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Abstract

This article provides a reduced-order modelling framework for turbulent compressible
flows discretized by the use of finite volume approaches. The basic idea behind this
work is the construction of a reduced-order model capable of providing closely
accurate solutions with respect to the high fidelity flow fields. Full-order solutions are
often obtained through the use of segregated solvers (solution variables are solved one
after another), employing slightly modified conservation laws so that they can be
decoupled and then solved one at a time. Classical reduction architectures, on the
contrary, rely on the Galerkin projection of a complete Navier–Stokes system to be
projected all at once, causing a mild discrepancy with the high order solutions. This
article relies on segregated reduced-order algorithms for the resolution of turbulent
and compressible flows in the context of physical and geometrical parameters. At the
full-order level turbulence is modeled using an eddy viscosity approach. Since there is a
variety of different turbulence models for the approximation of this supplementary
viscosity, one of the aims of this work is to provide a reduced-order model which is
independent on this selection. This goal is reached by the application of hybrid
methods where Navier–Stokes equations are projected in a standard way while the
viscosity field is approximated by the use of data-driven interpolation methods or by
the evaluation of a properly trained neural network. By exploiting the aforementioned
expedients it is possible to predict accurate solutions with respect to the full-order
problems characterized by high Reynolds numbers and elevated Mach numbers.

Keywords: Compressible flows, Reduced-order model, SIMPLE algorithm, Turbulence,
Neural networks

Introduction
In the last decades, fluid flow simulations have progressively enlarged their applicabil-
ity and their influence in many different research fields (general overviews can be found
in [1–3]). Nowadays, applications of computational fluid dynamics (CFD) have reached
widespread application areas such as, shape optimization for naval/automotive/aerospace
engineering [4,5], cardiovascular in real time surgery [6], chemistry industrial processes
[7,8] or weather forecasts [9]. As the demand for usability and reliability in CFDmethods
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increases, current hardware designs are becoming insufficient to meet the computational
requirements in a timely manner. As a result, a considerable amount of CFD research is
focused on developing new, efficient techniques to reduce computation times. This chal-
lenge frequently arises in applications such as shape optimization problems, uncertainty
quantification studies, and optimal control frameworks.
To address this issue, various strategies have been explored recently. One of such

approach is Galerkin projection, which has been widely applied to develop new reduc-
tion techniques that offer efficient, accurate, and more cost-effective solutions for vary-
ing parameter selections. This method leverages information from only a few full-order
solutions across different parameter values. In fact, in a reduced-order model (ROM)
framework, parameters and parametric studies are central to understanding the influence
of different variables on the system’s behavior while maintaining the computational effi-
ciency offered by ROMs. A reduced-order model is a simplified representation of a com-
plex, high-dimensional system, designed to capture the essential behavior and dynamics
of the system with significantly reduced computational effort. By focusing on the most
important modes or features of the full-order model, ROMs provide fast and efficient
simulations while maintaining accuracy within an acceptable range for various analy-
ses. The most commonly used technique in ROMs is Galerkin projection. In Galerkin
projection, the original high-dimensional problem is projected onto a lower-dimensional
subspace. This significantly reduces computational complexity while preserving the sys-
tem’s dominant behavior [10]. For fluid flow applications, relevant studies can be found
in [11–15]. There are numerous options for leveraging the dynamic content included in
high-fidelity systems.Themost commonly used one is the ProperOrthogonalDecomposi-
tion (POD) [16–21], the Proper Generalized Decomposition (PGD) [22,23], the Dynamic
Mode Decomposition (DMD) [24,25]. The initial concept of the POD, which was first
developed in the domain of fluid dynamics to examine turbulence, is to decompose a
vector field into a series of deterministic spatial functions weighted by time/parameter
coefficients.
In recent years, while the concept of machine learning (ML) is not new, its applications

within the fluid dynamics community have significantly expanded. This growth is driven
by advancements in algorithms, increased computational power,more affordablememory,
and the availability of vast amounts of data. As a result, ML has emerged as a prominent
area of research in the field. Leveraging ML algorithms has made solving complex, non-
linear parametric partial differential equations (PDEs) more efficient and accessible than
ever before. Numerous approaches for applying ML to CFD problems have been inves-
tigated in the literature, as demonstrated in several studies, for instance in [26–37] to
name few. For example, the combination of the POD and neural networks (NNs) has been
applied across a wide range of cases, including the non-linear Poisson equation in one and
two spatial dimensions, as well as two-dimensional cavity flows governed by the steady
incompressibleNavier–Stokes equations. Both POD-based projection techniques andML
methods, offer valuable insights but also have their limitations. Projection techniques are
closely aligned with the physical laws of the problem, using modal basis functions derived
from real solutions to capture the primary dynamics. Thesemodes are then used to project
and reconstruct the solutions of conservation equations on reduced manifolds. However,
challenges arise in dealing with non-linearity and the non-affine nature of parameterized
formulations, which can complicate their application. Additionally, projection methods
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may not be feasible if the governing equations are inaccessible, such as in commercial
software where the underlying laws are not fully disclosed. In contrast, ML techniques
offer greater versatility. They require only a set of pre-trained solutions and are indepen-
dent of the complexity of the problemâe™smathematical formulation. Thesemethods are
designed to produce accurate approximations rapidly. However, a significant drawback
is their weaker connection to the underlying physics, making it difficult to interpret the
individual components of the ML architecture in terms of physical phenomena. For this
reason, they may give inaccurate results thanks to impossibility in having a deeper check
on networks responses.
Taking all the aforementioned examinations under consideration, this work applies the

