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a b s t r a c t 

The possibility to measure the contribution of agents and exchanges to the price formation 

process in financial markets acquired increasing importance in the literature. In this paper 

I propose to exploit a data-driven approach to identify structural vector error correction 

models (SVECM) typically used for price discovery. Exploiting the non-Normal distribu- 

tions of the variables under consideration, I propose a variant of the widespread Informa- 

tion Share measure, which I will refer to as the Directed Acyclic Graph based-Information 

Shares (DAG-IS), which can identify the leaders and the followers in the price formation 

process through the exploitation of a causal discovery algorithm well established in the 

area of machine learning. The approach will be illustrated from a semi-parametric per- 

spective, solving the identification problem with no need to increase the computational 

complexity which usually arises when working at incredibly short time scales. Finally, an 

empirical application on IBM intraday data will be provided. 

© 2022 Elsevier B.V. All rights reserved. 

 

 

i An update to this article is included at the end
1. Introduction 

The past decades have been characterized by dramatic changes in financial markets, where the proliferation of algorith- 

mic trading strategies put aside the intervention of human agents in the price formation process. These algorithms execute 

orders at incredibly short time scales and there is no doubt anymore they account for most of the trading volumes in devel-

oped markets. In addition, processes of market fragmentation have been carried out jointly with the rising of high-frequency 

trading. This doubly increased the complexity of financial markets, since quotes and trades might be dispersed across dif- 

ferent listing venues and at heterogeneous time scales which mix the slower dynamic of humans with the faster dynamic 

of machines. 

The possible benefits of fragmented versus consolidated markets have been object of debates for both economists and 

regulators also in recent times ( Hatheway et al., 2017; Kwan et al., 2015; O’Hara and Ye, 2011 ). As a consequence, the pos-

sibility to measure the relative contribution of different exchanges, agents, and financial instruments to the price formation 

process acquired increasing importance in the research environment. 
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In this article I propose to adopt a completely data driven strategy based on Independent Component Analysis (ICA) to 

identify the structural vector error correction models (SVECM) widely adopted in the price discovery context, proposing a 

solution for the identification problem of the Information Share (IS) measures ( Hasbrouck, 1995 ). The proposed methodology 

exploits the non-Normal distributions of the variables to identify the transitory shocks, and the associated mixing matrix 

according to which the observed model residuals correlate across markets. In particular, in presence of non-Normal latent 

shocks and assuming the existence of a causal chain in the system, it will be shown how to choose among all the potential

Choleski orderings the one which is compatible with independent shocks. 

Another popular measure widely adopted in price discovery analyses that it is worth mentioning is the Component Share 

(CS) based on the permanent-transitory (PT) decomposition introduced in Booth et al. (1999) ; Gonzalo and Granger (1995) ;

Hansen and Lunde (2006) ; Harris et al. (1995) . Both the IS and CS measures build their fundamentals upon the modeling

of price changes through VECMs, with the substantial difference that while the CS is defined only in terms of speeds of

adjustment toward the common trend (i.e. markets with lower cointegration loadings rapidly adjust and are thus more in- 

formative), the IS measure is more concerned with variations in the prices and seeks to measure the amount of information

generated by each market. Both approaches have their merits and limits which have been documented by comprehensive 

discussions in the literature ( Baillie et al., 2002; De Jong, 2002; Harris et al., 2002a; 2002b; Hasbrouck, 2002b; Lehmann,

2002 ). The IS approach, compared to the CS one, has a richer specification since it considers the speed of adjustment to-

gether with the relative share of variance of the efficient price process accounted by each market. 

Still, from a microstructural modeling point of view, the IS can be uniquely determined only when the VECM residuals 

are uncorrelated given that the presence of substantial contemporaneous correlations hampers the correct identification of 

the shocks occurred in each market. Hasbrouck’s suggested solution was, in absence of an established theory providing the 

causal chain to correctly order the variables in the model, to identify the SVECM using the Choleski decomposition and going

through all the possible permutations of the variables to get upper and lower bounds for the IS. In empirical applications

upper and lower bounds are often very wide giving rise to interpretative ambiguities about the real allocation of information 

between the analyzed variables, making impossible to distinguish between the exchanges which lead the price formation 

process and exchanges that follow it. 

From a recent data-driven perspective instead, Hasbrouck (2021) proposed to exploit the high frequency at which quotes 

and trades occur, modeling thus in natural time to drastically reduce the distance between the upper and lower bounds 

obtained by permuting the variables. Sampling prices at very short time scales, even from microseconds to nanoseconds 

precision, heavily reduces contemporaneous cross correlations, which by construction leads to narrower IS bounds and allow 

to discard any interpretive ambiguity. To deal with the enormous amount of coefficients to be estimated in such a natural

time framework, the author handled the problem by adopting the heterogeneous autoregressive approach (HAR) proposed by 

Corsi (2009) . Nevertheless, this modeling approach raised interesting and useful comments and discussions in the literature, 

in some cases controversial, directly related to the econometric model specification, treatment of the high level of data 

sparsity in natural time, and subsequent identification of where price discovery occurs ( Brugler and Comerton-Forde, 2021; 

Buccheri et al., 2021; Ghysels, 2021; de Jong, 2021 ). 

Despite the identification issue above mentioned and even if other measures of price discovery have been proposed in 

the literature (see De Jong and Schotman, 2010; Lien and Shrestha, 2009; Putni ̧n s ,̆ 2013; Yan and Zivot, 2010 ), the IS is

still one of the most widely used measures for price discovery as documented by its adoption in recent works as well

( Ahn et al., 2019; Baur and Dimpfl, 2019; Brogaard et al., 2019; Chen and Tsai, 2017; Entrop et al., 2020; Hagströmer and

Menkveld, 2019; Kryzanowski et al., 2017; Lin et al., 2018 ). The idea to exploit the non-Normal distribution of financial

returns to identify the IS measure, directly arises from the possibility of introducing a purely data-driven technique in a 

research field in which is very hard to provide general and robust theory-driven identification strategies. This will lead to 

the introduction of the Directed Acyclic Graph based-Information Shares (DAG-IS). 

