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1. Introduction

Soft robots have the potential to fill the functionality gap left by
rigid robots which are suitable for fast, precise, and repetitive
tasks. Specifically, the use of compliant materials and the flexi-
bility possible in design choices related to geometry or actuation
of soft robots enable a more dexterous range of motions than
what can be achieved by traditional robots.[1] In addition, the

use of compliant materials and sometimes
compliance in the actuators means that soft
robots may have a larger dynamic work-
space that can more easily make use of
stored potential energy. The use of such
robots in real-world environments would
benefit several emerging robotic applica-
tions for interactions with human collabo-
rators or interaction with unmodeled
environments, such as medicine, search
and rescue, disaster relief, and human
assistance.[2] In this article, we focus on
continuum soft manipulators (CSMs), a
subclass of soft robots tailored for manipu-
lation tasks and characterized by continu-
ous elastic deformations.[3]

The large-scale deployment of soft
robots is hampered by several challenges
that still need to be addressed. While their
compliance makes them suitable for
unstructured environments and uses
alongside people, it also makes them have

a theoretically infinite number of degrees of freedom (DoFs) in
space with a limited number of actuators, hence they are consid-
ered under-actuated systems.[4] This property, along with the fact
that the deformation of the robot during motion cannot be
neglected,[5] makes traditional robot control methods not directly
applicable to soft robots.

Soft robot control methods include both low-level and
high-level formulations.[6] The former is related to the
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Soft manipulators, renowned for their compliance and adaptability, hold great
promise in their ability to engage safely and effectively with intricate environ-
ments and delicate objects. Nonetheless, controlling these soft systems presents
distinctive hurdles owing to their nonlinear behavior and complicated dynamics.
Learning-based controllers for continuum soft manipulators offer a viable
alternative to model-based approaches that may struggle to account for uncer-
tainties and variability in soft materials, limiting their effectiveness in real-world
scenarios. Learning-based controllers can be trained through experience,
exploiting various forward models that differ in physical assumptions, accuracy,
and computational cost. In this article, the key features of popular forward
models, including geometrical, pseudo-rigid, continuum mechanical, or learned,
are first summarized. Then, a unique characterization of learning-based policies,
emphasizing the impact of forward models on the control problem and how the
state of the art evolves, is offered. This leads to the presented perspectives
outlining current challenges and future research trends for machine-learning
applications within soft robotics.
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actuation-dependent part and deals with problems resulting from
the variability in the performance of the actuators used[7] (e.g.,
low actuation frequency, limited bandwidth, high-frequency-
induced vibrations). Conversely, high-level control methods for
soft robots implement planning and decision-making for task
fulfillment but must do so under significant uncertainty.

The literature on soft robotic control suggests two main meth-
ods to control soft robots for difficult tasks and handle the com-
plexity of soft structures. These include using model-based[8] and
learning-based[6] controllers. The former utilizes models to
predict and react to the robots’ behavior. The latter extracts
knowledge of the system by collecting data from simulated or
real-world environments. Despite the result being a robot- and
task-specific method, the learning-based controller finds an
implicit predictive model of the system producing a computa-
tionally efficient algorithm, and avoiding model identification
(which is required for model-based control and which is a
difficult and unsolved problem).

The focus of our work is on the emerging field of learning-
basedmethods for high-level control of CSMs.[9] Given the poten-
tially infinite number of DoFs, training complex policies directly
on soft robotic platforms may be infeasible. At least one reason
includes the fact that the physiological degradation of soft mate-
rials would not sustain the large number of iterations needed to
learn a policy. Therefore, the learning process is often conducted
in simulation, leveraging forward models. In the last few
decades, four main categories of forward models for CSMs were
proposed:[10] 1) geometrical models, 2) discrete models, 3) contin-
uum mechanical models, and 4) machine-learning (ML) models.
These approaches differ in the degree of accuracy, realism, and
computational cost.

In this article, we introduce fundamental soft robotics con-
cepts and overview the main features of the related modeling
approaches (Section 2). Then, we characterize learning-based
controllers in terms of the models employed, analyzing the
impact of the model on the learning process. Furthermore, we
trace the evolution of state-of-the-art controllers for each category
(Section 3). Despite recent remarkable achievements, there
remain significant unanswered questions before we can deploy
soft robots in the real world. We discuss persistent challenges
and research gaps in ML applications to soft robotics
(Section 4) and conclude by summarizing the main observations
(Section 5).

2. Modeling CSMs

The unique continuum nature of CSMs introduces novel motion
capabilities to the robotics domain but, simultaneously, poses a
considerable challenge in their modeling.[10] Theoretically, a
CSM exhibits an infinite number of DoFs, rendering the design
of models and controllers highly complex.[8] Furthermore, the
elastic nature of the system gives rise to nonlinear phenomena
such as hysteresis and degradation.[11] To address these complex-
ities, CSMs often require discretization for control and imple-
mentation purposes, thereby reducing the infinite number of
variables to a manageable set. This process is commonly referred
to in the literature as spatial discretization.[12]

In this context, state-of-the-art models can be sorted into four
main categories: ML-based, geometrical, discrete, and contin-
uum mechanical models.[10] These approaches differ by the
spatial discretization technique used and/or the assumptions
made about the CSM, and are described in more detail later.

2.1. General Concepts

Consider a CSM (Figure 2a), an elastic body with length L,
parameterized by the curvilinear abscissa s ∈ ½0, L�. We refer
to the cross section at s= 0 as base and the one at s= L as tip.

Regardless of the employed spatial discretization, it is always
possible to define a vector of generalized coordinates q ∈ ℝn that
fully describes the shape and the time evolution of the CSM.
Typically, q has geometrical information about the robot’s shape
(e.g., curvature and torsion), or instead it includes kinematic
information (e.g., position or velocity). The subspace containing
all the possible values of q is called the configuration space
C ⊆ ℝn. Using this definition, the forward kinematics (FK)
and the differential forward kinematics (DFK) can be defined as

gðs, tÞ ¼ FKðq, sÞ FK (1)

ηðs, tÞ ¼ Jðq, sÞq̇ DFK (2)

In Equation (1), gðs, tÞ ∈ SEð3Þ is the homogeneous transfor-
mation associated with the cross section s and FK∶C � ½0, L� !
SEð3Þ is the FK function. Whereas, in Equation (2), ηðs, tÞ ¼
½ωT vT �T ∈ ℝ6 is the velocity twist associated with the cross
section s, such that ω and v are the angular and linear velocities,
and Jðq, sÞ ∈ ℝ6�n is the soft geometric Jacobian. Using the FK
equation (Equation (1)), the task space T ⊆ ℝl can be defined,
containing all the possible poses (i.e., positions and orientations)
of the robot’s tip gðL, tÞ. Theoretically, the dimension of T is
much less than the dimension of the configuration space C,
highlighting the redundancy of a CSM.

Similarly to the rigid case, the forward dynamics (FD) can be
written in a Lagrangian form,[13] such as

MðqÞq̈ þ Cðq, q̇Þq̇ þGðqÞ þ KðqÞq þ DðqÞq̇ ¼ BðqÞuþ Fext (3)

where u ∈ ℝm is the vector of the actuators’ magnitude, M ∈
ℝn�n is the inertia matrix, C ∈ ℝn�n is the Coriolis matrix, G ∈
ℝn is the distributed gravity vector, K ∈ ℝn�n and D ∈ ℝn�n are
the stiffness and dampingmatrices, respectively, B ∈ ℝn�m is the
actuation model, and Fext ∈ ℝn is the distributed external forces
vector. Unlike FD for standard rigid manipulators,[13] the pres-
ence of the mechanical impedance (i.e., stiffness and damping)
is not negligible and represents the compliance of the soft
structure.

For many soft robots, the actuation model described by B can
be nontrivial to define. However, based on the actuation model, it
is possible to define another subspace called the actuation space
A ⊆ ℝm, which contains all the possible values of the actuators’
magnitude. It is worth highlighting that the B matrix shows the
under-actuated nature of the system, where typicallym ≪ n. This
matrix exhibits how the actuators drive the CSM and it is closely
related to the controllability of the system.
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As seen from Equation (1) and (3), CSMs are redundant,
under-actuated, and often highly compliant. These characteris-
tics may appear as undesirable behaviors since they complicate
the design of a controller. However, redundancy, under-
actuation, and compliance are the keys to exploiting the contin-
uum nature of CSMs.

The redundancy allows the design of a controller that satisfies
the task, while at the same time minimizing some useful cost
function or respecting additional constraints. This fact is evident
in the inverse kinematics (IK) problem. Due to the different
dimensions of configuration and task space (l << n), a pose
of the tip gðs ¼ LÞ can be mapped by a great variety of configu-
rations q. Consequentially, it is possible to find an optimal q� that
satisfies the IK and minimizes a meaningful cost function (e.g.,
distance from obstacles, and magnitude of the velocity twist at
the tip).

Under-actuation couples the finite number of actuators with
the infinite DoFs of the CSM exploiting the compliance of the
structure and reducing the actuation energy. Compliance,
whether in actuators or material properties of the soft robot, ena-
bles safer contact and interaction with the environment.
Additionally, compliance may facilitate dynamic energy storage
and release for tasks that are often impractical or unsafe for rigid
robots.

Finally, the CSM can be sensorized with proprioceptive and
exteroceptive sensors, providing measurements as y ∈ ℝp. It is
therefore possible to write an observation model, defined as

y ¼ hðq, q̇, q̈, u, sÞ (4)

where hð⋅Þ ∈ ℝp is the observation function. We can then define
the observation space O ⊆ ℝp as the subset containing all the
possible measurements, provided by the CSM sensing frame-
work. Figure 1 shows the relationships between the subspaces.