new mixed technique [26] on compressible Navier–Stokes problems, which is capable of
merging the advantages of projection techniques together with data-driven architectures.
Inparticular, in our approach, classical projectionmethods areused for theFavreAveraged
Navier Stokes (FANS) equations while a neural network gets trained to provide the eddy
viscosity solutions in a turbulence modelling approach. These new contributions result
to a reduced-order models that are independent of the selection of turbulence models for
any segregated solvers for compressible flows capable to reduce the computational cost
associated with fluid flow problems characterized by high Reynolds numbers and elevated
Mach numbers. The main goal is to propose an architecture proficient in dealing with
different types of parametrizations for compressible flows. Moreover, one of the most
relevant focuses concerning this work is constituted by a coherent approach between full-
order and reduced-order solutions, by developing a new reduced compressible SIMPLE
(Semi-Implicit Method for Pressure Linked Equations) algorithm.
This manuscript is structured as follows: The section “The compressible Navier–S-

tokes equations” presents the equations used in this work; subsection “Proper Orthogonal
Decomposition procedure” explains the POD procedure employed to obtain the modal
basis functions. In subsection “Reduced-SIMPLE algorithm for compressible flows” the
core algorithm used for our technique is introduced together with subsection “Turbu-
lence treatment” where the AI architecture for turbulence treatment is shown. Two dif-
ferent test cases, a physically parameterized and a geometrically parameterized ones, are
exposed in subsection “Physical parametrization test case” and subsection “Geometrical
parametrization test case” respectively. Finally, in subsection “Conclusions and future
perspectives”, few considerations on the results and some possible developments for this
work are presented.

The compressible Navier–Stokes equations
In this work, we want to deal with parameterized compressible Navier-Stokes equations
problems. To manage the compressibility of the fluid, we selected a common strategy for
this kind of applications: the Favre averaging. The equations describing the physics are
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the following ones:

∂ρ

∂t
+ ∇ · (ρu) = 0 in �(π ), (1)

∂ρu
∂t

+ ∇ · [ρu ⊗ u + pI − τ] = 0 in �(π ), (2)

∂ρe0
∂t

+ ∇ · [ρue0 + pu − u · τ + q] = 0 in �(π ), (3)

u = gD in �D, (4)

ν
∂u
∂n

− pn = gN in �N , (5)

where ρ represent the density, u the flow velocity, p the pressure, τ the viscous stress
tensor, e0 the total energy, and I the identity tensor. The boundary conditions include �D,
where Dirichlet conditions gD are applied, and �N , where Neumann conditions gN are
imposed. Here, ν refers to the kinematic viscosity, and n is the unit normal vector. The
computational domain is denoted by �(π ), which, in cases of geometric parametrization,
can depend explicitly on the parameter π . The heat-flux q is given by Fourier’s law:

q = λ∇T ≡ Cp
μ

Pr
∇T, (6)

with the laminar Prandtl number Pr is given by Pr = Cpμ
λ

. To close these equations, it is
also necessary to specify an equation of state. Assuming air to be an ideal gas, the following
relations are valid:

γ ≡ Cp/Cv, p = ρRT, e = CvT, Cp − Cv = R.
BeingR the gas constant,Cv is the constant volume, andCp means specific heat at constant
pressure, γ is the adiabatic index, e the internal energy, and T the temperature. In the
Favre Averaged Navier–Stokes (FANS) equations, all the variables (density ρ, pressure p,
velocity u, total energy e0, temperature T and internal energy e) are decomposed in an
averaged part and a fluctuating one as follows:

ρ = ρ + ρ′, p = p + p′, T = T̃ + T ′′ (7)

e0 = ẽ0 + e′′0 , u = ũ + u′′, e = ẽ + e′′. (8)

Superscript �̃ indicates the Favre averaging which correspond to a density weighted
Reynolds averaging �. Given a certain variable 
(t), we have:


 = 1
T

∫
T


(t)dt ⇒ 
′ = 
 − 
 (9)


̃ = ρ


ρ
⇒ 
′′ = 
 − 
̃. (10)

Plugging Eq. 7, Eq. 8, Eq. 9 and Eq. 10 in Eq. 1, Eq. 2, Eq. 3 lead to:
∂ρ

∂t
+ ∇ · (ρũ) = 0 in �(π ), (11)

∂ρũ
∂t

+ ∇ · [ρũ ⊗ ũ − τ̃turb − τ̃ + pI ] = 0 in �(π ), (12)

∂ρẽ0
∂t

+ ∇ ·
[
ρũẽ0 − Cp

αeff

γ
∇T̃

]
+ ∇ · [pũ − ũ · τ̃ − ũ · τ̃turb] = 0 in �(π ),(13)

ũ = gD in �D, (14)

ν
∂ũ
∂n

− pn = gN in �N , (15)
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with αeff = γ

(
μ
Pr + μt

Pr t

)
, and where p, ũ and ẽ become the unknowns of the problem.