The idea of identifying the IS by means of the distributional properties of the variables was firstly introduced by 

Grammig and Peter (2013) . The authors exploited the concept of tail dependence through the adoption in the modeling 

procedure of different variance regimes, inspired by Rigobon (2003) , to identify the contribution of each market to the price

discovery process. The intuition was that differences between tail and center correlations, caused by the occurrence of ex- 

treme price changes, could be exploited to reach full identification. In particular, following Lanne and Lütkepohl (2010) , they

assume price innovations to emerge as a mixture of two serially uncorrelated Normal random vectors with different covari- 

ance matrices, where one is the identity and the other is a diagonal matrix associated to different variance regimes. Still

providing a solution based on the exploitation of the statistical properties of the variables of interest, the methodology pro- 

posed in this article differs under many aspects. First, the methodology which I am going to propose can work in principle

under any non-Normal distribution, with no need of introducing different volatility regimes to identify the model. Second, 

keeping Hasbrouck (2021) as a clear benchmark, the strategy proposed in this article is found to provide coherent empirical

results under different time specifications when identifying the leaders and the followers in the price formation process. 

For all of these reasons the solution proposed in this article can be appealing, at the cost of introducing the assumption

of independent shocks in place of uncorrelated ones. Together with the assumption of the presence of an acyclic contem- 

poraneous causal structure ( Hyvärinen, 2013; Shimizu et al., 2006 ), I show we can consistently identify the causal chain in

the system and thus the correct permutation of the variables in the VECM with subsequent unique identification of the IS

measures. 
2 
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Recent developments about the ICA approach can be found particularly in macroeconometrics where the identification 

issue of structural VAR (SVAR) models is pervasive ( Gouriéroux et al., 2017; Lanne et al., 2017; Moneta et al., 2013 ) but

applications can be found also in financial econometric and forecasting studies ( Audrino et al., 2005; Fabozzi et al., 2016;

García-Ferrer et al., 2012; Hafner et al., 2020 ) as well as in the empirical validation of simulated models ( Guerini and Mon-

eta, 2017 ). Here its potential effectiveness in the identification of SVECM models for price discovery purposes will be ad-

dressed. The article is organized as follows. In Section 2 the general setting is provided, showing the baseline model with its

identification issues for price discovery. In Section 3 , the model and assumptions are illustrated explaining the identification 

scheme and a simulation exercise is provided to clarify the methodology. Section 4 provides an empirical application on 

IBM 3 October 2016 intraday data, in order to have the results of Hasbrouck (2021) as a clear benchmark to compare with.

Conclusion and discussions are provided in Section 5 . 

2. General setting 

In this section I briefly review the microstructure setting introduced in Hasbrouck (1995) , which exploits the vector error

correction representation of Engle and Granger (1987) , and reproposed in Hasbrouck (2021) . The starting point is to consider

a vector of time series log-prices p t = { p 1 t , p 2 t , ..., p nt } observed in n different exchanges but pertaining the same security,

thus all arbitrage linked and whose dynamic are modeled by VECM: 

�p t = αβ ′ p t−1 + 

k ∑ 

i =1 

�i �p t−k + εt (1) 

where the matrix β ∈ R 

n ×n −1 contains the n − 1 cointegrating vectors specified as p 1 − p 2 , p 1 − p 3 , p 1 − p n and α ∈ R 

n ×n −1 

is a loading matrix. The system in Eq. (1) is covariance stationary, with Cov( εt ) = �, and admits a common trend represen-

tation given by 

p t = p 0 + �(1) 
t ∑ 

i =1 

εi + �∗(L ) εt (2) 

where the decomposition �(L ) = �(1) + (1 − L )�∗(L ) holds, with the matrix �(1) which can be computed as

( Johansen, 1991 ): 

�(1) = β⊥ 

[ 

α
′ 
⊥ 

( 

I −
k ∑ 

i =1 

�i 

) 

β⊥ 

] −1 

α
′ 
⊥ . (3) 

Then, the information share measure for market j is the share of variance of the common component which is induced by

the j th market, which means 

IS j = 

ψ 

2 
j 
� j j 

ψ �ψ 

′ (4) 

with ψ being the common row of �(1) and ψ j denoting the j th element of ψ corresponding to market j . To deal with a

non-diagonal � two practical solutions have been proposed. The first is to rewrite εt in terms of orthogonal innovations u t 
through the Choleski decomposition C of �, then computing the IS as 

IS j = 

(
[ ψC ] j 

)2 

ψ �ψ 

′ . (5) 

However this allocation mechanism depends on the particular order in which the variables are inserted in the VECM, thus 

the heuristic solution was to consider upper and lower bounds for the IS by considering all the possible variable permuta-

tions. 

The second practical solution consists in drastically reducing the gap between upper and lower bounds estimating the 

model in natural time at very high resolutions, since non zero cross correlations in � naturally arise as the sampling interval

increases indeed ( Dias et al., 2021; Hasbrouck, 2021 ). This clearly comes at costs, including both the computational aspect

of dealing with such a number of observations characterized by high level of sparsity and a suitable model specification to

estimate the coefficients still considering a sufficiently long lag-structure in the data. 

As explained also in Hasbrouck (2003) , the upper and lower bounds of the IS measures cannot be interpreted as confi-

dence intervals but rather as an attempt to solve the identification problem. In the next section I will propose a methodol-

ogy to uniquely identify, under a few assumptions, the permutation of the variables in the system to recover the exchanges

which lead the price discovery and the following ones. It is worth mentioning that the IS measures have been used in a

variety of price discovery applications beyond the analysis of multiple stock exchanges and for which high-frequency data 

are typically not available (see for example Blanco et al., 2005; Guidolin et al., 2021 , among others, for the study of price

discovery in CDS and bonds markets). In this respect, the methodology proposed in this paper can be appealing since it

does not require to sample the data at very high-frequencies, which broaden the range of possible empirical analyses to be

performed in the context of price discovery. 
3 
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3. Model and assumptions 

Consider the n-dimensional vector of price innovations εt = [ ε1 t , ε2 t , . . . , εnt ] characterized by the non-diagonal covari- 

ance matrix �. Assume these observed signals to be a linear mixture of hidden components ηt , which can be modeled as 

εt = A 0 ηt , (6) 

where A 0 is a n × n mixing matrix through which the latent shocks ηt are revealed in each market. The Eq. (6) can be

estimated up to permutation, sign, and scaling under some assumptions ( Comon, 1994 ). 

Assumption 3.1. The sequence of hidden sources, with finite and non-zero variance, of market microstructure noise ηt 

possesses at most one Normal marginal distribution, 

Assumption 3.2. Independence of the latent shocks: p(η1 , η2 , . . . , ηn ) = 

∏ n 
i p(ηi ) . 