2.2. ML-Based Models

ML is a popular data-driven approach for modeling CSMs.[14]

Unlike analytical methods, it does not require explicit geometri-
cal and physical representations for mapping between actuation
and configuration spaces and between configuration and task

spaces (Figure 2b). Instead, using function approximators like
artificial neural networks (ANNs), we can directly learn a map-
ping between the actuation space A and the task space T as

bg tþ1 ¼ f ðut, : : : , ut�k,bg t, : : : ,bg t�k; θÞ (5)

Here, the function f ∶fA� : : : � Ag � fT : : : � Tg ! T is
an ANN, which generally takes as input a sequence of actuations
ut∶t�k and tip poses gt∶t�k and outputs a prediction of the next
pose bg tþ1. The horizon term k (where typically k≤ 3) allows
the model to infer time-dependent information such as velocity
and acceleration[15,16] while θ is the vector of the ANN weights.

Forward models of CSMs are derived by supervised learning
(SL), which requires solving a multivariate regression task. First,
motion data is collected on simulated or physical robots from a
dataset of pseudo-random actuations ut and resulting tip poses
g t. Usually, the data are split into training and validation sets.
Then, a neural network architecture is defined, which includes
choosing the input–output interface, the structure of the hidden
layers, and neuron types. Subsequently, variants of stochastic
gradient descent are used to train the network to find the optimal
weights θ� that minimize a loss function as follows:

θ� ¼ argmin
θ

ℒððg tÞt∈ℝþ , ðbg tÞt∈ℝþ ; θÞ (6)

where ðg tÞt∈ℝþ and ðbgtÞt∈ℝþ are the time series of the measured
motion and predicted motion, respectively. Once the training is
complete, the ANN serves as an emulator of the robot behavior
for unseen actuations.[15,16] However, we should note that for-
ward models based on ML allows us to be flexible in the desired
mappings. For instance, learning a map from actuation to
configuration space,[17] u ↦ bq, can facilitate the achievement
of secondary tasks like reaching a specific configuration q while
targeting a pose gðLÞ at the tip. Alternatively, other approaches
learn the forward model of the task.[18]

In summary, ML provides computationally efficient forward
models with a simple formulation that only requires the ANN
interface (i.e., input–output spaces and mapping) and capacity
(i.e., number of parameters). In most cases, a small model is suf-
ficient to represent complex motions. Since ML models rely on
motion data, they could encode the entire robot mechanics
expressed in Equation (3), including the effects of distributed
gravity forces GðqÞ and external forces Fext. Moreover, they
can represent complex physical phenomena (e.g., friction and
hysteresis) that could be difficult to model analytically.
However, the challenge of collecting labeled interaction data usu-
ally limits the actual representation power of ML models.
Moreover, overfitting could prevent the deployment of ML mod-
els in scenarios that differ significantly from the training data.
Concerning the training, the weights θ can be learned within
hundreds of epochs, with a variable computational cost depend-
ing on the network architecture and the dataset size. Finally, the
black-box nature of ANNs yields forward models that lack
interpretability, unlike analytical models, where each parameter
has an explicit meaning.

Figure 1. Subspaces. The four special subspaces related to a general
model for CSMs. The actuation space A (red) contains all the possible
input values. The configuration space C (blue) represents all the possible
configurations of the CSM. Through the forward kinematics (FK), the ask
space T (green) is composed of all the possible poses of the tip of the
CSM. Finally, the observation space O is the subset of all the measure-
ments provided by the CSM’s sensors.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400344 2400344 (3 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400344 by C

ochraneItalia, W
iley O

nline L
ibrary on [24/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


2.3. Geometrical Models

The concept behind the geometrical approach to modeling soft
robots is to describe the robot’s shape with a specific mathemati-
cal curve. This idea makes it possible to characterize the CSM
kinematics with a finite number of configuration variables which
describe the curve. Consequently, the vector q assumes a clear
geometrical meaning (e.g., curvature, torsion, arc length). In
the literature, many mathematical curves have been proposed,
each with its own specific application and parameterization of
configuration variables. The simplest and most widely used
approach is piecewise constant curvature (PCC),[19] shown in
Figure 2c. The CSM’s backbone is segmented into N pieces
and each segment is treated as a single-oriented circumference
arc. The main assumption of this model is that the torsion is
zero; hence, it applies to CSMs in which the twisting deformation
is negligible. In particular, it implies that the configuration space
of a 3D CSM can be parameterized by three variables: the curva-
ture κ, the arc length s, and the angle of the bending plane ϕ. The
FK of a single soft segment (Equation (1)) can be represented as

gðqÞ ¼

cϕcκs �sϕ cϕsκs 1
κ cϕð1� cκsÞ

sϕcκs cϕ sϕsκs 1
κ sϕð1� cκsÞ

�sκs 0 cκs 1
κ sκs

0 0 0 1

2
6664

3
7775 (7)

where sð⋅Þ ¼ sinð⋅Þ and cð⋅Þ ¼ cosð⋅Þ. Equation (7) can be seen
as the FK of an equivalently rigid manipulator described

by modified Denavit–Hartenberg parameters.[20] This observa-
tion eases the application of controllers for rigid robots to
CSMs.[21]

As can be seen from the aforementioned assumptions for
PCC, this model may not applicable to every task or CSM. For
this reason, other models with increasing levels of detail have
been created, such as variable curvature,[22] Pythagorean hodo-
graph,[23] cubic Hermite splines,[24] or polynomial curvature
(Euler’s spirals).[25] Clearly, the more the level of detail in the
model increases, the more the formulation, identification, and
computational cost also grows.

For all of these models, FK similar to Equation (7) can be com-
puted. Consequently, it is possible to write the DFK in
Equation (2) by differentiation and the FD in Equation (3)
through the Euler–Lagrange equation.

2.4. Discrete Models

The main concept of discrete models is to discretize the contin-
uum body directly, finding an equivalent rigid system. The main
two methods are referred to as lumped-mass and pseudo-rigid
models.

The former method consists of approximating the CSM as a
set ofN lumpedmasses, springs, and dampers, as represented by
Figure 2d. In this case, the vector q ∈ ℝN collects the displace-
ments in the space of every lumped mass. Consequently, the FD
can be computed as

Figure 2. Modeling of soft robots. a) A generic CSM. The actuation inputs ut, utþ1, utþ2 can represent different quantities depending on the application,
from tendon positions or torques to the pressure of pneumatic chambers going along the CSM. Different approaches to model a soft robot, respectively:
b) ML-based model, the behavior of the CSM is learned by ML algorithms characterized by their black-box nature; c) geometrical model, the CSM shape is
described by a specific mathematical curve; d) discrete model, the behavior of a CSM is approximated by a set of lumped masses (m), springs (k), and
dampers (c); e) in the framework of continuum models, the CSM is approximated with a rod. Based on the rod theory, the model can include different
strain modes: f ) the structure of a CSM is discretized by a mesh at which nodes the set of partial differential equations (PDEs) is solved.
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Mq̈ þDq̇ þ Kq ¼ Fext (8)

where Fext includes the gravity effect.
The main advantage of this method is the simplicity of the

representation. In addition, this model is particularly suitable
for modeling hybrid kinematic chains (i.e., rigid and soft links).
However, to accurately describe the behavior of a CSM, the num-
ber of required lumped masses is typically very high, negatively
impacting the computational efficiency of the model. A simulator
that implements the lumped-mass approach is Soft Motion
(SoMo).[26]

The pseudo-rigid approach for modeling CSM involves treat-
ing them as hyper-redundant rigid robots. This approach allows
designing controllers using the standard controllers from rigid
robotics directly.[13] However, this strategy does not perform well
in terms of spatial accuracy and requires a great number of DoFs.

2.5. Continuum Mechanical Models

With the advancement of research on soft robotics, numerous
tasks involving contact with objects and cluttered environments
have been proposed. In this case, shear deformation is not negli-
gible and neither geometrical nor pseudo-rigid models account
for this type of deformation. Moreover, most of these approaches
cannot accurately describe the shape of CSMs, because of
misrepresenting twist deformation.

To tackle these issues, it is possible to use continuummechan-
ics theory to describe the elastic body of the robot. However,
implementing the general theory can be computationally oner-
ous and incompatible with real-time controllers. In this context,
many researchers have proposed various approximations and
spatial-discretization techniques to ease the design of controllers
for real-world CSMs.

2.5.1. Cosserat Rod Theory

Under the assumption of a slender body, the CSM can be treated
as an elastic rod and described by Cosserat rod theory
(CRT).[12,27,28] The main idea behind CRT is to associate each
cross section s with a reference system, in which the axes are
known as directors. Each cross section can translate and rotate
with respect to the neighboring cross sections (Figure 2e), cap-
turing bending, twisting, shear, and elongation/compression.
The FK of the soft filament can be found as a solution of the
following differential equation:

g 0ðs, tÞ ¼ gðs, tÞbξðs, tÞ (9)

where ð⋅Þ0 ¼ ∂= ∂s, ð⋅Þ
^

the hat operator,[29] and ξ ¼ κT σT
� �

T ∈
ℝ6 is the strain twist, composed by the angular κ ∈ ℝ3 and linear
strain vector σ ∈ ℝ3. The former represents bending and twist-
ing and the latter represents shear and elongation/compression
deformations.

The DFK can be derived by spatial integration of the mixed
partial derivative equality,[27] resulting in

ηðs, tÞ ¼ Adg�1

Z
s

0
Adg ξ̇ðεÞdε (10)

where Adð⋅Þ is the adjoint operator.
[29] Finally, the FD can be com-

puted by applying Hamilton’s principle and obtaining a set of
PDEs. Generally, the solution can be found only through numer-
ical methods, with the main goal being to find the optimal trade-
off between accuracy and computational efficiency. Various
methods exist in literature, such as discrete elastic rod
(DER)[12] and strain parameterization.[30,31]

The main idea of the former approach is to consider the elastic
rod divided into a N finite set of nodes, connected by straight line
segments. The equation of motion (EoM) is then computed by
evaluating the internal and external forces applied to each node.
This algorithm is implemented in the Elastica simulator,[32] in
which the user can find a variety of tools for learning-based
controllers.

