
Enhancing UAV Systems via
Task Offloading at the EDGE

Rajashekhar Reddy Tella∗, Andrea Marotta †, Piero Castoldi ‡ Luca Valcarenghi ‡, Koteswararao Kondepu∗
∗ Department of Computer Science and Engineering, IIT Dharwad, Dharwad, India

† Department of DISIM Science and Engineering University of L’Aquila
‡ Telecommunications, Computer Engineering,and Photonics Institute Scuola Superiore Sant’Anna

Email: {200030058, k.kondepu}@iitdh.ac.in

Abstract—Mobile Edge Computing (MEC) is a pivotal driver of
5G and subsequent mobile cellular networks, enhancing various
life aspects through advanced communication and computation.
MEC evaluates the computational tasks and ensures ultra-low
latency as well as higher bandwidths. It has a wide range of
applications, such as mobile health, surveillance systems, road
infrastructure sector, and smart factory setups. A notable appli-
cation is MEC-assisted autonomous navigation, where camera-
fitted Unmanned Aerial Vehicles (UAVs) send images to the MEC
for object detection and use the inference for controlling the UAV
navigation. The offloading prolongs UAV battery life and flight
duration. However, the onboard computation reduces both the
battery life and flight duration, which disrupts the applications.
In this study, we offload the computational tasks to both the MEC
and the Cloud infrastructures in order to preserve the battery
life and prolong the flight time. We present the time required for
object detection inference using both the EDGE and the Cloud in
latency-sensitive scenarios. The results show that employing the
EDGE could outperform the Cloud both in terms of latency and
throughput. We also investigate the energy consumed by both
CPU and GPU that are employed with the EDGE for object
detection tasks.

Index Terms—Edge computing, Edge, MEC, CNN, Object
Detection, Autonomous Navigation

I. INTRODUCTION

The rise in population in many areas has led to increased
road traffic, emphasizing the need for traffic surveillance sys-
tems. Surveillance involves monitoring and observing traffic
using various technologies like cameras and sensors. However,
traditional camera-based surveillance has certain limitations,
including the high infrastructure costs and the requirement
for extensive manpower for constant monitoring. However,
aerial surveillance using unmanned aerial vehicles (UAVs)
overcomes these challenges, and integrating artificial intelli-
gence (AI) with it enhances its effectiveness in improving road
safety and avoiding congestion.

Among the many components of aerial surveillance, UAVs,
commonly referred to as drones, are critical. The growing
popularity of UAVs is attributed to their cost-effectiveness,
ease of deployment, and exceptional mobility. The remote
control capabilities of UAVs play a pivotal role in delivering
timely alerts and expediting rescue and recovery missions,
especially during situations where communication networks go
down [1]. Additionally, they play an important role in aerial
surveillance by capturing images from elevated positions and

transmitting them to base stations for continuous monitoring.
This surveillance capability proves invaluable in monitoring
crop quality across vast expanses and inspecting mining sites
for potential issues [2]. Furthermore, UAVs can be controlled
by commands generated based on their captured images,
making the surveillance systems even more powerful and au-
tonomous. The generated commands can be such that the UAV
avoids the obstacle on its way, tracks the detected object, etc.
So, a UAV can navigate autonomously by installing a camera
and a central control unit where the former helps capture the
snaps of the environment around it, and the latter controls
the movement based on the inference made on the snaps.
Here, the central control unit comprises a flight controller
and a computational unit. The flight controller receives the
direction commands transmitted by human operators in guided
navigation and from the computational unit in the autonomous
navigation system. Raspberry Pi, Jetson Nano, and Nvidia
Jetson TX2 are a few examples of computational units that
can be employed for the inference task. UAVs have scarce
computational capabilities due to their limited weight, size,
and power ability. The payload of a UAV is mainly contributed
by the weight of the battery, frame, and flight controller, and
it is limited. This restricts increasing the power of the battery,
which in turn increases the weight of the battery. On the other
hand, it is known that image processing is a CPU-intensive
task, and it requires more power [3]. A possible solution is
represented by utilizing onboard computation units, like Rasp-
berry Pi, etc, which controls the UAV’s movement. However,
this represents a suitable approach only in use cases where
flight time is not critical. Instead, most applications require
a long flight time to achieve the desired goals. Offloading a
part of the complete task would be a better alternative than
carrying out the end-to-end computation onboard. In this case,
communication overhead and delays are the major concerns.
The communication delay generally includes the time taken
to send the data to the desired location, data-processing time,
and the time taken to obtain the response from the server to
the user.