Market microstructure noises embed a variety of frictions in the trading process, inherent not only to investment scheme 

strategies but also to market and asset specific factors and fundamentals. As evidenced by Aït-Sahalia and Yu (2009) market 

liquidity risk can lead to further adjustments, not explainable by asset specific fundamentals, in the asset bid-ask spread of 

the assets. Then, from a price discovery perspective the independence assumption in 3.2 would imply market microstructure 

noise to be market specific and independent from the efficient price process of the asset. Still, observed price innovations 

are allowed to correlate with each other by means of the mixing matrix A 0 (for example as a consequence of the time

aggregation in the sampling process previously mentioned). However, since we directly observe only the mixtures, the inde- 

pendence of the hidden sources cannot be tested and has to be assumed. The non-normality assumption of financial returns 

is more a stylized fact rather than an assumption. The independence of the non-Normal structural shocks ηt is a stronger

concept than uncorrelatedness which is not sufficient alone to get independent variables when non-Normally distributed. 

This additional information is what will allow to reach full identification of the model if there exists a contemporaneous 

causal chain between the variables in the system, leading to the third and last assumption. 

Assumption 3.3. The observed price innovations εt can be arranged in a causal chain, meaning that their data generating 

process possesses a directed acyclic graph structure (DAG) ( Spirtes et al., 20 0 0 ). 

Under Assumption 3.3 we can model the system in Eq. (6) as the following structural model, 

εt = B 0 εt + ηt (7) 

where A 0 = (I − B 0 ) 
−1 and the assumption of acyclical contemporaneous causal structure implies there exists an appropriate

column ordering according to which B 0 is strictly lower triangular. It is worth noticing that the assumption of a causal

chain structure is already implicit in the Choleski decomposition used to compute the standard IS measure in the literature. 

Thus, the value added of the Assumption 3.3 comes when taken jointly with Assumptions 3.1 and 3.2 . We refer to this

model as the Linear Non-Gaussian Acyclic Model (LiNGAM) firstly introduced by Shimizu et al. (2006) in the research field of

non-Normal Bayesian networks. 

To understand why non-normality is fundamental in the above specified model let us consider the normal case as 

the baseline to compare with. Consider then the two-dimensional case, for the sake of simplicity, with two innovations 

ε = [ ε1 , ε2 ] and two latent shocks η = [ η1 , η2 ] . The first meaningful condition to be fulfilled to reach identification is the 

orthogonality of the shocks, we thus need to proceed with the orthogonalization of the innovations (
ε1 

ε2 

)
= 

(
1 0 

λ1 1 

)(
u 1 

u 2 

)
, u 1 ⊥ u 2 . 

However orthogonal innovations are not sufficient especially in the Normal case. All possible representations fulfilling the 

meaningful orthogonality condition would be ( Blanchard and Quah, 1989 ) (
ε1 

ε2 

)
= 

[(
1 0 

λ1 1 

)(
cos θ sin θ

− sin θ cos θ

)][(
cos θ − sin θ
sin θ cos θ

)(
u 1 

u 2 

)]
, 

meaning the models can be identified up to an arbitrary rotation of the space through a rotation matrix R , where the new

model ε = Aη, with A = 
R and η = R 
′ 
u , is observationally equivalent to ε = 
u . However, non-normality heavily reduce

the difficulties in identifying the models and the shocks consequently (comprehensive and recent explanations can be found 

in Gouriéroux et al., 2017; 2020 , among others), making possible to estimate εt = A 0 ηt and recover the latent shocks up to

sign, scaling and permutations of the columns of A 0 only. In Fig. 1 , a graphical illustration is also provided to clarify how the

rotation indeterminacy is resolved by exploiting the ICA approach and why this would not be possible in the Normal case.

Since for Normal random variables being uncorrelated coincide with being independent, the spherical symmetry of the joint 

density makes impossible to distinguish panel (c) from panel (a). Since any rotation would lead to an observationally equiv- 

alent density, independent shocks are recovered without knowing whether they are the true ones in panel (a) or a linear

mixture of them as in (c). With non-Normal distributions this is not the case and the two densities after orthogonalization

of the innovations can be distinguished, the variables in panel (c) are still statistically dependents. This makes possible to 
4 
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Fig. 1. The role of non-Normality and Independent Component Analysis. (a) The joint density of two standardized and independent random variables, 

representing our shocks in ηt , when they are Normally distributed (top) and when uniformly distributed (bottom). (b) The joint densities of the Normally 

and non-Normally distributed random variables after a linear transformation of the space. These would be the price innovations in εt arising as a linear 

mixture of the shocks in ηt . (c) Joint density after orthogonalization of the innovations. Despite getting orthogonal innovations, only for the non-Normal 

distributions panel (c) can be distinguished from panel (a) since they are uncorrelated but still statistically dependents. ICA performs an additional ro- 

tation of the space to minimize statistical dependencies, as shown in panel (d), recovering the latent shocks ηt still under arbitrary sign and columns 

permutations. Note that the Normal density is the only one yielding a spherical symmetric density for standardized and independent random variables. 

 

 

 

 

 

 

 

 

 

 

 

perform an additional rotation of the space aimed at minimizing statistical dependencies to recover the latent shocks ηt . 

Searching for this additional rotation of the space, which is performed through the ICA procedure, eliminate the rotation 

indeterminacy above illustrated greatly alleviating the identification problem. 

As a consequence the possible structural models are not perfectly symmetric anymore and can be reformulated either as (
ε1 

ε2 

)
= 

(
1 0 

λ1 1 

)(
η1 

η2 

)
or (

ε1 

ε2 

)
= 

(
1 λ2 

0 1 

)(
η1 

η2 

)
, 

which means the model selection reduce to the choice of one of the two models above which are not equivalent anymore.

Until now, only Assumptions 3.1 and 3.2 on the non-Normality and independence of the shocks ηt were necessary to illus-

trate the methodology. However, the identification is not over since the mixing matrix A 0 estimated with ICA is identified

only up to column permutations meaning that we do not know in which order the latent shocks have been returned. This

explain the necessity to introduce the third assumption on the existence of a directed acyclic graph structure in the model.

If we assume there exist a causal chain in the model, than the only remaining step is to find the permutation such that the

matrix B 0 = I − A 

−1 
0 

in Eq. (7) is as close as possible to strictly lower triangular. This leads to perfect identifiability of the

causal chain in the model to the extent the assumptions of non-normality, independence of the shocks and presence of a

causal chain in the systems hold true. 