μ is the dynamic viscosity, μt is the eddy viscosity owing to turbulence, Pr indicates the
Prandtl number andPrt its turbulent counterpart which is a constant value. Themolecular
τ̃ and Reynolds-Stress τ̃turb tensors are given by:

τ̃ = 2μS̃, τ̃turb = 2μt S̃ − 2
3
ρ̄kI , (16)

where S̃ = ∇ũ+∇ũᵀ
2 − 1

3∇ · ũI , and k = ũ′′·u′′
2 . Moreover, the density averaged total energy

ẽ0 is rewritten in the internal energy form:

ẽ0 = ẽ + ũ · ũ
2

+ k, (17)

Eq. 12, and Eq. 13 are obtained after some approximations and assumptions from an eddy
viscosity point of view. The reader interested in the averaging procedure and modelling
should refer to [38].
From now on, Eq. 11, Eq. 12, and Eq. 13 will be considered only in its steady-state for-

mulation. All the averaged variables are dependent on the parameter π but, for the sake
of simplicity, the following notation will be used:

ρ = ρ(π ), p = p(π ), ũ = ũ(π ), T̃ = T̃ (π ), ẽ = ẽ(π ).

In the energy equation, the viscous terms are neglected in many solvers. This, can
be reasonably true if compared with the other terms present into the energy equation.
Moreover, the turbulent kinetic energy is neglected in the total energy. This results in the
following system:

∇ · (ρũ) = 0 in �(π ), (18)

∇ ·
[
ρũ ⊗ ũ − μeff

(
∇ũ + ∇ũᵀ − 2

3
∇ · ũI

)
+ pI

]
= 0 in �(π ), (19)

∇ ·
[
ρũ

(
ẽ + ũ · ũ

2

)
− αeff ∇ ẽ + pũ

]
= 0 in �(π ), (20)

ũ = gD in �D, (21)

ν
∂ũ
∂n

− pn = gN in �N . (22)

Withμeff = μ+μt , and αeff = γ

(
μ
Pr + μt

Pr t

)
. It is now clear that all the turbulence-related

terms of the equations rely on μt to be calculated. For this reason, since only the eddy
viscosity is required, a common 2-equations turbulent model as, e.g., k − ε or k − ω [38],
is sufficient as a closure for the problem.

Reduced-order modelling architecture
This part of the manuscript presents the POD in a nutshell, after that, addresses the
reduced-SIMPLE algorithm and finally the treatment of the eddy viscosity when dealing
with turbulence flows.
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Proper orthogonal decomposition procedure

The scope of this work is to find an efficient and reliable reduced-order model to be
able to solve the full-order model for many different values of the parameter π without
solving the Finite Volume discretized equations every time from scratch. For this reason,
we developed a new procedure based on a POD-Galerkin scheme.
The whole machinery is divided in two main steps: an offline phase which consists on

the resolution of a certain number Nπ of full-order solutions, trying to extract as much
information as possible from this set, and an online phase consisting on the resolution of
a dimensionally reduced problem for all the different needed parametric configurations.
What is new in this method is to be capable of resulting as general as possible with respect
to the selected full-order turbulence model and, at the same time, as coherent as possible
with respect to high fidelity solutions.
Let P = {π1, . . . ,πNπ } be the training parameters set. For every parameter πi ∈ P, the

full-order problem can be solved to obtain the corresponding solution si. All these offline
solutions are then stored in the snapshots matrix:

S =

⎡
⎢⎢⎣

s11 s21 . . . sNπ1
...

...
...

...
s1Nh s2Nh . . . sNπNh

⎤
⎥⎥⎦ .

In our case we want to construct an online solver able to mimic the offline conver-
gence dynamics. For this reason the use of a monolithic (non-segregated) approach for
the reduced problem is not a good choice as the offline solutions are obtained relying
on a segregated solver; also at the online level a segregated strategy has to be applied to
obtain solutions which are as consistent as possible. For a discussion on a similar consis-
tent approach in the context of explicit time integration schemes, the reader is referred
to [39]. To obtain an algorithm able to properly follow the behaviour of the high fidelity
algorithm, the set of snapshots is enriched by adding a certain amount of intermediate
solutions sji obtained during the offline iterations. The distance between exported inter-
mediate solutions is set to � as shown in Fig. 1. Since the solution fields during these
iterations vary a lot, from the first attempt for the variables to the last resolution, the
information contained into the converged snapshots is not sufficient to ensure the cor-
rect reduced reconstruction of the path to the global minimum for Eq. 1, Eq. 2, Eq. 3. By
adding some non-physical solutions to the snapshots’ matrix, which is what is happening
by inserting non-converged fields, we are somehow polluting the physical content, but
the convergence properties of the algorithm are quite acceptable in any case. To reach a
balance between convergence and reliability, � can be varied and the total amount Nint
of selected intermediate solutions can be modified. The new snapshots matrix then reads:

S =
[
s11, s

2
1, . . . , s

Nint
1 , s1, . . . , s1Nπ

, s2Nπ
, · · · , sNint

Nπ
, sNπ

]
,

where sji is the solution obtained at the (j�)-th iteration for the i-th offline parameter.
In a POD-Galerkin approach, the reduced order solution sr is obtained as a linear

combination of some pre-calculated basis functions ξ:

sr(x,π ) =
Nr∑
i=1

βi(π )ξi(x), (23)

whereNr < Nπ is the number of basis functions to be used for the reconstruction and the
βi are the coefficients depending only on the parameter representing the reduced solution.
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Fig. 1 Scheme of the snapshots selection for � = 2: black dots are discarded intermediate solutions, blue dots
are saved intermediate solutions while the red dot represents the final solution

Once provided a certain amount Nt of high fidelity solutions, with Nt > Nπ because of
the intermediate snapshots, the best reduced order model we can get is the one able to
fully reproduce the training offline solutions with no error with respect to it. Of course
this is not achievable but we would like the L2 norm of the error EROM between all the
offline solutions and the respective online ones to be as low as possible:

EROM =
Nt∑
i=1

||sROMi − si||L2 =
Nt∑
i=1

∣∣∣∣∣
∣∣∣∣∣

Nr∑
j=1

βj(π )ξj(x) − si

∣∣∣∣∣
∣∣∣∣∣
L2
.

It is well known (see, e.g., [19]) that the basis functions best performing in this sense are
the ones obtained through a Proper Orthogonal Decomposition (POD) applied to the
snapshots matrix S. The eigen problem

CV = Vλ,

has to be resolved, where C ∈ R
Nt×Nt is the correlation matrix containing all the inner

products in the form (si, sj)L2(�). V ∈ R
Nt×Nt is the matrix containing its eigenvectors

while λ is the diagonal matrix containing the eigenvalues.
The basis functions are then constructed as just a linear combination of the snapshots

contained in S:

ξi(x) = 1
Nt

√
λi

Nt∑
j=1

V jisj(x).

The basis functions matrix is then defined as:

� = [
ξ1, · · · , ξNr

] ∈ RNh×Nr .

The interested reader may refer to [21,40,41] for a detailed explanation regarding POD
approaches.

Reduced-SIMPLE algorithm for compressible flows

In this paragraph, we will discuss the reduced algorithm developed for the resolution of
compressible flows where no discontinuities are present. This means it is only suited for
subsonic cases where the Mach number is lower than 1 in all the points of the domain. In
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this paragraph, the reduced algorithm is based on the SIMPLE algorithm. In the following,
it is assumed that all the equations: continuity, momentum and energy equations are
discretized and written in the following form:

Auuh = bu, Bpph = bp, Eeeh = be where; (24)

Au ∈ R
dNh×dNh , Bp ∈ R

Nh×Nh , and Ee ∈ R
Nh×Nh , (25)

indicate thematrices containing the terms related to velocity, pressure, and energy for the
discretized continuity, momentum, and energy equations respectively.

bu ∈ R
dNh , bp ∈ R

Nh , and be ∈ R
Nh ; (26)

are the related source terms. In addition, uh, ph, and eh are the vectors where all the ũi, p̄i,
and ẽi variables are collected with d = 2 the dimension of the computational domain and
Nh being the number of control volumes (cells) in the mesh. In the following, Galerkin
projection (on the fully discrete equations) is used for the construction of the reduced-
order method. We assume the following decompositions introduced in section “Proper
Orthogonal Decomposition procedure”

uh =
Nu∑
i=1

ai(·)φi(x) = �aᵀ, ph =
Np∑
i=1

bi(·)ξi(x) = �bᵀ, eh =
Ne∑
i=1

ci(·)θi(x) = 	cᵀ.(27)

Where ũr 	 uh, pr 	 ph, and ẽr 	 eh. Similarly, ai(·), bi(·), and ci(·) are modal coeffi-
cients which can time, parameters dependent or both. φi, ξi, and θi are the basis functions
corresponding to the PODmodes of the velocity, pressure, and energy fields stored respec-
tively in � ∈ R

dNh×Nu , � ∈ R
Nh×Np , and 	 ∈ R

Nh×Ne . In addition, Nu, Np, and Ne being
the numbers of basis functions selected for the predicted velocity, pressure, and energy
solutions respectively. a ∈ R

Nu , b ∈ R
Np , and c ∈ R

Ne are the vectors containing the
coefficients for the velocity expansion while the same reads for pressure and energy.
The linear systems in eq. (24) are projected using the respective basis functions defined
in eq. (27) respectively leading to:

Ar
ua = bru, Ar

pb = brp, Ar
ec = bre. (28)

Where Ar
u = �ᵀAu� ∈ R

Nu×Nu , Ar
p = �ᵀAp� ∈ R

Np×Np , and Ar
e = 	ᵀAe	 ∈ R

Ne×Ne .
The resulting reduced linear systems in eq. (28) can be solved using any method for dense
matrices. For example, the Householder rank-revealing QR decomposition of a matrix
with full pivoting is used, and it is available in the Eigen library [42].
As the main idea here is to rely on a method capable of being as coherent as possible

concerning the high-fidelity problem (Algorithm 1), in the following, the main steps for
the reduced SIMPLE algorithm related to compressible turbulent flows are reported in
Algorithm 1.
In Algorithm 1, H(un

h) is the extra-diagonal parts of the momentum matrix Au so that
the following holds:

Auun
h = Dun

h − H(un
h), (29)
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Algorithm 1: The reduced-SIMPLE algorithm
Input : un

h, p
n−1
h , and en−1

h μn−1
t ; spatial basis �, � and 	;

1 while n ≤ NoIs do
2 Assemble the discretized momentum equation, relax it employing αu;
3 Project it over the velocity basis functions � and solve it to obtain a;
4 Reconstruct un

h = �aᵀ and calculateH(un
h);

5 Evaluate the eddy viscosity field μn
t with the neural network;

6 Assemble the discretized energy equation, relax it employing αe;
7 Project it over the energy basis functions 	 and solve it to obtain c;
8 Reconstruct enh = 	cᵀ and calculate ρn

h and Tn
h ;

9 Assemble the discretized pressure equation;
10 Project it over the pressure basis functions � solve to get the new b;
11 Reconstruct pnh = �bᵀ ;
12 Relax the pnh field with αp;
13 un

h ← A−1H(un
h) − A−1Bppnh: � velocity corrector ;

14 n ← n + 1;
Output: un

h, p
n
h, e

n
h, and μn

t ;

with D being the diagonal part of Au, and un
h the velocities at iteration n. In addition, the

relaxation of a quantity Q is given by:

Qn = Qn−1 + α(Qn∗ − Qn−1). (30)

Where α is the factor that defines the relaxation such that:

• α < 1means under-relaxation. This will slow down the convergence rate but increase
the stability.

• α = 0 means no relaxation at all. The predicted value of Q is simply used.
• α > 1means over-relaxation. It can sometimes be used to accelerate the convergence

rate but will decrease stability.

Qn refers to the new used value,Qn−1 the previous value, andQn∗ the new predicted value.
For more details, the interested reader can refer to OpenFOAM® [43].

Turbulence treatment

In this work some assumptions were taken in section “The compressible Navier–Stokes
equations” leading to a simplified FANS system, Eq. 18. Turbulence effects in Eq. 18 are all
due to the presence of the eddy viscosity field μt . A technique has to be selected to model
the eddy viscosity. Within this scope, many different approaches are possible [44–47].
To make our architecture as independent as possible on the turbulence model used

during the offline phase to evaluate the μt field, this study combines a classical POD-
Galerkin approach for what concerns the physical variables p, ũ and ẽ together with a
data driven scheme for what concerns the eddy viscosity evaluation in the Boussinesq
hypothesis [48].
Let us imagine to approximate the eddy viscosity field similarly to what has been done

for all the other variables:

μtr =
Nμt∑
i=1

mi(π )ηi(x),
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Fig. 2 Schematic perspective of a fully connected neural network composed by an input layer, two hidden
layers and an output layer, linking parameters πi and reduced velocity coefficients ai to predict the eddy viscosity
coefficientsmi . Nπ being the number of parameters possibly existing in the problem

where Nμt is the number of basis functions selected to reconstruct/ predict the eddy
viscosity field,mi are the coefficients depending only on the parameter π while ηi are the
μt basis functions depend on the position x. During the offline phase, together with all
the other saved solutions, also the eddy viscosity fields are exported and stored. Those
snapshots are then collected into the Sμt matrix and used, as explained in , to obtain
the requested basis functions. For what concerns the parameter coefficients mi, they are
evaluated through a Neural Network (NN) scheme linking the parameters of the problem
πi and the reduced velocity coefficients ai. In fact, it is well known that, no matter what
turbulence model is employed, the eddy viscosity μt depends on the velocity field but,
especially for geometrically parametrized problems, it also depends on the parameter
itself. The reduced problem is thus completely independent of the choice of the turbulence
model, and step 2 into algorithm 1 can be performed efficiently. This would not have been
the case if turbulence equationswere projected. In case therewas the necessity of changing
the adopted turbulence model, all the architecture had to be modified.
In this work, we selected a fully connected Neural Network composed by an input layer,

two hidden layers and an output layer. The input vector z and output vectorm are defined
as mentioned before:

zᵀ =
[
π1, · · · ,πNπ , a1, · · · , aNu

]
, mᵀ =

[
m1, · · · , mNμt

,
]
.

It is clear that the Neural Network has to be trained in some way. To this scope, the
snapshots contained into Sμt are projected over their own basis functions ηi to obtain the
set of real coefficients {mi}Nt

i=1. They can be compared with the NN estimated coefficients
{m̃i}Nt

i=1 into a loss function to target the training procedure. The loss function � we
adopted is a widely used quadratic one:

� = ||m − m̃||L2 .
The quantity L to be minimized during the training of the network is the sum of the loss
function evaluated for all the different snapshots:

L =
Nt∑
i=1

||mi − m̃i||L2 .
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Table1 A summary of the boundary conditions OpenFOAM® [43]

Inlet Outlet Airfoil

u freestreamVelocity freestreamVelocity no Slip

p freestreamPressure freestreamPressure zero Gradient

T inletOutlet inletOutlet zero Gradient

k inletOutlet inletOutlet kqRWallFunction

ω inletOutlet inletOutlet omegaWallFunction

νt calculated calculated nutkWallFunction

The coefficients estimated by the network can be written as:

m̃ = fout
(
W out f2

(
W2f1 (W1z + b1) + b2

) + bout
)
,

where f1, f2 and fout are the activation functions,W 1,W 2 andWout are the weights while
b1, b2 and bout are the biases, related to the first and the second hidden layers and to the
output layer respectively. For the hidden layers, the best performing activation function
appears to be the hyperbolic tangent, while the output layer has been simply implemented
as a linear combination of the received data. The previous formula can then be simplified
as follows:

m̃ = W out tanh (W 2 tanh (W 1z + b1) + b2) + bout ,

where tanh(y)ᵀ =
[
tanh(y1), · · · , tanh(ydimy )

]
, being y = [y1, . . . , ydimy ] a generic vector

quantity.