In contrast to DER, the latter method is based on a discretiza-
tion of the configuration space. Since strain twist belongs to a
functional space, ξðs, tÞ can be generated by a basis matrix of
functions in s. The idea is to truncate the basis matrix to a finite
number of columns n,[30] in such a manner that

ξðs, tÞ ¼ BqðsÞ qðtÞ (11)

where Bq ∈ ℝ6�n is the truncated basis matrix. In this case, it is
possible to neglect a specific deformation (e.g., twisting) and
choose the desired degree of accuracy. This discretization tech-
nique is implemented in the SoRoSim simulator[33] in MATLAB,
easing the development of controllers.

2.5.2. Finite-Element Method

To describe a general 3D elastic body with the continuum
mechanics theory, it is necessary to solve a set of PDEs. For this
purpose, one of the most common numerical methods is the
finite-element method (FEM). In this approach, the continuum
structure of the body is discretized using finite 1D elements (e.g.,
lines), 2D elements (e.g., triangles or quadrilaterals), or 3D ele-
ments (e.g., tetrahedra or hexahedra). The discretized structure is
called a mesh and it contains all the elements for which the
numerical solution can be computed. The value of a continuous
function on each element is approximated by interpolating the
values at the edges of the same elements, called nodes (see
Figure 2f ). In FEM, the statics and the dynamics are solved
by evaluating the internal and external forces acting on the
considered body. In particular, the FD is given by the system
of equations�
q̇ ¼ v

Mv̇ þF int ¼ F ext
(12)

where v and q are the vector of nodal velocities and positions,
respectively. F int contains the internal forces due to the elastic
and damping effects, and F ext contains the external forces
applied to the nodes of the mesh.

To have an accurate solution of the dynamics, the numberN of
finite elements is usually large, implying an excessive computa-
tional burden for real-time applications. To solve this issue,[34]

proposed an asynchronous FEM that satisfies real-time
constraints. In particular, the algorithm is formulated in
two multi-rate loops. The former is a low-frequency loop
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(i.e., 15 Hz) that manages the softness of the material and the
latter computes the inverse model through a quadratic program-
ming optimization at a very high frequency (i.e., 600Hz). The
algorithm is implemented in the SOFA[35] simulator, a very
popular simulator that implements FEM with a various number
of tools and algorithms for accurately simulating soft robots.

2.6. Modeling Actuation

The distinction between rigid and soft robotic models is espe-
cially pronounced in terms of actuation. In particular, the most
common technologies are cables[27] and fluidic chambers,[36]

which guarantee distributed active loads along the length of
the soft arm.[37] The main difference between the two actuation
sources in terms of deformation is that the cables can only com-
press the CSM, while the fluidic chambers can also elongate the
CSM, significantly affecting the workspace of the arm.
Furthermore, in real CSM prototypes, the soft actuators exhibit
internal dynamics (e.g., limited bandwidth, delay) that can lead to
nonlinear behaviors such as hysteresis[38] and a delayed
response. Additionally, to achieve desired deformations (e.g.,
twisting), actuators can be routed along specific paths within
the continuum body. To address these challenges and integrate
actuation into existing models, numerous researchers have pro-
vided various kineto-static models as outlined later for geometri-
cal models, Cosserat-based models, and lumped-mass models.

In geometrical models, the actuation is modeled as a geomet-
rical mapping between actuator lengths and the deformation of
the CSM. In ref. [19], an actuation model for a CSM actuated by
three tendons is presented under the PCC approximation.
Recently, this model has been extended in the case of helical rout-
ing, allowing twisting deformation.[39]

In the context of Cosserat-based models, Renda et al.[40] pro-
posed a model for general routing actuators, taking into account
shear and stretching deformations induced by the actuators.
More specifically, the distributed active loadF a ∈ ℝ6 can be writ-
ten as

F aðsÞ ¼ Bτðξ, diðsÞÞτ (13)

where diðsÞ ∈ ℝ3 is the distance from the cross section’s center of
the ith actuator. Regarding FEM-based models, the actuation is
accurately described by considering the excited deformations
on the cross sections, hyper-elasticity,[41] and a model of
hysteresis.[38]

Finally, in lumped-mass models, the distributed actuation is
applied to the series of mass-spring systems as an external force.
Lumped-mass models also ease the description of nonlinear
phenomena related to actuation, such as cable friction.[42]

2.7. Simulators for CSMs

As mentioned in the previous sections, the theoretical frame-
works proposed by different researchers are implemented in a
wide set of simulators. Each of these simulators is characterized
by 1) the modeling approach used, 2) implementation details
(e.g., programming language), 3) the presence and the possibility
of simulating contact forces, and finally 4) an experimental vali-
dation. These aspects are summarized in Table 1.

The choice of the discretization technique is crucial to balanc-
ing computational efficiency and accuracy. Many discretization
techniques limit the frequency of the control loop, to preserve
the numerical stability.[32] In addition, some approaches neglect
shear or torsion strain modes, which can be useful for reducing
the complexity of the model or may be required for tasks that
involve interactions with the environment. In this context, many
simulators implement contact forces, increasing the realism of
the simulations. In the case of SoRoSim, the contact forces
are implemented as custom external forces and the user must
adapt them for the specific application.

Simulators are usually validated through experiments to quan-
tify and decrease the sim-to-real gap. In particular, SOFA
received extensive validations in various robots.[43,44] SoMo
implements a calibration algorithm, reducing the sim-to-real
gap and allowing accurate simulations. SoRoSim is validated
through numerical examples, using high-accuracy FEM simula-
tion. PyElastica, although not validated by experiments, was
effectively used to reproduce several musculoskeletal architec-
tures in simulation[45] and as the basis to simulate soft robotic
arms.[46]

Thanks to the pseudo-rigid modeling approach, other simula-
tors can be adapted to CSMs. In the works,[47,48] the authors
adapted MuJoCo[49] as a training environment for their
learning-based controllers.

Finally, the simulators are also different in their implementa-
tion. In particular, the programming language used can signifi-
cantly increase the simulator’s performance, satisfying real-time
constraints. To the best of the authors’ knowledge, there are no
simulators based on ML or geometrical approaches. The control
designer must implement the physics engine from scratch, using
the EoM of the chosen approach.

3. Learning-Based Controllers for CSMs:
Characterization and Evolution

ML has been proposed as a tool to overcome limitations due to
nonlinearity and hysteresis of deformable materials.[50] Indeed,
complex behaviors that arise from the intrinsic nature of these
materials can then be modulated by learning-based algorithms.
Typically, the method requires defining a control policy π to act as
a mapping from observation y ∈ O to actuation u ∈ A, to achieve
either a desired configuration qd or task-space goal gd:

u ¼ πðfqd, gdg, y; wÞ (14)

Table 1. Simulators for CSMs.

Simulators Modeling
approach

Contact
forces

Implementation Experimental
validation

PyElastica[32] CRT ✓ Python ✗

SoRoSim[33] CRT ✓

(Custom)
MATLAB
Toolbox

✗

SOFA[35] FEM ✓ Cþþ ✓
[43]

SoMo[26] Lumped mass ✓ Python ✓
[26]

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400344 2400344 (6 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400344 by C

ochraneItalia, W
iley O

nline L
ibrary on [24/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


The policy parameters w can be acquired via either SL or rein-
forcement learning (RL), and the performance is contingent
upon the strategy employed for constructing the learning data-
set.[9] Such dataset is mathematically defined as ℋ ¼ A� O,
built upon pairs of commanded actuation u and resulting obser-
vation y. Supervised approaches train ANNs to minimize the loss
between the target fqd, gdg and the actual observation y, exploit-
ing labeled information to implement generable control strate-
gies, for which the dataset ℋ is generalizable and informative
to learn the task. The performance of the controller will be highly
dependent on how ℋ has been sampled. Conversely, in RL, the
desired behavior is defined by a reward function, and the agent
learns to maximize it by trial and error while interacting with the
environment. In both cases, the learning agent aims to exhibit
optimal behaviors based on the experiences garnered from the
training dataset, simultaneously evaluating generalizability on
not-yet-experienced events. Additionally, the complexity of for-
mulating a learning-based controller is tied to the forward robot
representation utilized in the training loop. The accuracy of such
a representation to the actual robotic arm significantly impacts
the control outcome, giving rise to sim-to-real challenges when
the control is deployed on the physical prototype.[51,52] The choice
of learning strategy depends on the generalizability of the data-
set, as shown in Figure 3. Once the task for the CSM is chosen,
we need to determine if the dataset from the robot is generaliz-
able and informative enough to implement the task. For
instance, generating ℋ is straightforward for tasks that only
involve payloads and do not require interaction with the environ-
ment (like external forces or contacts). In such cases, we can use
either SL with the dataset ℋ or RL with the simulation environ-
ment to learn the controller. If the forward model also includes
the task’s physics, it acts as the complete simulation environ-
ment. However, if the control strategy is unattainable because
the task involves more complex interactions and ℋ cannot be
generated, RL is necessary.