Thus, the methodology proposed to solve the indeterminacy of the IS approach builds on two separate steps. In the first

step ICA is performed to estimate the latent independent shocks, solving the rotation indeterminacy. In the second step, 

since we do not know the order in which the shocks are returned, the search for the column permutation consistent with

a causal chain structure is performed. The two steps are necessarily interconnected, given that the second step building on 

Assumption 3.3 disentangles the permutation indeterminacy which remains after the implementation of the first step build- 

ing on Assumptions 3.1 and 3.2 . I thus proceed with the details and explanations on the implementation of both steps. After

illustrating the ICA methodology, consisting in both the quantification of non-Normality and consequent estimation of the 

independent latent shocks, the entire set of procedures aimed at inferring the DAG structure will be illustrated discussing 

also potential limitations and caveats. 

3.1. Quantifying non-normality and recovering the independent components: the ICA approach 

The first step necessary for the identification process is to perform ICA to recover the non-Normal and statistically in- 

dependent sources ηt from the observed price innovations εt . In particular, the ICA approach requires the adoption of suit- 

able measure which quantify the non-Normality of a random variable. The estimation can thus proceed by estimating the 
5 
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mixing matrix A 0 such that the non-normality of ηt is maximized. There are many approaches to estimate the model in

6 based for instance on the maximization of the kurtosis, negentropy, or minimization of the mutual information between 

the random variables. All methodologies are closely related and exploit the central limit theorem. The additive mixture εt 

of independent and non-normal components ηt , is always closer to a Normal distribution than the latter. Thus, maximizing 

the non-normality of ηt directly relates to finding a rotation through the inverse of A 0 such that their mutual dependence

is minimized. 

Going to the maximization schemes implemented so far in the literature, in this work the FastICA algorithm of 

Hyvärinen and Oja (20 0 0) is adopted being one of the most popular estimators whose performances have been assessed

theoretically and empirically, and for which efficient variants of the related algorithm have been also provided ( Koldovsky 

et al., 2006; Miettinen et al., 2017; Reyhani et al., 2012 ). The optimization problem is solved quantifying the non-normality

in terms of approximated negentropy . The entropy (amount of information) for a continuous random variables x is defined

as 

H(x ) = −
∫ 

f (x ) log f (x ) dx. (8) 

Given that a Normal variable has the largest entropy among random variables of equal variance ( Cover and Thomas, 1991 ),

one could optimally quantify, at least theoretically, the non-normality of a random variable by looking at the difference 

between its entropy and the one of a Normal one with the same variance. The so called negentropy is thus defined as 

J(x ) = H(N ) − H(x ) . (9) 

However, this would require in practice the knowledge of the probability density function from which the data are gener- 

ated. For this reason the algorithm deals with an useful approximation of the negentropy of a random variable which takes

the form 

J(x ) ≈ [ E ( g(x ) ) − E ( g(Z) ) ] 
2 
, (10) 

where Z is a standardized normal and g(·) is any suitable non-quadratic function used to approximate the negentropy given 

the data ( Hyvärinen and Oja, 1998 ), here g(x ) = −e −x 2 / 2 . What is important is to choose g(·) in a way that important regu-

larity conditions, here briefly discussed, are satisfied to guarantee the convergence of the algorithm and related asymptotic 

properties of the estimates. First, the mixtures are centered to be zero mean and whitened (i.e. uncorrelated and with their

variances equal to one) which means I work with the quantities z = P D 

−1 / 2 ε as done also by Fernandes and Scherrer (2018) ,

where P DP t is the spectral decomposition of the covariance matrix of the mixtures �. Whitening the innovations allow us

to get rid of the scaling indeterminacy. The algorithm searches for a vector w , being the rows of the inverse of A 0 , which

maximizes the non-normality of w 

t z measured as shown by Eq. (10) , that is 

ˆ w = argmax w 

E(J(w 

t z)) . (11) 

Proposition 3.1. Suppose that Assumptions 3.1 and 3.2 hold true and that the following regularity conditions are satisfied: 

i E(z) = 0 ; 

ii All moments of z up to the fourth exist; 

iii Both g ′ (·) and g ′′ (·) are Lipschitz continuous. That is, there exist δ1 , δ2 < ∞ such that || g ′ (x 1 ) − g ′ (x 2 ) || ≤ δ1 || x 1 − x 2 || and

|| g ′′ (x 1 ) − g ′′ (x 2 ) || ≤ δ2 || x 1 − x 2 || ; 
iv g ′′ (·) is bounded; 

Then, being E(zg(w 

t z) = 0 the first order optimality condition of the maximization problem in (11) , the estimator ˆ w = { w :

E(zg 
′ 
(w 

t z) = 0 )) } is consistent and asymptotically normal, that is 
√ 

n ( ̂  w − w ) 
d −→ N (0 , �) . 

Proposition 3.1 summarizes the regularity conditions needed to establish the asymptotical properties of the estimates. 

The asymptotic normality of the ICA estimates have been already proven for a variety of different optimization pro- 

cedures. A comprehensive theoretical discussion on the statistical properties of the FastICA estimator can be found in 

Reyhani et al. (2012) . It should be mentioned that also other studied proposed to use non-Normal distributions to iden-

tify structural shocks in SVAR models ( Gouriéroux et al., 2017; Lanne and Lütkepohl, 2010; Lanne et al., 2017 ) by assuming

specific density functions for the shocks. 

3.2. Identifying the acyclical causal structure 

Until now I used Assumptions 3.1 and 3.2 to estimate ηt and the mixing matrix A 0 up to sign and permutation. The

permutation indeterminacy in particular prevent the possibility to determine an appropriate order for the variables. I thus 

introduce at this point the acyclicity assumption in 3.3 which implies the correct permutation to be the one yielding a

strictly lower triangular matrix B 0 encoding the DAG structure. 

In the low-dimensional case, the search over all possible permutations is feasible and can be performed also heuristi- 

cally. However, general optimization procedures should be performed for large-dimensional systems in the form of linear 

assignment problems . In this respect, I refer the readers interested in the general methodology to the original contribution 
6 



S.M. Zema Journal of Economic Dynamics & Control 139 (2022) 104434 

Algorithm 1 VECM-LiNGAM algorithm for IS measures. 

1: Estimate the VECM equation by equation given the known cointegrating relationships, and perform the ICA estimation 

on the model residuals (any suitable ICA estimator) to recover A 0 and ηt . 

2: Given the unmixing matrix W = A 

−1 
0 

, find the permutation of the rows of W such that the permuted version W 

∗ mini- 

mize 
∑ n 

i 1 / | W 

∗
ii 
| . 