This calls for the exploitation of Mobile Edge Computing
(MEC) as a suitable solution to support computation offloading
and low-latency communication. The fifth generation of mo-
bile communications (5G) natively offers processing through
accelerated edge data centers or edge clouds to perform



artificial intelligence/machine learning (AI/ML) tasks. To pro-
vide quick service response for low latency, edge computing
seeks to move cloud resources and services to the network’s
edge — an intermediate layer between the end users and
cloud data centers. The MECs have gained popularity because
they can support latency-sensitive applications associated with
computational tasks. Edge clouds are generally deployed with
machine learning models like Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), etc., and these
models are set up as a service.

This paper focuses on presenting a UAV system exploiting
edge offload to detect and track target objects. The considered
application exploits edge and cloud instances to perform
inference on the captured frames using the custom-trained
pre-existing algorithm. Results show that the use of edge in
the taken application outperforms the cloud in latency and
throughput. The experiments of object detection have been
performed on both GPU and CPU. The results show that
the GPU-based implementation is efficient compared to CPU-
based implementation in terms of processing time and energy.

II. RELATED WORK

Studies have been conducted to investigate the capabilities
of UAVs, edge computing, and their combined applications in
traffic surveillance. In [4] explored the utilization of UAVs for
a multi-functional airborne traffic management system (Air-
TMS) to address non-recurrent traffic congestion. Another
work in [5], presented the applicability of UAVs in traffic
monitoring and emergency identification, considering regula-
tory and safety concerns.

The authors in [6] experimentally demonstrated that UAV
may suffer trajectory deviations from the intended path up to 5
meters if the network latency exceeds 400 ms and more than
2 meters if the packet loss probability exceeds 0.2. These
findings underscore the necessity of an edge cloud infras-
tructure to ensure reliable and low-latency communication for
UAV traffic management. In [3], the authors shed light on
the potential of utilizing UAVs and MEC in various practical
scenarios, such as pedestrian detection and object detection.
In addition, the authors in [7] presented a work exploiting the
MEC’s low-latency and high bandwidth feature for firefighting
in residential areas of future smart cities.

To the best of our knowledge, no previous work has
demonstrated that specifically explores the utilization of UAV
resources (i.e., battery and others) by offloading either to the
MEC (or EDGE) or Cloud for image detection use case.

The following section gives an overview of the system
architecture of Edge-assisted surveillance using UAVs.

III. ARCHITECTURE OVERVIEW

Fig. 1 shows the architecture for autonomous surveillance
using a UAV following a client-server model, where the
computational unit on the UAV transmits captured images to
the Edge and awaits a response containing the detected objects.
The UAV and the edge are connected through a WiFi network
for seamless communication. The UAV’s computational unit,

1 Gbps Link

192.168.0.186

EDGE

UAV

192.168.0.117 192.168.0.1

ROUTER

Fig. 1. Detection and Tracking Architecture

consisting of a Raspberry Pi and a flight controller, handles
image transmission and flight control operations. On the edge
side, high-performance computational units execute optimized
object detection algorithms as a Docker service to achieve real-
time object detection on the received images, enabling quick
responses.

A. EDGE

The objective of object detection and tracking is a latency-
sensitive application where the trajectory-related decisions
should be taken in order of milliseconds (ms). In our setup,
we have used the CPU and GPU for image processing at
the EDGE. The YOLOv3 algorithm was used to perform
the inference on the received images. We have used the
idea of transfer learning to develop a model to satisfy our
requirements. The YOLOv3 algorithm is generally trained on
the COCO dataset with 80 object categories. As the objective
in our case was to identify a specific car in the traffic and
follow it, and the default algorithm does not differentiate
between the target and the remaining cars, we have custom-
trained the YOLOv3 model with the dataset made by capturing
the images of the target object alongside another car as shown
in Fig. 2b. We have captured 200 images and used the image
augmentation technique to train the algorithm. After capturing
the images from various angles, we drew the bounding boxes
around the objects and labeled them using LabelImg [8]
— an open-source graphical image annotation program. For
custom training of YOLOv3, the dataset annotations should
be in textual format, where each line corresponds to an object
description. LabelImg generates the annotations in the required
format for YOLOv3. Upon the dataset is ready, the training

1
2

3

1. Raspberry Pi Board
2. Pi Camera
3. Flight Controller

Fig. 2. (a) UAV components; (b) Snapshot of LabelImg

is performed using the YOLOv3 model with the modified
configuration file, which includes (i) setting the number of



classes; (ii) file path to the training and validation images
folder; (iii) number of epochs; (iv) batch size for training;
and (v) number of units in the last layer. We used the GPU
server enabled with A100 card to train our model. The model
was trained for 100 epochs, and the validation accuracy was
around 85%.