Numerical results
In this section, we first discuss the mesh characteristics with boundary conditions. After
that, we discuss the two types of parametrization here considered. Firstly a physical
parametrization on the viscosity, and secondly a geometrical parametrization on the air-
foil’s shape.

Definition of the test case

For a wall boundary condition, u is assigned a noSlip condition, p and T are assigned
a zero gradient. ω is assigned a omegaWallFunction, eddy viscosity is also assigned a
nutkWallFunction, and k is assigned a kqRWallFunction. The values at the inlet of the
turbulence quantities (νt , k , and ω) are set in a way to have already at the inlet a very small
turbulent viscosity in order to resample the low turbulence intensity of the domain [49].
The boundary conditions applied are summarized in Table 1.
For the pressure at the inlet, the freestreamPressure boundary conditions are used. It is

an outlet-inlet condition that uses the velocity orientation to continuously blend between
zero gradient for normal inlet andfixed value for normal outlet flow.The freestreamVeloc-
ity velocity boundary condition switches between fixed Value and zero Gradient depend-
ing if the mass flux points inside (fixed value) or outside (zero Gradient) the domain.

Physical parametrization test case

The first test case we present in this work is a physical parametrization of an external flow.
A NACA0012 airfoil is immersed into a fluid with variable viscosity μ. The unperturbed
velocity is fixed and is equal to ũinlet = [250, 0, 0]T m/s while the chord of the airfoil is
equal to one. As already said, the viscosity can vary so that μ ∈ [10−5, 10−2]. The speed of
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Fig. 3 a Picture showing the computational domain and the mesh around the foil with 16,000 cells (control
volumes) and 32 480 node points with a chord length 1.0m, b a near view mesh around the airfoil

Fig. 4 Cumulative eigenvalues trends

sound at the inlet can easily be evaluated by taking into consideration the thermophysical
properties of the gas we are working with. We consider perfect gases. Thus, the specific
heat transfer at constant pressure is sufficient to evaluate γ = Cp

Cv
= Cp

Cp−R where Cp =
1005JkgK−1 while R = 8, 314mol K−1 is the constant for perfect gases. The airfoil is
supposed to move into air so that M = 28, 9gmol−1 where M stands for the molar
weight. Temperature is fixed at T = 298K. Collecting all these data together, we end up
with C =

√
γRT
M = 341.17m s−1. This means that at the inlet the Mach number can be

calculated as

Mach = ũinlet
C

	 0.73.

For this test case, consequently, a compressible treatment for the flow is needed since we
are approaching the Transonic regime and compressible effects are pretty significant. At
the inlet, pressure is fixed to 105 Pa. Then the Reynolds number can be evaluated as

Re = ρLũinlet
μ

= pLũinletM
μRT

.

The resulting Reynolds number is then Re ∈ 2.92 × [
104 , 107

]
, which clearly requires

treatment for turbulence since the system is operating in a fully turbulent regime.
For the offline phase, 50 random values have been selected: πi ∈ [10−5, 10−2] for i =

1, . . . , 50 where [π1, . . . ,π50] = P. Full-order eddy viscosity is calculated by the resolution
of a k − ω turbulence model [38].
Figure 4 shows the trends of the cumulative eigenvalues for velocity, pressure, energy,

and eddy viscosity. As we may notice, by just considering a few modes for every variable,
the amount of discarded information is pretty low. For this reason, just the first 20 modal
basis functions have been selected for velocity, pressure, and energy while 30 modal basis
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Fig. 5 Loss function decay for both train and test sets

functions areused topredict the eddy viscosity field.This is due to the fact that by analyzing
Fig. 4, it can be noticed that a higher number of basis functions are needed in order to
approach the unity in the cumulative eigenvalues plot. With these numbers of modes, the
cumulative variance reach approximately 99.999%.
As explained in subsection “Turbulence treatment”, the neural network for the eddy

viscosity coefficients employed here is composed by: an input layer, whose dimension is
equal to the dimension of the reduced velocity, i.e. 20, plus one for the parameter, two
hidden layers of dimension 256 and 64 respectively, an output layer of dimension 30 for
the reduced eddy viscosity coefficients. The net is a fully connected one. Moreover, the
neurons of the hidden layers are characterized by the employment of tanh activation func-
tions. For the training procedure, the Adam optimizer has been selected with a learning
rate set to 10−4. The training procedure is carried out in 2×104 epochs. The training set is
composed by both the intermediate and final solutions obtained during the offline phase,
randomly selected. To control the training procedure, a test set has also been selected. 20
totally random new parameter values have been chosen, and their related full solutions
have been calculated, saving both final and intermediate steps, coherently with the offline
snapshots used for training. The conditions on which this model performs well depends
with high-quality, representative, and sufficient amount of data. On the contrary, with
poor data quality and small datasets, the model could have some limitations.
A mean squared error loss function is used to evaluate the prediction capability of the