3: Divide each row of W 

∗ by its diagonal element so to get a matrix ˜ W with ones in the main diagonal. 

4: Let ˜ B 0 = I − ˜ W be the estimate of B 0 . Find a permutation matrix Z such that Z ̃  B 0 Z 
′ as close as possible to be strictly lower 

triangular. Set the upper triangular elements to zero and permute back to get the matrix ̂ B 0 containing the directed 

acyclical graphical structure (DAG). A non zero element b i j in matrix ̂ B 0 indicates the variable in position j to cause the 

variable in position i . 

5: Thus, order the variable in the VECM according to the DAG structure obtained and perform Choleski on the estimated 

price innovations. Compute the IS measures. 

It is useful to note that a test of statistical significance for the non zero elements of ˜ B 0 can be performed following if a 

sufficiently long time series is available, which is the case for high-frequency data. The code implementation of the pruning 

edges method is available publicly in the online ICA-based LiNGAM code repository. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of Shimizu et al. (2006) where the LiNGAM discovery algorithm was introduced. Here, I illustrate through Algorithm 1 the

whole procedure to finally get the IS measures without permutation indeterminacy. I refer to it as the VECM-LiNGAM algo- 

rithm, leading to the DAG-IS measures. After the first step in which the non-Normal shocks are estimated by performing ICA

on the VECM innovations, the steps in Algorithm 1 from 2 to 5 deals with the scaling, sign, and permutation indeterminacy.

Note that step 3 deals in principle with the scaling indeterminacy by forcing the shocks to have unit variance. This is rather

standard and the scaling indeterminacy has been already addressed here by performing ICA on the whitened VECM innova- 

tions in the first step. Steps 2 and 4 are more critical instead. Given the permutation indeterminacy of ICA, the columns of

A 0 will be in random order, meaning we do not have a correct correspondence between the innovations εt , corresponding

to the rows of A 0 , and the shocks ηt corresponding to the columns. The procedure in step 2, given the DAG assumption

which is crucial to solve the permutation indeterminacy (remember that B 0 = I − A 

−1 
0 

must be as close as possible to strictly

lower triangular), search for the column permutation by minimizing a cost function which penalizes small absolute values 

in the main diagonal. From an economic point of view this implies that each price series responds to its own shock more

than what other price series do. The objective function minimized in step 2 can be also derived from a maximum likelihood

approach assuming a generalized normal distribution for the errors (see Shimizu et al., 2006 ). Given the correspondence 

between rows and columns, the only remaining step is to order the variables consistently with a DAG structure. That is,

we need to permute both rows and columns of ˜ B 0 through a permutation matrix Z such that Z ̃  B 0 Z 
′ 

as close as possible to

be strictly lower triangular. Once I get to the permuted matrix encoding the DAG structure, I only need to check what the

causal chain is and compute the IS measure with the Choleski decomposition corresponding to the causal chain obtained 

via the methodology implemented. This leads to Proposition 3.2 . 

Proposition 3.2. Suppose that Assumptions 3.1 , 3.2 and 3.3 hold true. Then the Information Shares computed by following Algo-

rithm 1 are uniquely identified. 

Proof. See Appendix A. �

The identification scheme proposed ensures the uniqueness of the permutation according to which the price innovations 

in εt are mapped in a one-to-one correspondence with the shocks ηt . 

Assuming a causal chain among the variables, searching for the implied DAG structure through the algorithm, clearly 

comes at cost. In principle the matrix Z ̃  B 0 Z 
′ 

might be such that no lower triangular matrix can be obtained by permu-

tation. In that case the assumption of a recursive structure would not be adequate, and forcing the algorithm to find the

permutation such that Z ̃  B 0 Z 
′ 

is as close as possible to lower triangular would lead to biased results. 

Rejecting the assumption of a recursive structure would have much severe consequences that go beyond the identification 

of the IS through the DAG structure. When no recursive structure is detected in the data the Choleski decomposition itself

would not be reliable consequently, intrinsically hampering the validity of the IS approach whenever the assumption of a 

diagonal covariance matrix of the error is violated. A first heuristic check for the matrix to be close to a lower triangular

one is to fulfill the condition 

∑ 

i ≤ j ̂
 b i j 

2 
< 0 . 2 , however the null hypothesis for the coefficients to be zero can be statistically

tested by bootstrap ( Shimizu et al., 2006 ). 

In the next section, a simulation exercise is provided to clarify the methodology. An empirical application will follow 

afterward. 

3.2.1. An illustrative simulation exercise 

Here I present the proposed identification mechanism on simulated data. In light of Assumptions 3.1 and 3.2 I generate

samples of T = 50 0 0 observations of independent sources ηt from an Exponential Power Distribution (EPD) whose density 
7 
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function is defined as 

f (η| p, μ, σp ) = 

p 

2 σp p 1 /p �(1 + 1 /p) 
exp 

(
− 1 

p 

∣∣∣∣η − μ

σp 

∣∣∣∣p )
(12) 

where 

�(1 + 1 /p) = 

∫ ∞ 

0 η1 /p e −ηdx 
= (1 /p)! 

(13) 

is the gamma function. The variances are governed through the scale parameter σp according to 

σ 2 = 

σ 2 
p �(3 /p) 

�(1 /p) 
(14) 

Since we need ηt to be non-Normal, I choose to simulate from the EPD density (see Kalke and Richter, 2013; Nardon and Pi-

anca, 2009 , for extensive discussions about simulation methodologies) to have flexibility in modeling through the additional 

shape parameter p . The EPD become a normal when p = 2 and allows for fat tails by setting p < 2 ( DiCiccio and Monti,

20 04; Nadarajah, 20 05 ), which is useful in the present setting to simulate data displaying excess kurtosis as financial price

changes do. When p = 1 the distribution converges to a Laplace, I start with a shape parameter p = 1 . 2 which implies an

excess kurtosis of 1.8 according to 

k = 

�(1 /p)�(5 /p) 

�(3 /p) 2 
− 3 . (15) 

Given that the EPD encompasses different distributions, being a Normal when p = 2 , it represents a convenient choice in a

setting where being non-Normal is crucial, ensuring to do not approach to a Normal distribution by controlling the shape 

parameter. 1 Typically, intraday financial returns display higher levels of volatility both at the beginning and at the end of 

the trading day, and lower levels of volatility in the middle. For this reason I let the variance of the distributions from which

I simulate ηt vary over time, modelling it through the diurnal U-shape pattern ( Andersen et al., 2012; Bollerslev et al., 2016;

Hasbrouck, 2002a ). 