In general, as depicted in Figure 4, it is evident that the preci-
sion of the learning-based controller can be observed for a spe-
cific target fqd, gdg within either the configuration C or the task T
spaces. However, this is not always true: while it holds for an SL
task, where the controller guides the arm toward a desired state,
it may not necessarily apply to RL-based controllers. The latter
aims to learn a policy solely dependent on the environmental

observation y, contingent upon how the observation function
h is analytically modeled or implicitly learned by the ML-based
forward models, and whether the feedback loop is closed in
either the configuration C or the task T spaces. Herewith, the
feedback on y assumes significance in distinguishing between
open-loop and closed-loop controllers. In an open-loop setting,
y is not fed back, forcing the controller to provide control actions
deemed optimal during the training phase without guaranteeing
convergence to the target. Conversely, closed-loop controllers
relying on sensors information monitor the robotic arm’s evolu-
tion overtime, delivering a control action that can ensure both

Figure 3. Learning CSMs controllers using their forward model. The choice for the learning algorithm depends on the control strategy generalizability
for the selected task. We recur either to SL or RL. SL uses labeled data to train the controller by minimizing its discrepancy with the forward model output.
RL requires a simulation environment where the controller optimizes the reward function through trial and error.

Figure 4. Learning-based controllers for CSMs using analytical or
ML-based models. Both schemes take as input in an open loop the target
configuration qd ∈ C or pose gd ∈ T , and output the actuation u ∈ A.
Optionally, they consider actuation dynamics in closed loop. Their differ-
ence lies in the forward model and how the observations y ∈ O are
obtained. (Top) In analytical models, an actuation model maps the actu-
ation space A to the configuration space C, while a forward mapping gives
the task space T. Here, sensors or an observation function h provide the
observations y. (Bottom) In ML-based models, a neural network directly
maps the actuation u ∈ A to observations y ∈ O, which may include infor-
mation about various robot spaces depending on the sensorization
employed when the forward model was trained. Therefore, the observation
function is encapsulated within the ML-based forward model, as well as
the actuation model.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400344 2400344 (7 of 20) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400344 by C

ochraneItalia, W
iley O

nline L
ibrary on [24/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


optimal performance and convergence to the target.
Furthermore, this feedback need not be restricted to the last time
step but may encompass a set of observations from the past. The
learning-based controller may also receive as input a copy of pre-
vious output actions u, particularly for decision-making in the
dynamic domain.[15,53] Such actions can be manifested in various
domains depending on the employed model. Specifically, if the
controller provides the control actions based on the configuration
space, the actuation model may be considered as an identity.[4]

Similar arguments may also hold for controllers working
with learning-based models, where observations may not strictly
conform to an injective mapping to either configuration or task
space.

In summary, the learning-based controller generates a control
action, drawing information from a goal state in a specific space,
from the historical data of actual robot states, and from the con-
trol dynamics. The learning agent addresses and integrates the
inverse observation problem, concurrently mapping the observa-
tion state to the target space, performing an inverse mapping
from the target space to the action domain, and correcting the
action based on its historical context.

We next give an overview of the main features, advantages,
and limitations of learning-based controllers for CSMs,
highlighting the influence of the forward model or solution
on their evolution.

3.1. Control from Learning-Based Forward Models

Learning-based CSMmodels can yield precise robot simulations,
which would otherwise be challenging to derive analytically, even
when provided with accurate system parameters, but with uncer-
tainty about different physical phenomena that are missing from
the model. Conversely, learning-based models may require
extensive hyperparameter tuning and optimization time.
Model parameters are updated according to the learning dataset;
therefore, low errors depend on the availability of representative
data that best encodes the robot mechanics and observed physical
phenomena, such as friction and hysteresis.

The main advantage of learning a controller (by either SL or
RL) over ML-based models concerns the computational efficiency
of the forward model evaluation over its analytical counterpart. It
also facilitates the training in simulation and model embedding
in the deployment phase. However, collecting representative data
is usually time consuming and brings the difficulty of labeling
the data in the case of SL. In addition, the difficulty of generaliz-
ing the controller over unseen data might prevent the deploy-
ment of learning-based forward models in scenarios that
differ from the training data. This is why such control strategies
are currently limited to relatively simple tasks where the interac-
tion with the environment is predictable and quasi-static.

Table 2 summarizes the ML-based controllers, particularly
highlighting those experimentally validated on physical CSM.
Initially, simpler tasks such as point reaching and trajectory
tracking are considered. Then, their complexity increases in
terms of actuation space and constraints, including modifica-
tions to the dynamics by adding a mass to the end effector (pay-
load) or the body (weight) of the CSM. Finally, there is a shift in
the literature toward more dynamic and interactive tasks, such as

throwing and simultaneous force and position control. Such
evolution can also be observed with respect to employed
learning strategies, as next paragraphs will explain. Indeed,
both SL and RL have been first implemented for contactless tasks
and furtherly refined to include interactions and variable
dynamics.

3.1.1. Supervised Learning

Several studies have proposed the use of SL methods to derive
control policies for CSMs. However, their reliance on labeled
data limits them to simpler tasks where informative data can
be collected. Several ML methods have been used to model
the IK of CSMs. For example, in ref. [54], the authors used a mul-
tilayer perceptron (MLP) to learn the IK of a simulated CSM for
point-reaching tasks. Meanwhile, Melingui et al.[55] developed a
controller using distal SL to invert the forward model for trajec-
tory tracking with a pneumatically actuated CSM. This approach
resolves redundancy locally and lacks a feedback error correction
scheme.

To derive more complex control policies, MLmethods that rely
on the learned forward model have begun to emerge. This
approach avoids collecting data directly from the robot by simu-
lating its behavior offline. Thuruthel et al.[56] extended their pre-
vious work,[57] where they used a Nonlinear AutoRegressive
network with eXogenous (NARX) inputs formulation to learn
the forward model of the CSM. Specifically, they used a feed-
forward neural network to learn the control policy for both
dynamic point reaching and trajectory tracking.

Recently, more interactive tasks have been performed using
SL methods. By combining multitask Gaussian process (GP)
and locally weighted projection regression (LWPR), Tang et al.[58]

achieved combined position and force control with a CSM. This
work was extended in ref. 59, where meta-learning was used to
find the optimal combination of parameters for the GP, while the
control policy was determined with model-based optimal control.
Finally, in ref. 60, the accuracy of the task was improved by using
a model predictive control (MPC) framework to compute the
feedforward action, which was then combined with the feedback
action found by LWPR to minimize tracking error, as reported in
Table 2.

3.1.2. RL

The first step toward RL for soft robotic control was made by
Malekzadeh et al.[61] in an attempt to transfer reaching skills
from an octopus arm to a simulated CSM. Despite being
promising, it would have required a physical robot deployment
to validate its potential. The need for RL-based controllers
stems from the robustness/adaptability requirements for
the task or the platform at hand. The challenges associated with
developing these types of controllers are listed in refs. [14,50].

Approaches using RL within learned synthetic environments
for tasks like reaching or trajectory following were proposed in
refs. [63,64]. In the first paper, a recurrent FD model was trained
using data generated from a safe, mean-reverting random walk
in the actuation space, allowing for exploration of the partially
observed state space. This forward model enables the efficient
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learning of high-performance control behaviors over longtime
horizons, without requiring prior knowledge of the robot’s func-
tionality or capabilities. In the latter work, data-driven modeling
is integrated with RL to achieve position control of a soft robotic
arm using deep Q-learning (DQL). To address slow convergence
and instability in real-world applications, the authors developed a
method that uses experimental data to create a simulation
environment for training control strategies, which are then trans-
ferred to the real robot. An MLP model is built from this data,
enabling RL to pretrain control strategies efficiently in simulation
before deployment on real tasks.

The use of the ML-based forward model for RL training in
trajectory-tracking tasks with a payload attached to the robot
has been proposed in ref. [15]. In this work, the capability to adapt
to variable payloads, without losing dynamic capabilities, has
been trained via trust region policy optimization (TRPO), leverag-
ing an approximation of the robot FD model obtained by an
LSTM network.[15]

More complex dynamic tasks have also been performed with
deep RL controllers using the proximal policy optimization
(PPO) algorithm and keeping an recurrent neural network
(RNN) as a representation for the forward model of the task.[18]

Table 2. Learning-based controllers for CSMs. List of controllers applied to a physical CSM is reported, grouped by model and sorted by task. The task
error column indicates 1) error interval (min�max, or <max); 2) error (avg) with its standard deviation (avg � std); 3) average error as a single value; or
4) N/A if the value is not available. In the “task” column, additional conditions posed to the task are indicated in brackets. The term payload refers to a
mass attached to the end effector of the CSM, while weights refer to masses attached to the body of the CSM to modify its dynamics.

References Year Task Model Learning controller CSM characteristics Task error

Dimension [mm] Actuation
(# inputs)

Learning-based controllers from learning-based models

[64] 2020 Point reaching (payload) MLP DQL 150 Tendon (3) 5–10 mm

[55] 2015 Trajectory tracking MLP MLP 500 Pneumatic (6) 5 mm

[56] 2019 Trajectory tracking (payload) NARX MLP 400 Pneumatic (3) 22� 22mm

[15] 2022 Trajectory tracking (payload) LSTM TRPO 440 Pneumatic (6) 11–16 mm

[51] 2023 Trajectory tracking (payload) LSTM SACþORN 430 Pneumatic (6) 14–21 mm

[16] 2022 Trajectory tracking (weights) RNN CLþMLP 200 Pneumatic (3) 10.44� 0.89 mm

[52] 2024 Trajectory tracking (obstacle avoidance) LSTM PPOþGPRCA/
BOAC

598 Pneumatic (9) <5mm

[58] 2022 Position/force control GP LWPR 400 Pneumatic (6)þ
tendon (3)

<10 mm,<0.06 N

[60] 2024 Position/force control GP MPCþ LWPR 375 Pneumatic (6)þ
tendon (3)

<5 mm, <0.05 N

[18] 2022 Throwing MLP PPO 409 Pneumatic (6) 61.7–68.3 mm

Learning-based controllers from geometrical models

[68] 2017 Point reaching (planar) Pretraining with PCCþ ANN Q-learning 660 Pneumatic (16) 8–59mm