network for both training and testing sets. The decay behaviour of both losses is depicted
in Fig. 5. The training stage was stopped after 2 × 104 epochs to avoid over-fitting as the
distance between test and train losses was starting to increase significantly.
Figure 6, left, shows the L2 norm relative errors for all the different parameters in the

online set concerning velocity, pressure, and internal energy. Figure 6, right, shows the L2

norm relative error for the eddy viscosity between full-order and reduced-order for the
whole online parameter set. As we may notice, even if the order of magnitude of the νt
error is equal to 10−2, it is sufficient to ensure a lower error for the quantities of interest,
i.e. velocity, pressure, and energy. By this observation we are allowed to employ such a
small neural network which is not compromising the computational cost, still ensuring
good performances.
In Fig. 7 and Fig. 8 a comparison between full-order and reduced-order solutions is

depicted, for a random value of the parameter, included in the online set. By analysing the
depicted fields, full-order and reduced-order solutions appear to be very similar, and the
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Fig. 6 L2 norm relative errors

Fig. 7 Comparison between full-order (first column), reduced-order solutions (second column), and relative
error associated (third column). Velocity (first row), pressure (second row), and energy (third row) magnitude. These
fields refer to the resolution of the problem for π = μ = 0.21× 10−3 which has been selected as a random value
in the online parameter set

Fig. 8 Comparison between full-order (left picture), reduced-order (middle picture) for the eddy viscosity
solutions, and relative error associated (third picture). These fields refer to the resolution of the problem for
π = μ = 0.21 × 10−3 which has been selected as a random value in the online parameter set
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Fig. 9 Shape of the employed bump function

most important areas in the domain, i.e. the zone surrounding the airfoil together with
the wake created by the body, are well predicted. Additionally, the related error confirms
the above observation.

Geometrical parametrization test case

This section presents the second test case, focused on a geometrically parameterized
problem. The shape of the airfoil used into subsection “Multiscale modeling” is modified
by the use of a bump function. In particular, the foil is divided in a top and a bottompart by
the chord. The bump function depicted in Fig. 9 is added to the top and subtracted to the
bottom surface, premultiplied by two different amplitude scalar factors: every solution is
parameterised uniquely by two different scalar values. We used the same thermophysical
properties used for subsection “Multiscale modeling” but the dynamic viscosity is fixed
and equal to 1.74 × 10−5Pa s. Moreover, the inlet velocity has been slightly decreased
since the random modification of the geometry may lead to high curvature areas where

the flow could eventually become supersonic: ũinlet =
[
170, 0, 0

]T
ms−1. This means that

the Mach number at the inlet is now around 0.5. For the offline phase, 50 random values
have been selected: πtopi ,πbottomi ∈ [0, 0.1] for i = 1, ..., 50 where P = {(πtopi ,πbottomi )}50i=1.
The full-order eddy viscosity is calculated by the resolution of a k − ω turbulence model
[38].
The general POD approach described in subsection “Proper Orthogonal Decomposi-

tion procedure” is not directly applicable to a geometrical parametrization problem, since
the L2-norm used for the inner products is not well-defined in case of multiple different
domains. The mesh in our case is moved thanks to a Radial Basis Functions (RBF) algo-
rithm where the points on the moving boundaries are displaced by the application of the
desired law and their displacements are used as boundary conditions for an interpolation
procedure, performed in order tomove all the remaining points of the grid. The interested
reader may find a deeper explanation of this technique in [50] or some applications in [51]
and [52]. By exploiting the aforementioned method, the mesh is modified for each offline
solution. To take into account the fact that all the snapshots are defined over a different
mesh, the grid is taken back to its undeformed state before starting the POD procedure:
the mass matrix we consider evaluating the norms is then the reference unperturbed one.
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Fig. 10 Cumulative eigenvalues trends

Fig. 11 Loss function decay for both train and test sets

To test the online performances, 20 new scalar amplitude couples have been randomly
selected. 30modal basis functions have been picked for the prediction of velocity, pressure
and internal energy fields, while 15 modal basis functions have been employed for νt . This
choice is supported by what is shown in Fig. 10 i.e. the increasing trend of the cumulative
eigenvalues is pretty fast and this fact allows the discarding of the modes higher than the
fixed quantity. For every new parameter couple, the mesh motion has to be performed,
but the procedure is very efficient since the coefficients for the RBF have to be evaluated
and stored just once [52].
The same neural network used for Fig. 14 is employed here for what concerns the eddy

viscosity. Again, looking at Fig. 11, it can be noticed that the learning of the net seems to
stabilize after 2 × 104 epochs which is the threshold we fixed for the training procedure.
The resulting L2 norm errors for all the parameter couples in the online set are shown

in Fig. 12. Once again, a discrepancy of about one order of magnitude can be noticed
between the relative errors for the quantities of interest and the one calculated for the
eddy viscosity. This is because we are using a very simple and small network, but it reveals
to be reliable enough to make the online algorithm work fine.
In Fig. 13, Fig. 14, Fig. 15 and Fig. 16 a comparison between offline and online solutions

and the error field associated are presented for two different parameter couples selected
from the online set. Even if the two solutions are obtained for airfoil geometries that
are perturbed in opposite directions, in both cases the method exhibits good reliability
properties even though the intermediate solutions introduced in the snapshots matrix
couldbehighly inaccurate and trigger instabilities in theROMs.Additionally, Fig. 2 reports
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Fig. 12 L2 norm relative errors