σηt = C + Ae −at + Be −b(1 −t) (16) 

where parameters are set as in Andersen et al. (2012) , that is C = 0 . 88929198 , A = 0 . 75 , B = 0 . 25 , a = 10 , and b = 10 . In the

light of the empirical application provided in the next section, in which no more than 4-variables will be contemporane- 

ously considered, I simulate a 4-dimensional VECM process driven by only one common stochastic trend. The signals εt are 

obtained by mixing the simulated non-Normal and independent shocks ηt through the matrix 

A 0 = 

⎛ ⎜ ⎝ 

0 . 9 0 0 0 

0 . 4 0 . 6 0 0 

0 . 5 0 . 2 0 . 7 0 

0 . 3 0 . 5 0 . 3 0 . 1 

⎞ ⎟ ⎠ 

, (17) 

whose lower triangular structure implies a causal chain from the first to the forth variables passing through the second and

the third ones. The shocks in ηt are set to be independent and such that Cov (ηt ) = �t is diagonal with equal variances, the

information shares of the two markets are affected by the speed of adjustments in α as well. Details about the simulation

setting and parameters can be found in Appendix B. 

With the specified parameters and the imposed causal chain, the true IS measures are I S 1 = 0 . 58 , I S 2 = 0 . 01 , I S 3 = 0 . 39 ,

and IS 4 = 0 . 02 . The identification procedure yields the following acyclic structure. 

̂ B 0 = 

⎛ ⎜ ⎝ 

0 0 0 0 

0 . 44 0 0 0 

0 . 42 0 . 43 0 0 

0 . 2 0 . 68 0 . 43 0 

⎞ ⎟ ⎠ 

, (18) 

which means the estimated DAG structure consistently recover the causal chain from the first variable to the fourth, passing 

before through the second and third variables. Fig. 2 shows the scatter plots for the residuals εt , clearly correlated as im-

posed in the data generating process (DGP), and the recovered independent structural sources ηt . Note that the estimated 

mixing matrix, upon which the causal search algorithm 1 is performed, closely resemble the true A 0 up to sign indetermi-

nacy as shown below 

̂ A 0 = 

⎛ ⎜ ⎝ 

−1 0 . 01 0 . 03 0 . 004 

−0 . 43 0 . 69 0 . 04 0 . 01 

−0 . 59 0 . 26 −0 . 75 0 . 005 

−0 . 34 0 . 58 −0 . 3 0 . 1 

⎞ ⎟ ⎠ 

. (19) 
1 Additional simulations have been done, as a robustness check, using the Student’s t-distribution. Results have been found to be robust and are available 

upon request. 
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Fig. 2. Scatter plots for the simulated residuals (top half) and estimated latent structural shocks (bottom half). 

 

 

 

 

The computation of the ISs going through all the possible permutations would provide us with IS 1 = [0 . 1 , 0 . 58] , IS 2 =
[0 . 01 , 0 . 32] , IS 3 = [0 . 1 , 0 . 6] , and IS 4 = [0 . 01 , 0 . 31] , which make impossible to correctly disentangle the contribution of each

market to the variance of the efficient price process. However, recovering the correct causal chain by means of the proposed

identification strategy makes possible to correctly permute the variables to get the right causal ordering and, consequently, 

the true IS measures implied in the simulation setting. In the next section, an empirical application based on IBM data

keeping previous results in the literature as a benchmark will be provided. 
9 
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4. Empirical application 

4.1. Benchmarking the model 

Bringing the procedure on high-frequency data exposes to several caveats, mostly related to the sparsity of the data and 

to model specification issues. To have a benchmark to compare with, I empirically test the proposed methodologies on the 

same IBM data adopted by Hasbrouck (2021) , for the day 3 October 2016, which have been shared under the authorization

of the NYSE making this analysis possible. I thus try to disentangle the relative contribution to the price discovery process of

primary listing and non-primary listing exchanges, participant-based and SIP-based quotes, trades and quotes. As previously 

illustrated, the main power of the approaches relies in the exploitation of the non-Normal distributions to separate the 

sources of noise in each variable. In this respect it becomes interesting to test the model stability both in natural and event

time, adopting a relatively low level of resolution (i.e. second precision) in the data for the natural time specification. This

to eventually check the consistency of the obtained results in both time specifications without increasing the computational 

complexity and data sparsity introduced when working at very high frequencies. 

4.2. IBM, 3 October 2016 

The empirical application focuses on some detailed analyses already conducted in the literature in order to have a direct 

comparison which makes clearer the interpretation of the obtained results. The econometric analysis is performed on IBM’s 

quotes and trades for the day 3 October 2016, with each record reporting both participant-based and SIP-based timestamps. 

The final whole sample for the day consists of around 30.0 0 0 observations. VECM models are thus estimated both in natural-

time and event-time with a maximum lag k = 10, and then the data-driven identification strategies for the IS measures are

implemented. 

The first study disentangles the impact of time reporting differentials on the quantification of price discovery measures, 

through the estimation of a 4-variables VECM including national best bids (NBBs) and offers (NBOs) constructed from both 

participant and Securities Information Processor (SIP) timestamps. The purpose of the SIP is to establish a consolidated and 

transparent way to view the market activity for all US equities. Starting from the participant trades and quotes, the Security

Information Processor compute and publicly disseminate national best bids and offers at which broker are required to trade, 

by the regulation, when acting in the interest of their customers. Given that the SIP timestamps are by construction delayed

signals of the participant ones, one expects to attribute the price discovery to the participant-based data. 

I then proceed with the second analysis which consists in quantifying the price discovery in both the primary listing and

other exchanges. The VECM will include bids and offers placed on the primary listing, plus best bids and offers taken from

all the exchanges except the primary one. 

Finally, the third study is aimed at determining the relative contributions of trades and quotes. I thus insert in the model

trades occurred on lit and dark pools separately, plus NBBs and NBOs quotes from participant timestamps. Dark pools are 

private trading venues, alternative to public accessible exchanges which are defined here as lit pools (examples are the 

NYSE, NASDAQ, or LSE among others), with no regulatory transparency requirements. This allows institutional investors to 

trade large securities volume without making their hands visible, thus avoiding possible adverse price effects for their trades 

when huge volumes are involved since there is no order book visible to the public. 