B. Unmanned Aerial Vehicle

UAVs have gained popularity in recent years because of
their low-cost deployment, which enables them to carry out
experiments to show proof of concept of an idea. We devel-
oped an in-house quad-copter using all the required individual
parts like the carbon frame, motors, ESCs, etc. As shown
in Fig. 2a, the UAV has a flight controller who controls the
speeds of the motors, yaw angles, etc. We installed a Raspberry
Pi board on the built quad-copter to enable communications
between the flight controller and the EDGE for capturing the
images using the pi-camera. The flight controller and the Pi
board are connected using a special type of chord 6-pin DF-13
connector on one side, which goes into the telemetry port, and
the other side has 6 female Dupont connectors. This allows
the Raspberry Pi to send commands to control the movement
of the drone.

The drone’s movement is controlled via custom-developed
Python scripts that use PySerial, DroneKit, and Micro Air Ve-
hicle (MAV) proxy. PySerial is a well-known Python package
that allows for serial communication with external devices.
This library is commonly used in projects involving serial port
connection with microcontrollers, boards that run Arduino,
GPS modules, sensors, and other hardware devices. DroneKit
is a Python toolkit that provides a high-level API for drone
communication and control. It enables Python developers to
create apps for autonomous drone operations, monitoring, and
management. DroneKit works with various autopilot systems,
including ArduPilot [9] that support the MAVLink protocol.
It offers an abstraction layer that makes dealing with drones
and accessing flight data easier. MAVProxy is command-line
Ground Control Station (GCS) software used to control and
monitor unmanned vehicles that use the MAVLink protocol.
It enables the use of a computer terminal or a remote shell to
interface with and manage MAVLink-enabled vehicles such
as drones. MAVProxy bridges the MAVLink-enabled vehicle
and the user, providing a flexible and extensible interface for
sending commands, receiving telemetry data, and performing
various tasks. It supports multiple vehicle connections and can
handle multiple MAVLink streams simultaneously.

The UAV is installed with an R-Pi board and a Pi camera
in addition. The custom-trained object detection algorithm is
containerized, and it is run as a Docker service that receives
the images and responds with the detections in that image.
The docker container runs as an API endpoint, and the R-Pi
board sends the captured images using the HTTP protocol.

IV. EXPERIMENTAL SETUP AND RESULTS

This section details the deployment of a custom-trained
object detection algorithm at the EDGE with several hardware

options, such as CPUs and GPUs, and with the remote Clouds.
Fig. 3 shows the considered evaluation scenario, which

contains the UAV, A Wi-Fi router, EDGE, and two remote
Clouds (1&2). The EDGE device utilizes an 11th Gen Intel
Core i7-11700 CPU model running at a base frequency of 2.50
GHz and equipped with two processors, each processor with
8 cores. The EDGE device is also equipped with an Nvidia

Cloud-1

Internet

MEC

UAV ROUTER

Cloud-2

Fig. 3. Communication Architecture

A100 GPU for its computation. In contrast, the Cloud system
is powered by an Intel Xeon Platinum 8272CL CPU, operating
at a base frequency of 2.60 GHz, and this CPU configuration
consists of a single processor with 2 cores per processor. The
Cloud infrastructure is deployed via Microsoft Azure services
in both Pune and Chennai locations in India, utilizing identical
configurations, and the router is a D-Link DIR-615 with a
bandwidth of 300Mbps. It brings both the EDGE and UAV
into the same subnet so that they can communicate, and also
it connects the UAV to the internet. Both the EDGE and the
Cloud run the custom-trained YOLOv3 for object detection.
The evaluation of the proposed UAV task offloading considers
different network metrics (i.e., throughput and latency) as
well as an enumeration of system performance factors like
processing time and energy usage.

Latency and throughput of the network between the UAV,
the EDGE, and both the Cloud instances are measured with
the ping and iperf3 tools widely used in network performance
analysis. For ping, packets (Internet Control Message Protocol
— ICMP) are sent every second, while iperf3 employed a
single UDP stream with a bitrate of 100M, surpassing the
expected throughput to gauge network capacity.

Fig. 4. Latency (EDGE vs Cloud-1/Cloud-2)

Fig. 4 illustrates the Round Trip Time (RTT) – namely
Latency — defined as the time taken from the UAV to
the EDGE/Cloud instances. We used the ping command to
calculate the latency, and the experiment was carried out for



180 s, sending the ICMP packets every second. The results
show that the geographical separation between the computing
servers substantially impacts latency in the considered use
case. As described earlier, the EDGE is set up near the user
as the Cloud is deployed far away. As shown in Fig. 4, the
UAV-to-EDGE average latency shows around 1.6 ms with
a significant reduction. The average latency from the UAV
to Cloud-1 (located in Pune, India) and Cloud-2 (located in
Chennai, India) exceeds the latency to the EDGE server by
20 ms and 30 ms, respectively.