[65] 2014 Point reaching PCC MLP 800 Pneumatic (9) 7–20mm

[67] 2021 Point reaching Pretraining with PCC Q-learning 660 Pneumatic (16) 20–23mm

[66] 2016 Trajectory tracking Geometrical model MLP 500 Pneumatic (6) 8–11 mm

[70] 2024 Trajectory tracking (payload) Pretraining with PCCþ ANN Q-learning 140 Pneumatic (6) 11.3–14.3 mm

[71] 2022 Trajectory tracking (payload) Pretraining with PCC DDPG 70 Pneumatic (3) 1.09–1.85 mm

[69] 2022 Pick-and-place (pose constraints) Pretraining with PCC Q-learning 660 Pneumatic (16) <5° rotation error

Learning-based controllers from discrete models

[74] 2023 Point reaching Pseudo-rigid PPO 500 Pneumatic (1) N/A

[48] 2023 Crank rotation Pseudo-rigid SAC 690 Pneumatic (9) N/A

Learning-based controllers from continuum mechanical models

[77] 2020 Trajectory tracking Rod (static) DDPG 310 Pneumatic (3) 5–70mm

[86] 2023 Trajectory tracking FEM (dynamic) RBF NN 108 Pneumatic (3) 0.44� 1.5 mm

[75] 2019 Trajectory tracking (payload) Rod (static) DQL 310 Pneumatic (3) 30.5� 9.7 mm

[76] 2020 Trajectory tracking (payload) Rod (static) DDPG 310 Pneumatic (3) 12 mm

[80] 2024 Pushing (pose/force control) Rod (dynamic) PPOþDR 440 Pneumatic (6) 34� 14 mm,
23°� 17°
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In this work, the authors train a controller to throw objects in
target boxes with a CSM.

These approaches show some limitations related to the sim-to-
real gap when the controllers trained on the forward model are
applied on the real robot. We believe RL has the potential to
enable robust decision-making capabilities. However, currently
the expected performance falls short due to training environment
inaccuracies and the soft robot’s inherent stochasticity. One pos-
sible solution could involve online optimization agents capable of
policy improvement in a few iterations or sample-efficient agents
to specifically learn the difference in performance from different
environments.[51,52] In ref. [51], an online regressing network
(ORN) is proposed to compensate for the sim-to-real gap
after learning the controller with the soft actor critic (SAC)
algorithm. In ref. [52], two methods are proposed to overcome
the intrinsic stochasticity of the CSM. The first is based on
GP-based recurrent cerebellar architecture (GPRCA), the second
on Bayesian optimization-assisted coaching (BOAC). Both
approaches allow reaching a final point with the desired accuracy
while following a trajectory and avoiding obstacles up to 5mm
(see Table 2).

3.2. Control from Analytical and Numerical Forward Models

The integration of learning-based controllers with analytical and
numerical forward models typically occurs using a physics
engine, which accounts for contact forces and facilitates learning
complex control policies π while interacting with unstructured
environments.[32,35] Combining analytical and numerical models
and learning-based approaches offers the advantage of reducing
the number of unknown parameters to estimate. This occurs as
fundamental phenomena like gravity require no learning, and
the robot’s geometric and material properties can already be
incorporated into the model.

These models can play a crucial role in enhancing SL or RL
frameworks for controller learning. They can especially provide
access to diverse data sets that are crucial for learning, and often
difficult or impossible to obtain in real-world settings. However,
employing analytical models for control also introduces chal-
lenges, as the forwardmodels demand intricate mathematical for-
mulations, particularly in explicitly describing actuator-induced
deformations. Similar considerations can be done with numeri-
cal models (e.g., Section 2.5), where the main difficulty is the
computational effort of solving the PDEs.

Despite these complexities, the effort is rewarded with
highly interpretable results. Discrepancies in experimental data
can typically be attributed to model approximations or unmod-
eled effects. Despite the benefit of interpretability, depending
on the level of abstraction and the space-time discretization,
these models are often computationally expensive, hindering
real-time performance. Consequently, this limitation may
slow down the learning process and preclude their practical
deployment on physical platforms or microcontrollers. Herein,
we report the evolution of learning-based controllers for CSMs
leveraging geometrical (Section 3.2.1), discrete (Section 3.2.2),
rod (Section 3.2.3), and FEM-based (Section 3.2.4) forward
models.

3.2.1. Learning from Geometrical Models

Closed-loop tracking in the task space T using a planar CSM has
been implemented by Rolf et al.[65] The mapping between con-
figuration C and task T space was obtained using the PCC
approximation, while the mapping between actuation A and con-
figuration C space was learned to account for viscoelastic effects.
This control implementation enables accurate and reliable posi-
tioning of the end effector. The methodology is robust enough to
handle inherent sensor noise, execution delays, and varying
actuator ranges. A similar robot has been modeled as multiple
sections with three universal–prismatic–spherical and one
universal–prismatic joints DoFs.[66] An approach based on
ANN is used to provide approximated solutions of the IK for
real-time implementation, to resolve redundancy, and to obtain
the mapping from the task T to the high-dimensional configura-
tion C space. However, the mapping from configuration C to
actuator A space was performed analytically in a straightforward
fashion. A noticeable limitation of such a method is the high
amount of sensory information required. The IK is then used
to synthesize a static controller for trajectory following.

There is growing interest in integrating RL with geometrical
models for control systems. The adopted strategy involves the use
of model data for the pretraining of model-free RL algorithms,
which makes it possible to reduce the data collection time signifi-
cantly. This strategy was adopted by Li et al.[67] who proposed
a model-free RL approach, Q-learning, for point reaching on a
physical CSM. This method was pretrained using data from a
PCC-based robot simulator. The results show that the Q-table
that was pretrained in simulation achieved nearly the same per-
formance as one pretrained with real robot data. Nonetheless, a
significant advantage of using geometrical models is the
decreased time needed to acquire data for pretraining. A similar
approach is used by You et al.[68] for planar point reaching. In this
case, a two-level geometrical approach uses an ANN to map
between actuation A and configuration C space, in combination
with a PCC approximation to map between configuration C and
task T space. This is then used to find a good training target set
and to speed up the training process. Gan et al. [69] extended this
RL pretraining approach for path-following with pose constraints
in pick-and-place tasks. In this case, the Q-table that was
pretrained with geometrical model data was combined with
convolution-replacing processing to meet pose constraints under
multiple conditions of loads and interactions. The resulting con-
trol framework was successfully employed in tasks such as deliv-
ering a cup of water and a spoon with food. In contrast, a path
following with payloads but without pose constraints was exe-
cuted in ref. 70. To handle the presence of a payload, they decided
to equip the PCC model with an ANN to fit the error between the
geometrical model and the robot coordinate under various load-
ing conditions, thereby reducing the FK MAEs. Such a model is
used to build the RL virtual environment and the PPO algorithm
was then used to train control policies. In another study, Li
et al.[71] used geometrical models to pretrain a deep deterministic
policy gradient (DDPG)-based control system for continuous
task-space manipulation with soft robots. Domain randomiza-
tion (DR) in PCC-based simulations facilitated fast control policy
initialization, while an offline retraining strategy was employed
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to update controller parameters for incremental learning.
The control policy was then applied to a path-following task
with variable payloads, demonstrating the adaptive perfor-
mance and stability under changing loading conditions along
the path.

All the aforementioned papers are summarized in Table 2
ordered by task. The table also specifies some information about
the CSM platform used and the maximum error reached by the
controller. To summarize, learning-based controllers from
geometrical models began with a direct use of the model in
conjunction with ANNs to execute simple point-reaching and
trajectory-tracking tasks without payloads. The subsequent
combination with RL algorithms enabled increasingly complex
tasks involving static and variable payloads, and pick and place.

3.2.2. Learning from Discrete Models

Discrete models simplify the representation of soft robots by
treating them as a series of spring-loaded rigid joints (pseudo-
rigid) or as mass-spring systems (lumped mass). While this
approach makes the mathematical description of CSMs more
straightforward, it also requires a high number of DoFs. This
can pose challenges for learning algorithms that must manage
high-dimensional control actions. Furthermore, discrete models
generally account only for bending DoFs, often neglecting tor-
sional or axial deformations.

In Table 2, we summarize the key aspects of the following
works. Graule et al. introduce SoMoGym,[72] an environment
for training RL-based controllers on the physics engine provided
by the SoMo simulator,[26] showcasing the implementation of
planar block pushing and reaching with obstacles using a contin-
uum manipulator. Abondance et al. leveraged the same method-
ology to implement in-hand manipulation for a soft hand,[73]

where each finger has been modeled as an independent contin-
uum slender body. The choice of the RL algorithm and the
reward function shaping are crucial, whose appropriate selection
enables rapid calibration of simulation parameters to match the
hardware setup and reduce the sim-to-real gap. Notably, learned
policies from a pseudo-rigid model can be effectively transferred
to a physical prototype with minimal deviation during policy
execution.

Pseudo-rigid models have also been employed by Morimoto
et al. as a virtual representation of the actual robot to train
RL-based controllers for point reaching[47] and to perform tasks
such as crank rotation, peg in hole, and ball throwing.[48] Despite
its use, the simulation in MuJoCo served only as a training
environment for model-free RL. Conversely, Jitosho et al. imple-
mented a policy-learning approach using PPO that exploits the
pseudo-rigid model to derive the joint torques from the actions
commanded by the agent, which are subsequently used to com-
mand the simulation in Isaac Gym.[74] A sim-to-real policy trans-
fer is then applied to deploy the learning-based controller onto
the physical robot.

Pseudo-rigid models, despite the approximation of continuum
bodies as hyper-redundant, provide a good representation to
learn controllers for CSMs. In particular, they are particularly
beneficial to perform interaction tasks, under the assumption
of rigid bodies.