To schematically summarize the empirical application, three separate VECMs will be estimated and identified by the 

proposed methodology containing respectively: 

1. p 

Model1 
t = 

[ 
NBB 

Participants 
t , NBO 

Participants 
t , NBB 

SIP 
t , NBO 

SIP 
t 

] 
; 

2. p 

Model2 
t = 

[ 
NBB 

OtherExchanges 
t , NBO 

OtherExchanges 
t , Bid 

Primary 
t , Ask 

Primary 
t 

] 
; 

3. p 

Model3 
t = 

[ 
NBB 

Participants 
t , NBO 

Participants 
t , Trade LitPools 

t , Trade DarkPools 
t 

] 
. 

In Fig. 3 , the quantile-quantile plots for the VECM residuals are displayed. It can be noticed they are visibly leptokurtic as

expected (the normality hypothesis was soundly rejected at the 1% by different tests usually adopted as the Jarque–Bera and 

the Shapiro–Wilk tests). The residuals of the models estimated for the participant versus SIP timestamps are not reported 

in the quantile-quantile plots to avoid useless redundancies, given that the variables would be again NBBs and NBOs with 

just the time-delays differentials in reporting them. 

For each model related to a given price discovery analysis, the identification procedure leading to the DAG-IS measures 

is performed and compared with the approach in which upper and lower bounds are computed by going through all the

possible permutations and applying the Choleski decomposition. While Table 1 shows the estimated coefficients of the struc- 

tural matrix A 0 for each analysis, Table 2 summarizes the information shares estimated for each variable. The autoregressive 

and loading coefficients, for each estimated VECM, are not reported here for the sake of brevity. However, as also reported

in Hasbrouck (2021) , estimates are mostly insignificant at the 1-second resolution while they are very significant in the 

event-time specification. As illustrated in the previous section the underlying acyclical causal structure is encoded in the 

instantaneous effect matrix A , where non-zero elements represent the links among the variables involved. 
0 
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Fig. 3. Quantile-quantile plots of the VECM residuals. In Panel (a) are displayed the model residuals related to the price discovery analysis across trades 

and quotes, while in panel (b) the one across exchanges using quotes. 
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Table 1 

Estimated instantaneous effect matrices A 0 . 

Participant VS SIP timestamps 

natural-time 1 0 0 0 event-time 1 −0.038 −0.05 −0.046 

0.34 1 −0 . 36 0 0 1 0 0 

−0 . 99 0 1 0 0 0.063 1 0 

0.016 −1 . 001 −0.016 1 0 0.13 −0 . 12 1 

Non-primary VS Primary 

natural-time 1 0.026 −0 . 45 −0 . 22 event-time 1 0 −0 . 33 −0.012 

0 1 −0 . 23 −0 . 45 0.08 1 −0 . 015 −0 . 034 

0 0 1 0 0 0 1 0 

0 0 −0 . 35 1 0 0 −002 1 

Quotes VS Trades 

natural-time 1 0 −0.0013 0 event-time 1 0 0 0 

0.012 1 0 0.039 −0.011 1 −0.0083 0.019 

−0 . 062 0 1 0 −0 . 032 0 1 0 

−0 . 051 0 0.071 1 −0 . 033 0 −0 . 028 1 

Notes: Coefficients in bold are significants at the 1%. Statistical significance has been tested using standard errors from 10 0 0 bootstrap 

samples. 

Table 2 

Information shares: summary results. 

DAG-IS All permutations 

Participants SIP Participants SIP 

Min Max Min Max 

1-sec 0.999 0.001 0.002 0.999 0.001 0.998 

Event time 0.962 0.038 0.943 0.999 0.001 0.057 

Primary Non-primary Primary Non-primary 

Min Max Min Max 

1-sec 0.994 0.006 0.12 0.994 0.006 0.88 

Event time 0.56 0.44 0.46 0.56 0.44 0.54 

Quotes Trades Quotes Trades 

Min Max Min Max 

1-sec 0.67 0.33 0.39 0.979 0.021 0.61 

Event time 0.64 0.36 0.61 0.67 0.33 0.39 

Notes: Information shares measures for each identification procedure and for each 

price discovery analysis across participants and SIP timestamps, trades and quotes, 

and exchanges. In the natural-time(1-sec) setting the most recent price observed in 

a given second interval is taken. In the event time specification, the time counter 

is incremented whenever there is an update to any variable in the system. Trades 

comprises both lit and dark trades, given that the contribution of the latter to the IS 

measure is negligible. The all permutations approach yielded results consistent with 

Hasbrouck (2021) . 

 

 

 

 

Given the estimated results, the following acyclical structures have been recovered 

1. N BB participants −→ NBB SIP −→ NBO participants −→ NBO SIP in natural time (1 s); 

2. N BO participants −→ NBB SIP −→ NBO SIP −→ NBO participants in event time 

3. Bid pr imar y −→ Ask pr imar y −→ N BB others � N BO others ; 

4. NBB participants −→ T rades Lit −→ T rades Dark −→ NBO participants . 

For the participant versus SIP timestamps the recovered acyclical structure changes with the time framework adopted, 

but most importantly participants are always placed in the first position and this is the reason why the DAG-IS is able to

identify them as the leaders in both cases. 

The DAG structures recovered in the primary versus non-primary listing exchanges analysis and quotes versus trades 

analysis are stable and consistent across the natural and event time settings instead. When the � is present in place of the

straight arrow → it simply means that the recovered coefficient associated to the causal relations is not statistically signifi-

cant, meaning that the causal chain is interrupted in that specific point. This is the case for the primary versus non-primary

listing exchange analysis for example, where no statistically significant relation is detected among shocks in different ex- 

changes other than the primary one and the shocks propagate only from the primary listing to the others. 

While the DAG-IS measure is able to identify the participant timestamps as the dominating ones, suggesting the correct 

variable’s order in the system even in the low resolution case (1-second precision), the permutation approach would not 
12 
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solve the identification issue given the very wide upper and lower bounds (min/max is 0.002/0.999 for participants and 

0.001/0.998 for the SIP). There is no doubt in the event time specification instead, where also the approach based on all the

possible permutations identify the participant timestamps as the variables leading the price formation process. 