Fig. 13 Comparison between the full-order (first column) and reduced-order (second column) solutions with
the relative error associated (third column): velocity (first row), pressure (second row), and energy (third row)
magnitude. These fields refer to the resolution of the problem for (πtop,πbottom) 	 (0.004, 0.086) which has been
selected as a random value in the online parameter set

Fig. 14 Comparison between the full-order (left picture) and reduced-order (middle picture) with the relative
error associated (right picture) for the eddy viscosity solutions. These fields refer to the resolution of the problem
for (πtop,πbottom) 	 (0.004, 0.086) which has been selected as a random value in the online parameter set
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Fig. 15 Comparison between the full-order (first column) and reduced-order (second column) solutions, with
the relative error associated (third column): velocity (first row), pressure (second row), and energy (third row)
magnitude. These fields refer to the resolution of the problem for πtop 	 0.095 and πbottom 	 0.003 which has
been selected as a random value in the online parameter set

Fig. 16 Comparison between the full-order (left picture) and reduced-order (middle picture) with the relative
error associated (right picture) for the eddy viscosity solutions. These fields refer to the resolution of the problem
for (πtop,πbottom) 	 (0.095, 0.003) which has been selected as a random value in the online parameter set

Table2 Error comparison versus the # modes for (πtop,πbottom) 	 (0.055, 0.0051).

# ofmodes L2 relative error

u p e νt

Nu = Nνt = 10 and Np = Ne = 2 0.018 0.00311 0.0173 0.652

Nu = Nνt = 10 and Np = Ne = 5 0.0163 0.0044 0.0034 0.612

Nu = Np = 20 and Ne = Nνt = 30 0.0118 0.0033 0.0019 0.284

Nu = Np = Ne = 20 and Nνt = 30 0.0114 0.00320 0.00206 0.2784

an error analysis versus different number of modes. This allows for evaluating the effect of
the number of modes variation on the error between the full and reduced order solutions
of all the field of interests.
Regarding the computational cost of the reduced-order model, it should be noted that

the solution of the reduced system is not proportional to the reduction of the unknowns
obtained at the reduced-order level. This is due to the fact that in the presence of a
deforming domain such as the one considered in the second case, the entries of the
matrices of the ROM system must be computed at each iteration through integrals on
the updated full-order grid. Clearly, this is at the moment represents a major bottleneck



Zancanaro et al. AdvancedModeling and Simulation in Engineering Sciences           (2025) 12:3 Page 19 of 21

towards a ROMwhich grants significant computational cost reduction with respect to its
FOM counterpart, and work is being carried out towards lowering the computational cost
associated with the reduced model assembling using hyper-reduction techniques [53,54].
Nonetheless, the main goal of the present work is that of assessing the accuracy of the
ROM approach taken. In particular, it is important establishing whether the interaction
between the physics based reduction of the fluid dynamic balance equations, and the data
driven reduction of the turbulence and shape deformation results in an accurate solver.

Conclusions and future perspectives
This study focused on compressible flows by proposing a new mixed technique, capable
of merging the reliability of Galerkin-projection methods together with the versatility of
data-driven strategies in turbulence and compressible flows. The good results obtained
for both a physical and geometrical parameterized benchmarks make this approach quite
promising. From one hand, the possibility to freely select the turbulence model avoiding
the necessity of changing the whole architecture is attractive, while on the other hand,
the guarantee of a strong connection with physical aspects given by the projection of
conservation laws is reassuring.
The segregated compressible algorithm, proposed in subsection “Multiscale modeling”,

also introduces a way to provide accurate reduced solutions without any kind of stabiliza-
tion: the employment of a decoupled approach for the compressible turbulent Navier–
Stokes equations relies on the chipping of the saddle point formulation. For this reason,
no stabilization for pressure is required: as shown in both subsection “Multiscale model-
ing” and subsection “Geometrical parametrization test case”, pressure field solutions do
not exhibit significant instability or inaccuracy issues. This aspect helps the procedure
on being more consistent without pollution of the resulting solution due to stabilization.
A natural extension of this work will be a deep analysis with others existing approaches
both in the methodology and application. Another extension will be the application of
neural networks to approximate the functional evaluations required by the online phase
to overtake the necessity of reconstructing the full fields at each iteration. This aspect
would increase the performances but it has to be carefully calibrated to avoid possible
drifting of the algorithm resulting on the loss of the convergence.
A final aspect that can be improved is the neural network itself: a weighted strategy

where eigenvalues play a relevant role in the loss function would, in principle, enhance the
training stage since the firstmodal basis functions, represented by the highest eigenvalues,
are the most significant ones on the reconstruction procedure.
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