3.2.3. Learning from Rod Models

Control during complex physical interactions requires models
with higher fidelity to capture the deformability of CSMs. In such
cases, leveraging continuum mechanical models is a promising
solution. Furthermore, RL emerges as a natural framework to
learn a policy π by letting the agent explore the best actuation
by trial and error guided by a reward signal. Since continuum
rod models can consider arbitrarily complex geometries and
materials, the learning process can access rich information about
the environment state y ∈ O, which would be limited using
purely geometrical models or scarce with empirical ML models.
Moreover, this approach accommodates the sim-to-real transfer
of the policies with a moderate sim-to-real gap, provided the
model matches the physical system well. This performance
depends on the level of abstraction and the space-time
discretization.

The first learning-based controllers for soft robots modeled
using rod models involved static interactions due to payloads
and did not address the sim-to-real gap. DQL with experience
replay was effectively applied to learn an open-loop quasi-static
position controller of a CSM capable of bending and twisting.[75]

The policy was trained on a static Cosserat rod model and was
validated in simulation and on the physical platform subject to
various external loads. This research was further extended by
increasing the dexterity of the CSM and learning a closed-loop
controller for precise quasi-static positioning using DDPG.[76]

Experiments in simulation investigated the robustness of the
control policy for effects of loading, reachability, and workspace
discontinuity. The controller was also deployed on the physical
robot. The DDPG algorithm was also employed to derive a
closed-loop controller for the quasi-static positioning of a CSM
modeled with Kirchhoff rod theory.[77] In addition, the CSM
was combined with a mobile platform with a rigid arm and a
sensorized gripper. The teleoperated system performed an agri-
cultural task (picking berries) using different maneuvering
strategies.

Recent research efforts investigated dynamic interactions with
the environment leveraging simulators. Naughton et al.[32]

applied various deep RL algorithms to control a simulated
CSM in PyElastica, a simulator of dynamic Cosserat rods, with-
out using physical robots. The control tasks included point reach-
ing, trajectory tracking, and maneuvering through structured
and unstructured obstacles. The simulated CSM learned to navi-
gate and adaptively interact with obstacles without explicit
rewards. Also, Shih et al.[78] proposed a hierarchical framework
to coordinate multiple rod-based soft arms in simulation. A high-
level RL policy selected behavioral primitives like reaching and
crawling. Then, they developed an energy-shaping controller
using ANNs to actuate the arms. Challenging simulations of a
foraging CyberOctopus in an arena littered with obstacles vali-
dated the framework. The PyElastica simulator was also adopted
to model a 3D-printed pneumatic CSM by Alessi et al.[46]

Leveraging this model, a closed-loop control policy for dynamic
trajectory tracking was learned in simulation using the PPO algo-
rithm.[79] Simulation tests evaluated how the policy generalized
to new observations, dynamics, and tasks. Experiments in simu-
lation included tracking trajectories subject to unknown external
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forces, using different materials, or intercepting a moving object.
Recently, the authors extended the simulation environment to
consider the dynamics of a dexterous CSM interacting with
the environment.[80] Herein, an RL policy for pose/force control
enabled dynamic pushing in the real world. The sim-to-real
transfer of the policy was facilitated by DR, emphasizing soft
materials and contact properties, demonstrating the benefit of
continuum mechanical models in interaction tasks.

Table 2 reports the controllers that use continuummechanical
models with experimental validation on physical robots. In sum-
mary, the literature began with quasi-static tracking tasks using
kinematic rod models of single-section CSMs with and without
payloads, and it is now shifting toward employing dynamic rod
models of multi-section CSMs for physical interaction tasks.

3.2.4. Learning from FEM

A promising alternative to rods for continuum mechanical
models is presented by FEM. FEM can provide highly accurate
predictions of soft robot deformations. A recently introduced
open-source software, SofaGym, combines FEM with RL for var-
ious control tasks.[81] Here, Menager et al. showcase the capabil-
ity of controlling soft robots within a learning environment,
managing deformations caused by soft actuators, as well as their
interactions with the environment. For instance, leveraging the
SofaGym framework, Agabiti et al.[82] proposes a whole-arm
grasping control strategy implemented by an elephant-trunk-
inspired soft arm for the application of space debris capture.
Candidate contact points on the target object are employed to
induce the whole-arm grasping configuration of the arm. The
policy was trained in simulation, and simulation tests evaluated
its capability to generalize to unknown object sizes and positions.
Recently, Ménager et al.[83] proposed a method for soft robot con-
trol involving the definition of a graph of configuration spaces.
The method is formalized as hierarchical RL, and they used con-
tact configurations of a CSM with a rod to generate the configu-
ration spaces, improving the learning efficiency. Additionally,
Ménager et al.[84] introduced a motion planning method for soft
robots that utilizes proxies as simplified models of the soft robot.
These proxies are employed to generate feasible trajectories in
the configuration space through RL. The strategy is then applied
to the full model of the CSM to determine the corresponding
actuations. Lastly, in a recent work,[85] RL is used to train a soft
robot in a simulated environment with DR, which introduces var-
iations in the simulation parameters to make the learned policy
robust to real-world uncertainties. This trained policy can be
eventually deployed on the real robots for closed-loop control.
Concerning learning controller over FEM model, Zhang
et al.[86] present the control architecture validation on a physical
soft robotic platform. A low-order dynamic model of a pneumatic
soft robotic arm is first derived using FEM. Based on this, an
adaptive radial basis function neural network is developed for
trajectory-tracking tasks, with low tracking errors as shown in
Table 2. In summary, learning-based controllers derived from
FEMmodels began with the use of RL algorithms and have been
successfully applied to complex tasks involving interactions with
the environment, such as grasping and manipulation. Various
methods, including hierarchical RL and proxies, have improved

control and motion planning. These approaches have been tested
in simulations demonstrating robustness and accuracy of the
control architecture.

4. Challenges and Perspectives on Learning-
Based Controllers for Soft Manipulators

Despite the promise of CSMs for real-world, forceful, and
unmodeled interactions, this reality has still not been achieved
in many difficult applications. This is not likely because soft
robots are incapable of achieving the desired outcomes, but
because of remaining challenges in modeling (both the dynamics
of soft robots and contact interactions), in changes to the system
overtime, in careful integration with perception, and in interpret-
ing learned controllers. The following sections outline specific
challenges, summarized and commented in Table 3, which,
when addressed, will advance state-of-the-art results for real-
world deployment.

4.1. Sim-to-Real Gap

The evolution of the state of the art highlights the impact of for-
ward models in learning-based controllers. However, policies
trained only in simulation are likely to face a performance drop
when transferred to the physical world due to the approximations
made by simulated environments. This phenomenon is known
as the sim-to-real gap.[87] We must mitigate these gaps to achieve
effective sim-to-real policy transfers. The three major strategies
are 1) improving forward models, 2) leveraging sim-to-real tech-
niques, and 3) learning directly on the physical soft robot.

4.1.1. Improving Forward Models

The first thing to consider to reduce the sim-to-real gap is to
improve the forward models and the overall fidelity of simulated
environments. We can achieve this through research efforts in
modeling, system identification, and data collection.

For example, if actuation effects cannot be assumed instanta-
neous (i.e., they have their own dynamic effects), detailed tran-
sient models of actuation systems[88] and refined damping
mechanisms could improve the overall accuracy in dynamic
experiments.[46] Coupling between the configuration variables
and the actuation variables can also cause significant discrepan-
cies, such as in the case of pressure-controlled variable volume
actuators. Moreover, as hysteresis can be significant in soft mate-
rials, forward models capturing hysteretic behaviors could
increase the accuracy when performing prolonged operations.[89]

In addition, to bring CSMs closer to contact-rich and distributed
interactions with unstructured environments in the real world,
contact modeling will have a considerable impact, especially
for interacting with soft deformable objects.[35]

Another promising frontier to address the reality gap is hybrid
modeling. It combines analytical and ML-based models, unifying
their advantages while compensating for identified drawbacks.
Although no prevalent methodology has yet been identified,
three main research lines can be highlighted. In the complemen-
tary case, ML and analytical formulations can represent specific
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parts of the system. Here, the typical approach is to use ML mod-
els to map the transformation from actuation A to configuration
C space, while the analytical model maps configuration C to task
T space.[17,65,68] Another approach integrates physical principles
given by the analytical model in ML templates to increase accu-
racy and computational efficiency for system identification,
widely used in physics-informed neural networks.[90,91] As an
alternative, ML can compensate for the error introduced by
the assumptions of analytical formulations while modeling
real-world scenarios.[70,92,93]

Concerning system identification and validation, detailed FEM
simulations or extensive experimental motion data should be
leveraged to find the optimal set of model parameters that
reproduce the expected behaviors. Using FEM, simulations
are conducted in a controlled environment, enabling the manip-
ulation of parameters and conditions to understand their effects
on the robot’s behavior, without the risk of damaging the physi-
cal hardware. Therefore, FEM could be a valid intermediate step
for parameter identification, rather than directly learning the
model on the robot itself. In addition, detailed FEM could serve
as a validation tool to ensure robot models reliability before
deploying them in practical experiments. Also, considering data
from mechanical tests might further increase the simulation
fidelity in controlled settings. Finally, researchers could evaluate
the contributions of model components through ablation
studies.[27,46]

In the case of ML-based models, the sim-to-real gap decrease
might also depend on the quality of the learning data. Achieving
convergence of the forward model to the actual robot mapping
necessitates comprehensive coverage of the robot’s workspace
during data collection. Inadequate modeling performance can
lead to subpar control capabilities. Currently, the workspace of
a CSM is typically achieved through pseudo-random actu-
ation[15,16,46] or predefined actuation patterns empirically designed
to cover the volume of interest. However, these approaches do not
guarantee optimal and complete workspace coverage within a
finite time frame, resulting in highly time-consuming tasks.