Also in the price discovery across exchange analysis, the DAG-IS consistently identify the primary listing exchange as the 

leader both in natural and event-time. This would not be possible using the heuristic solution with upper and lower bounds

(min/max is 0.12/0.994 for the primary listing and 0.006/0.88 for the non-primary in the 1-second resolution). It has to be

noticed, however, that the DAG-IS works by finding a permutation respecting the most the statistical dependencies of the 

data but does not solve the temporal aggregation issue we have when using low levels of resolution. This means that if we

discard price variations in each market by aggregating over seconds, the measurement will be obviously overestimated or 

viceversa but we will still be able to correctly identify the leaders (primary listing) and the followers (other exchanges). 

Finally, no sound difference has been detected, surprisingly, when measuring the informational content of quotes and 

trades in the natural and event time settings. Quotes are more informative than trades and the finding is consistently re-

ported by the DAG-IS measure. Since the contribution of dark trades turns out to be negligible, their shares have been put

together with the ones of lit trades differentiating only between trades and quotes. 

Overall, the results obtained in the empirical application just illustrated are coherent in choosing the leaders in the price 

formation process, and in line with the results of Hasbrouck (2021) but without increasing the modeling and computational 

complexity introduced by working at incredibly short time-scales. 

5. Conclusion 

Measuring the informational content of fragmented financial markets acquired increasing importance over time for both 

academics and practitioners. This article proposes a data-driven methodology with the roots in the machine learning re- 

search field, exploiting the typical non-Normal distributions of financial returns, to uniquely identify one of the most widely 

adopted measures for price discovery and for which no identification solutions had been proposed for almost twenty years 

until the first approach proposed by Grammig and Peter (2013) . Differently from the cited approach, with this article I put

forward an identification procedure in which the Information Shares measures can be always determined, under some sta- 

tistical and structural assumptions, with no need of exploiting the possible presence of different volatility regimes caused by 

extreme price changes, thus providing a general identification framework for price discovery analyses. To this purpose, the 

DAG-IS measure is introduced. The new estimation procedure has been discussed both theoretically and empirically, with an 

illustrative simulation exercise. Keeping the empirical analysis of Hasbrouck (2021) as a direct benchmark to compare with, 

the proposed procedure is found to yield coherent results even across different time specifications, being able to correctly 

identify the leaders in the price formation process. Given the flexibility of the modeling strategy which can be assessed from

a semiparametric perspective, future applications in the field might benefit from the revisited Information Share measures 

here introduced when the assumption of a causal structure among the data is plausible to exist but no sound theory is

provided to decide the direction of causality a-priori . 

Appendix A 

Proof of Proposition 2.2.. Let σ = { σ1 , . . . , σn ! } , with 

σi = 

(
1 2 . . . n 

σi (1) σi (2) . . . σi (n ) 

)
and σi (·) : { 1 , . . . , n } → { 1 , . . . , n } , be the set of all possible permutations of the n variables in the model. Consider the set of

the Cholesky factors, of the covariance matrices, associated to each permutation of the variables C (σ) = { C (σ1 ) 
, . . . , C (σn ! ) 

} . The

uniqueness of the Information Share follows directly from the fact that given the estimates of the independent components, 

there is only one permutation, among the possible ones, yielding a strictly lower triangular matrix ˆ B 0 representing the DAG 

structure of the variables in the model (result proven in Shimizu et al., 2006 ). Then, being σ ∗
i 

and C (σ ∗
i 
) unique solutions,

the identified Information Shares given the estimated DAG structure and computed as 

DAG − IS j = 

([
ψC (σ ∗

i 
) 

]
j 

)2 

ψ �ψ 

′ (A.1) 

are unique. �

Appendix B 

Data for the illustrative exercise are simulated from the equivalent VAR representation of the VECM adopted in the paper 

as follows 

�(L ) p t = εt (B.1) 
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where 

�(L ) ≡ I n −
k ∑ 

i 

�i L 
i (B.2) 

αβ′ = ( 
k ∑ 

i 

�i − I n ) (B.3) 

φs = −(�s +1 + �s +2 + . . . + �k ) (B.4) 

for s = 1 , 2 , . . . , k − 1 , and such that | I n − �1 z − �2 z 
2 − . . . − �k z 

k | = 0 has only one unit root since the system is driven by

only one common stochastic trend. Consequently, the matrix β contains the known cointegrating vectors and has rank equal 

to n-1 . In the two-dimensional case the parameters are 

α = 

(
0 . 1 

0 . 5 

)
, � = 

(
1 0 . 45 

0 . 45 0 . 32 

)
, φ1 = 

(
0 . 6 0 . 3 

−0 . 7 −0 . 9 

)

β′ = 

(
1 

−1 

)
, �2 = 

(
−0 . 6 −0 . 3 

0 . 7 0 . 9 

)
�1 = 

(
1 . 7 0 . 2 

−0 . 2 −0 . 4 

)
, 

while in the four-dimensional case are 

α = 

⎛ ⎜ ⎝ 

0 . 025 0 . 05 0 . 03 

0 . 08 0 . 07 0 . 06 

0 . 1 0 . 01 0 . 04 

0 . 09 0 . 06 0 . 09 

⎞ ⎟ ⎠ 

, � = 

⎛ ⎜ ⎝ 

1 0 . 45 0 . 57 0 . 34 

0 . 45 0 . 67 0 . 4 0 . 54 

0 . 57 0 . 4 0 . 98 0 . 58 

0 . 34 0 . 54 0 . 58 0 . 56 

⎞ ⎟ ⎠ 

, 

φ1 = 

⎛ ⎜ ⎝ 

0 . 2 −0 . 2 −0 . 7 0 . 4 

0 . 1 0 . 35 0 . 6 0 . 1 

0 . 6 0 . 35 0 . 55 −0 . 1 

0 . 4 −0 . 9 −0 . 25 0 . 3 

⎞ ⎟ ⎠ 

, �1 = 

⎛ ⎜ ⎝ 

1 . 305 −0 . 225 −0 . 75 0 . 37 

0 . 31 1 . 270 0 . 53 0 . 04 

0 . 75 0 . 25 1 . 54 −0 . 14 

0 . 64 −0 . 99 0 − . 31 1 . 21 

⎞ ⎟ ⎠ 

, 

�2 = 

⎛ ⎜ ⎝ 

−0 . 2 0 . 2 0 . 7 −0 . 4 

−0 . 1 −0 . 35 −0 . 6 −0 . 1 

−0 . 6 −0 . 35 −0 . 55 0 . 1 

−0 . 4 0 . 9 0 . 25 −0 . 3 

⎞ ⎟ ⎠ 

, β′ = 

⎛ ⎝ 

1 

. . . −I n −1 

1 

⎞ ⎠ . 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.jedc.2022.104434 
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