experimental investigation and the analysis of other important
issues, such as the performance in thermal-noise- and shot-
noise-limited regimes, the use of more efficient constellations
(e.g., with more than two phase values), and the potential
application in a wireless context.

APPENDIX

In this appendix we briefly explain how to apply the KLSE
method to the BPAM case. However, mutatis mutandis, the
procedure also holds for both the UPAM cases.

In order to account for the ISI due to n − 1 M -ary
symbols, we need a de Bruijn sequence {xk}Nk=1 of length
N = Mn [32] (see also [33] for a method to generate a
quaternary sequence, easily extendable to sequences with M a
power of 2). As already explained, the symbols are written as
xk = ake

jφk , with ak ∈ {A1, A2, . . . , AM ′}, M ′ = M/2, and
φk = φk−1 + ∆φk, ∆φk ∈ {0, π} being the phase difference
between consecutive symbols. Denoting by E(1)k and E(2)k the
error events associated with the k-th amplitude ak and phase
φk, respectively, assuming equiprobable symbols and a Gray
map on the amplitude levels, the average probability of a bit
error Pb can be written as

Pb '
1

N log2M

N∑
k=1

(
P
(
E(1)k

)
+ P

(
E(2)k

))
(23)

where P
(
E(1)k

)
and P

(
E(2)k

)
are, respectively, the symbol error

probabilities in the upper and lower branch in Fig. 3. Taking
into account (12) and (13), these probabilities can be evaluated
through the pdfs of the samples yk and zk as

P
(
E(1)k

)
=


P (yk > γ1) if ak = A1

P (yk < γi−1)

+P (yk > γi) if ak = Ai, 2 ≤ i ≤M ′ − 2

P (yk < γM ′−1) if ak = AM ′−1
(24)

P
(
E(2)k

)
=

{
P (zk > β) if ∆φk = 0

P (zk < β) if ∆φk = π
(25)

By choosing the sampling times such that they occur at a
maximum eye opening, the minimum average Pe is obtained
by minimizing (23) over the thresholds in (24) and (25). Those
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appearing in (24) and (25) are the probabilities that a random
variable with a generalized chi-square distribution exceeds
(or does not) a given threshold. It can be shown that such
probabilities may be approximated with very high accuracy
by the so-called saddlepoint approximation [34], so that (note
that the same expressions hold by replacing yk with zk)

P (yk < γth) '
exp

[
Φyk(s−0 )

]√
2πΦ′′yk(s−0 )

(26)

P (yk > γth) '
exp

[
Φyk(s+0 )

]√
2πΦ′′yk(s+0 )

(27)

where Φ′′yk denotes the second order derivative of the phase
function Φyk(s) defined as

Φyk(s) , ln

[
Ψyk(s)

exp(−yths)

|s|

]
, s ∈ R (28)

Ψyk(s) = E{exp(yks)} being the moment generating func-
tion (MGF) of yk. The values s+0 and s−0 are the positive
and negative, respectively, saddle points on the real s-axis of
exp[Φyk(s)], and may be evaluated as the roots of the equation
Φ′yk(s) = 0. Hence, for computing the error probability, one
simply needs to know the MGFs of the samples yk and zk.
These MGFs can be computed by using one of the methods
reviewed in [28], paying attention to incorporate the transfer
function of the equalizer in the lower branch of Fig. 3 into the
postdetection filter for evaluating the MGF of the samples zk.
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