Consequently, effective and time-efficient data collection strat-
egies are crucial for accurate modeling. Future research could
focus on achieving optimal workspace coverage by minimizing
unexplored areas. This may involve implementing closed-loop
exploration strategies that guide the robot’s motion toward poorly
explored sections of the workspace[94] with an existing controller,
akin to methodologies employed in active perception.[95,96] Such
an approach aims to maximize the information in collected data
uniformly across the workspace, thus achieving optimal coverage
within a finite time frame. The choice of which areas of the work-
space to explore can be either comprehensive coverage of the
entire CSM for a general-purpose model or tailored to specific
tasks. Furthermore, understanding the types of trajectories (in
input or configuration space) that are necessary to model a
CSM, and the trade-offs between the levels of required data

Table 3. Challenges for learning-based controllers for CSMs have been identified and the main issues in tackling them are summarized in the second
column. Perspective research and necessary actions are then reported as well as their expected impact.

Challenge Current issues Perspectives and actions Impact

Sim-to-real gap (Section 4.1) • Large deformations and hysteresis[89] • Transient models of actuation[88] • Enhance accuracy and reliability of controllers

• Analytical modeling inaccuracies[27] • Integrate physical principles with ML,
toward hybrid models[90,92]

• Deployment of CSMs in practical tasks, reducing
associated cost and time

• Sim-to-real gap • Domain adaptation[51] and DR[80]

• Learning on physical robots,[104] with
initial training in simulation[101]

Real-world robot
deployment (Section 4.2)

• Contact estimation (force, location,
etc.)[110]

• Realistic and tractable contact
modeling[32]

• Expand the range of tasks CSMs can handle

• Variation of dynamic parameters
overtime[16]

• Simulations of dynamic
environments[32,33,35]

• Broader applications in environments where CSMs
must operate reliably under varying conditions

• Asynchronous and novel tasks must be
learned by the robot[114]

• CL to adapt to changes overtime[16]

• Incrementally learn novel tasks[146]

Robot perception
(Section 4.3)

• Inaccuracy of multimodal sensing[128] • Use of differentiable filters[133] and
generative models[136]

• CSMs capable of complex decision-making and
adaptive behavior in real-world settings

• Modality-specific data handling
algorithms[131,135]

• Cross-modal inference[126] and deep
learning for high-dimensional data[135]

• Increase the versatility and reliability of CSMs

• No direct coupling with robot action,
and lack of prediction abilities[136]

• Optimal sensorization to improve
accuracy and robustness[121,122]

Learning-based controllers
interpretability (Section 4.4)

• Explanation of decision-making
process of learning-based

controllers[143]

• Provide global and local explanations[141]

of ML-based models and control
• Enhance interpretability in safety-critical applications

• Safety[138] • XAI for controller refinement and to
enable trusting controllers decisions[145]

• AI-driven CSMs with transparency and accountability
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and required accuracy (in simulation or on hardware) may better
guide future efforts.

4.1.2. Learning Data and Models for Sim-to-Real Gap Mitigation

Despite all of the proposed efforts in modeling and system iden-
tification, the simulation may still only roughly approximate the
physical soft robot and its interactions with the environment. A
residual reality gap could persist due to unmodeled factors and
calibration shifts that may occur because of the physiological deg-
radation of the soft materials. Nonetheless, there are several ways
to aid the sim-to-real transfer of the control policy.[97]

One prospective method to mitigate the remaining reality gap
in soft robotics is to augment the policy training with DR.[87]

Rather than training on one simulation and transferring the pol-
icy directly to the real world, DR trains on a distribution over
simulations obtained by randomizing the simulation parameters
with high uncertainty. The process usually randomizes physics
and visual properties, including injecting noise in the observa-
tion space O and actuation space A. In soft robotics, DR achieved
the sim-to-real transfer for modeling an optical tactile sensor,[98]

vision-based pose estimation,[99] position control in trajectory
tracking using a PCC model,[71] and pose/force control in
dynamic pushing using a Cosserat rod model.[80]

Conversely, domain adaptation usually transfers the knowl-
edge learned in simulation (source domain) to the physical
environment (target domain), unifying the different observation
spaces OS 6¼ OT .

An alternative approach to address the sim-to-real gap is to
employ imitation learning (IL).[100] This class of algorithms relies
on expert demonstrations of the desired task without any bias
regarding the robot space. These algorithms circumnavigate
the sample inefficiency of RL. However, their adaptation is
limited by the quality of the expert teachings, requiring an
additional synthetic agent for generalization improvement.

Soft robots increase this requirement due to their inherent
stochasticity.[101,102]

Other viable techniques that could emerge to reduce the
sim-to-real gap are meta-learning and knowledge distillation.[97]

4.1.3. Learning Directly on the Physical Soft Robot

One way to avoid the sim-to-real gap, especially when practical
forward models are unavailable, is to train the policy directly
on the physical robotic platform. Figure 5 provides an overview
on how learning algorithms can be optioned according to the
control policy to generate directly on the robot.

A few attempts were presented using tabular RL algorithms.
In particular, Q-learning-derived position controllers were used
for a CSM in simulation and directly on the soft robot subject to
tip loads.[103] Interestingly, they also used the action-value func-
tion learned in simulation as an initial estimate for training on
the real robot. Similarly, the State-Action-Reward-State-Action
(SARSA) algorithm with tile coding obtained a static controller
of position and stiffness for a CSM.[62] Concerning SL,
Bianchi et al.[104] performed throwing tasks with a pneumatic
CSM by directly learning the inverse model of the task from
the physical robot. Similarly, Chen et al.[105] studied the inter-
changeability of soft robot modules presenting a hybrid adaptive
controller for trajectory tracking, combining an LSTM trained
from offline motion data with an online optimization-based
kinematic controller. Figure 5 also introduces IL as an alternative
learning methodology for CSMs controllers. Oikonomou
et al.[106] present a control architecture based on a library of
learned probabilistic movement primitives. Assuming that tra-
jectories are a composition of individual primitives, they propose
a path segmentation process to partition demonstrations col-
lected with a human hand. Combining an incremental GP
regression (GPR) to approximate the IK, they qualitatively repro-
duced human demonstrations in a planar task. In this case, the

Figure 5. Learning CSMs controllers directly on the robot and the real-world environment. Such shift frommethodologies reported in Figure 3 eliminates
the need to mitigate the sim-to-real gap. Moreover, IL allows to learn control policy from (teleoperated) demonstrations directly on the robot or from
experts in other domains yet requiring domain adaptation.
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control strategy demonstration has been generated on a domain
that does not coincide with the robot, thus requiring for domain
adaptation to translate information. Also, Nazeer et al.[101] pro-
posed an efficient approach for training soft robot controllers,
employing an incrementally improving dynamic behavioral
map of the underlying CSM, mapping task space T to the actu-
ation space A. The solution was validated for the task of writing
letters.

Learning directly on the soft robot brings pros and cons. A
possible advantage could be that it is not required to model
the complicated mechanics (Equation (3)) and the physical inter-
actions. Indeed, the physical world already offers the most accu-
rate representation of all the phenomena involved. As a result,
the sim-to-real gap is already closed, and the focus shifts entirely
to efficient episode collection and training. Theoretically, arbi-
trarily complex policies π could be learned provided accurate
and sufficient sensory information. However, the limitation of
this approach is that the physical trials are generally expensive.
In particular, sequential data collection cannot be faster than real
time, and parallelization with multiple copies of real soft robots
may be difficult and costly. Moreover, training might be danger-
ous (to the environment or the robot) as the learning policies
tend to behave randomly in the initial phases. In addition, intrin-
sic problems of soft materials (like wear and tear) and logistics
(like resetting after each episode without an existing controller)
make this approach not very feasible. For these reasons, rather
than training a policy from scratch in the real world, it is prefer-
able to jump-start the training process in simulation using any
available forward model and then conclude the training on the
physical platform.

4.2. Real-World CSM Deployment

Recent advancements in soft robotics have led to the emergence
of startups producing commercial soft robots, these products are
primarily limited to simpler devices like soft grippers, which
require minimal control to perform basic tasks. Specialized
CSMs, such as I-Support[107] and STIFF-FLOP,[108] are still rela-
tively rare and remain largely in the research and prototype
stages rather than being ready for widespread commercial
use. Although the hardware development of CSMs has pro-
gressed significantly, enabling the creation of flexible and adap-
tive manipulators, the corresponding control strategies have
lagged behind. Currently, most CSMs are still designed as
general-purpose devices with open challenges in developing
advanced control algorithms that can manage the highly nonlin-
ear and compliant nature of these manipulators. As a result,
existing control strategies are relatively basic and are primarily
capable of handling simple tasks, as demonstrated in Table 2.
A critical aspect is accurately estimating contact forces in
unstructured environments. Specifically, bothmodeling and con-
trol domains are aggravated by undesired deformations and non-
linear behaviors of CSMs. Moreover, the soft materials used in
CSMs, while providing flexibility and adaptability, are prone to
degradation overtime, particularly when subjected to repeated
mechanical stress or harsh environmental conditions. This deg-
radation can lead to changes in the mechanical properties of the

CSM, further complicating control efforts and reducing the
operational lifespan of the device. These material limitations,
combined with the challenges in control technology, currently
restrict CSMs use in real-world applications.

4.2.1. Contact Estimation

To exploit the compliance of CSMs in real-world tasks, it may be
necessary to estimate the contact forces in an unstructured envi-
ronment. However, to achieve this, there are two main difficul-
ties from the modeling and control side. The former is based on
the presence of shear deformations and elastic instability (i.e.,
buckling) due to the contacts. As seen in Section 2.1, since only
the continuum mechanical models describe these types of defor-
mation, the control designer must utilize only specific simulated
environments for the training phase, such as PyElastica,[32]

SOFA,[35] and SoRoSim.[33] From the latter side, the control
framework must extract meaningful information about the
contacts in real-time, countering undesired deformations.