Fig. 5 depicts the uplink throughput to both the Cloud
instances and the EDGE. It is clear that the throughput to
the EDGE is higher compared to that of the Cloud, which is
deployed far away from the user. Upon running the custom-
trained object detection algorithm on both GPU and CPU,
results show that the former can process images at 27.93
Frames Per Second (FPS), and the latter can process them
at 21.73 FPS. Note that the processed FPS can be observed
slightly higher due to the high-end processing device (NVIDIA
A100). The custom-trained YOLOv3 model is optimized for
both CPU and GPU processing by using –include and –device
options while exporting the trained-model weights using In-
tel’s OpenVino toolkit, the performance of the models has
increased significantly. The optimized model achieves image
processing speeds of 41.6 FPS on the CPU and 43.47 FPS
on the GPU. By adding half of the RTT measured using the
ping to the processing times of the original model, we get the
complete response time for the CPU as 48 ms, corresponding
to 21 FPS, and for the GPU as 37 ms, corresponding to 27
FPS.

Fig. 5. Throughput (EDGE vs Cloud-1/Cloud-2)

It can be seen that the EDGE implementation for the object
detection of surveillance gives better results in terms of latency
and throughput compared to that of a Cloud. EDGE is an
added advantage as it gives us the ability to use the hardware,
which accelerates the inference. The above results clearly show
that the EDGE equipped with a GPU performs better compared
to a CPU in terms of the number of frames it can process
per second, which is an important factor when it comes to
surveillance.

Another important evaluation metric is the energy consumed

by the hardware processing for one image. The CPU energy
consumption is determined using the s-tui [10] tool, whereas
the energy dissipated by the GPU is calculated through nvidia-
smi command. The results show that the energy consumed by
the CPU is around 11.8 J and that by the GPU is around
4.23 J . Thus the CPU-based implementation nearly needs 2.8
times more energy compared to that of the GPU, making the
GPU-based implementation energy efficient.

V. CONCLUSION AND FUTURE WORK

This study presents the utilization of an MEC and a Cloud
for applications that demand low latency, such as UAV-based
surveillance. We analyzed the latency and throughput between
MEC and the Cloud. Additionally, it showed the advantages
of replacing CPUs with GPUs due to their ability to process a
higher volume of images per second. The results demonstrate
that the computational offloading to the EDGE would enable
the efficient usage of the battery for the UAV flight instead of
onboard computation. The potential future work of this paper
is to build an Edge Cloud infrastructure with FPGAs and use
the optimized models for inference.

VI. ACKNOWLEDGEMENTS

This work was supported by DST NM-ICPS, TiHAN at the
Indian Institute of Technology (IIT) Hyderabad. This work
was partially supported by the European Union - NextGenera-
tionEU under the Italian Ministry of University and Research
(MUR) National Innovation Ecosystem grant ECS00000041 -
VITALITY - CUP E13C22001060006 and the KDT-JU project
Collaborative edge-cLoud continuum and Embedded AI for a
Visionary industry of thE futuRe (CLEVER) (grant agreement
no. 101097560). KDT-JU receives funding from the Horizon
Europe Research Framework and the National Authorities.

REFERENCES

[1] L. Gupta, R. Jain, and G. Vaszkun, “Survey of important issues in uav
communication networks,” IEEE Communications Surveys Tutorials,
vol. 18, no. 2, pp. 1123–1152, 2016.

[2] D. Floreano and R. J. Wood, “Science, technology and the future of
small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460–466,
May 2015. [Online]. Available: https://doi.org/10.1038/nature14542

[3] Y. C. Makkena, R. R. Tella, N. Parekh et al., “Experience: Implemen-
tation of Edge-Cloud for Autonomous Navigation Applications,” in in
Proc. 15th COMSNETS, 2023, pp. 579–587.

[4] CAIT UTC NC8, “Final report,” Tech. Rep., 2018. [Online].
Available: https://cait.rutgers.edu/wp-content/uploads/2018/05/cait-utc-
nc8-final.pdf

[5] K. Ro, J.-S. Oh, and L. Dong, “Lessons Learned: Application of Small
UAV for Urban Highway Traffic Monitoring,” 01 2007.

[6] O. Bekkouche, T. Taleb, and M. Bagaa, “UAVs Traffic Control Based
on Multi-Access Edge Computing,” in in Proc. of GLOBECOM, 2018,
pp. 1–6.

[7] V. Gudepu, B. Pappu, T. Javvadi et al., “Edge Computing in Micro Data
Centers for Firefighting in Residential Areas of Future Smart Cities,” in
in Proc. of ICECCME, 2022, pp. 1–6.

[8] Tzutalin, “labelimg: An open source graphical image annotation tool,”
https://github.com/tzutalin/labelImg, Year, accessed: August 31, 2023.

[9] “Ardupilot open source autopilot,” https://ardupilot.org/, Year, accessed:
August 31, 2023.

[10] amanusk, “s-tui: Terminal ui for monitoring your computer,”
https://github.com/amanusk/s-tui, Year, accessed: August 31, 2023.