To tackle these issues, researchers can exploit data-driven
sensor-fusion algorithms with proprioceptive and exteroceptive
information, such as tactile and visual sensors.[109] In addition,
the advancement of contact modeling[110] can be exploited in
the training phase with realistic and meaningful data.[32]

Furthermore, motion control of actuated soft bodies with contact
handling has been achieved in the context of inverse FEM
simulations. An interactive control method has recently been
proposed for the first time in soft robotics, based on FEM sim-
ulations of the soft robot and quadratic optimization to handle
the linear complementarity constraint introduced by the con-
tacts.[111] Promising results have also been obtained by combin-
ing FEM for modeling the soft robot and RL for controlling
interactive tasks,[81] demonstrating the potential of RL to cope
with complex scenarios. In addition, a CSM compliance can
be exploited to intentionally execute specific tasks in the presence
of contacts. For instance, a pushing task involves controlling the
robot to push an object to a specific location on a surface. While
seemingly straightforward, the control algorithm would need to
interpret contact forces using tactile or visual sensors to counter-
act any undesired deformations while still achieving the desired
displacement. As another task, pick and place in a cluttered envi-
ronment extends the concept of pick and place to the realm of
soft robotics. Apart from simply relocating an object from one
point to another, the CSM must adjust its shape to navigate
around physical obstacles or constraints, like the sides of the con-
tainer in which the object is or has to be placed. One systematic
approach to solve this task for multi-DoFs robots is to project the
task space into the configuration space, thereby identifying a cor-
responding null space, whose belonging actions do not interfere
in task space yet control the robot shape.[112,113]

Finally, a CSM compliance can be exploited in the whole-body
grasping task, in which the robot handles an object with its entire
body or the entire manipulator. This capability can have a signifi-
cant impact on any task that requires manipulating large, heavy,
or unwieldy objects for tasks like logistics handling, search and
rescue, or even senior care.
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4.2.2. CL

As shown in Section 2 and 3, ML algorithms have been used
extensively in soft robotics to model robots and develop control-
lers. Among the presented research, there is CL,[114] a class of
algorithms that promises to be more suitable for tasks where
we want to 1) update a model without discarding previous infor-
mation (catastrophic forgetting),[115] 2) learn a sequence of tasks
without storing their data, 3) learn multiple policies, or 4) learn
from a stream of data that may change overtime.

Thanks to CL, it is possible to have robots that learn cumula-
tive skills and that can progressively improve the complexity and
diversity of the tasks they perform.[114] Although CL approaches
have mainly been used for object recognition,[116] detection,[117]

and segmentation,[118] there are some works where these
techniques are also used for rigid robotic tasks, as seen in
refs. [119,120].

CSMs will benefit from the use of CL on several levels.
Because of the way they are manufactured, the sensors they
use, and the materials they are made of, soft robots tend to
change their behavior overtime. For these reasons, the behavior
described by the data used to build the robot model may differ
from the behavior shown during the testing phase of a control
algorithm. This introduces additional uncertainties into the con-
trol policy, ultimately forcing themodel to be rebuilt from scratch
and the entire control strategy development pipeline to be
repeated. The class of CL algorithms can help to develop a model
capable of evolving and describing the behavioral changes of the
robot. The ability to learn from new information without discard-
ing previous knowledge can be used to learn new tasks. CL
approaches could even learn multiple tasks with a single policy,
generalizing well to different conditions.

One of the first steps in this direction is the pioneering work of
Piqué et al.[16] The authors generalize the CSMmodel to take into
account the effect of different weights applied to the robot to
modify its dynamics. They show how the proposed control archi-
tecture can improve its performance when exposed to previously
experienced loading conditions. This solution is very useful in
the context of soft robotics, where the robot is exposed
to unknown interactions and unpredictable changes in its
dynamics.

4.3. Robot Perception

The successful deployment of CSMs in real-world scenarios
hinges on the intricate interplay between the interaction with
the environment and, crucially, its perception and modeling
of the world. Such perception forms the bedrock upon which
goal-oriented decision-making processes are built.

Robot perception is tied to sensors outfitted on the robot and
their strategic placement across its body.[121–124] These decisions
introduce two levels of complexity: first, the choice of sensors
depends on the specific information required or modality
desired, necessitating diverse sensor hardware. Second, their dis-
tribution across the body is pivotal for capturing localized infor-
mation effectively.

The journey toward achieving robust CSM perception entails
the adoption of a multimodal, distributed sensing. Integrating

vast and varied data streams is imperative to disambiguate infor-
mation and mitigate disturbances inherent in sensor readings.
This integration not only fosters redundancy but also bolsters
the resilience of the perceptual process.[125] Such resilience is
facilitated through cross-modal inference techniques,[126] where
insights from one sensory modality are leveraged to inform infer-
ences across others. This intricate process combines cues from
diverse sensory inputs to construct a more comprehensive and
coherent representation of the world. For instance, during
interactions, robots should rely on a blend of vision for global
observation, touch for localized sensing, and proprioception
for internal body awareness.[127]

Multimodal sensor-based robot models often rely on sophisti-
cated fusion algorithms to integrate diverse data sources, which
vary significantly in dimensionality, distribution, and spar-
sity.[128] This diversity underscores the complexity of multimodal
fusion, highlighting the need to synthesize each data stream into
a state estimate,[129] or to establish mappings across modalities to
emphasize cross-modal reconstruction capabilities.[130]

Multimodal fusion is commonly achieved through fil-
ters,[131,132] that iteratively update state estimates based on obser-
vation sequences. Despite their effectiveness, these methods rely
on analytical dynamic models, which can be challenging to
obtain.[133] In response, learning-based solutions have emerged
to infer models from data distributions. Hybrid approaches, such
as differentiable filters, allow for end-to-end learning while main-
taining the recursive filter structure, particularly beneficial for
handling high-dimensional sensor modalities with diverse char-
acteristics.[134] However, traditional fusion methods encounter
challenges when dealing with multimodal data that is rich in
inter-modality and cross-modal information. Deep-learning
techniques offer a promising solution by automatically extracting
and understanding associations within multimodal data.[135]

Generative deep-learning algorithms in particular learn repre-
sentations and formulate inference spaces while considering
complexity and reducing redundancy in heterogeneous data,
albeit without supervision.[136] Although generative models lack
explicit label information, they infer implicit relationships,
suggesting potential advantages in multi-sensor fusion tasks.

4.4. Interpretable Learning-Based Controllers

In Section 3, we explored the intricate learning strategies
essential for robots operating in unstructured or complicated
environments, necessitating the adoption of ML for modeling
and control. While ML offers numerous advantages and applica-
tions, it often lacks interpretability,[137] making it challenging to
ascertain the rationale behind specific decisions and behaviors.
Indeed, this issue is especially significant when attempting to
grasp the process by which a CSM controller has been learned
and how we expect it to interact with the environment. This
importance is further amplified in scenarios such as ensuring
compliance with safety guarantees[138] or the imperative need
to explain how a particular mapping (e.g., from configuration
to task space or from observation space to action space) has been
constructed in a comprehensible manner.

This necessity emphasizes the utilization of tools andmethods
from eXplainable AI (XAI), which facilitates the formal
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understanding and measurement of explanatory factors in robot
learning.[139,140] In this context, model transparency is enhanced
either globally, by examining how input features are mapped into
the output and the underlying rationale, or locally, typically
through post-hoc XAI techniques.[141,142] Among various alterna-
tives, such explanations might enable the exploration of control
policies in terms of rule lists or decision trees,[143] offering a
human-readable understanding of the control policies for
CSM systems.

Employing such a methodology would greatly benefit the
learning-based control and modeling of CSMs, especially in
understanding how they function and in optimizing their perfor-
mance in terms of accuracy and precision. By scrutinizing the
morphology of learning architectures and offering explanations
of their operations, this approach can bridge the gap between
learning-based and model-based approaches. It enables enhance-
ment and explanation of learning-based methods in terms of
latent variables used for learning,[142,144] without being con-
strained by predefined parameterizations that are inherent in
model-based solutions. In essence, it provides a physics-like
explanation of learning variables, facilitating a deeper under-
standing of the underlying mechanisms. Within this field, incor-
porating pioneering research on large language models would
offer a valuable contribution in terms of explainability,[145] facili-
tating the translation of ML-interpretable decisions into human-
readable contexts.

5. Conclusions

CSMs represent a great challenge for AI-based controllers due to
the complexity of these robotic platforms. Most of the existing
AI-based controllers for CSMs focus on simplified tasks such
as trajectory tracking and point reaching. Model-based and
model-free approaches have demonstrated, so far, similar perfor-
mance. This may be because current learning-based controllers
for CSMs are not fully exploiting the capabilities of recent ML
algorithms. Increasing the learning ability in complex tasks is
the main challenge for roboticists in the field of soft robotics.
Furthermore, RL may represent a valuable solution to derive
the control policy but it also requires a substantial number of
trials and potentially large amounts of data on real CSM plat-
forms. This can be overcome through the effective use of
simulations to generate an initial controller solution and then
further optimize on the real robot to compensate for the sim-
to-real gap. Another solution can be represented by IL, to avoid
self-learning issues, but it should be expected that the soft robot’s
kinematic and dynamic models will change when interacting
with another object/body. Additionally, the effectiveness of inter-
action data collection can hinder the learning capabilities. It is
important to consider that due to their material properties, the
behavior of these soft robots can change overtime. For this rea-
son, it may help to train multiple policies for a single task. Of
course, the goal in that case would be to rely on the already
learned policies to adapt to behavior changes, avoiding relearning
from scratch. For this reason, the introduction of CL in soft
robots represents an essential feature to help bring soft robots
out of the laboratory environment and into the real world to
perform useful tasks.
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