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Abstract
While Carbon Dioxide Removal (CDR) solutions are considered essential to meet Paris Agreement
objectives and curb climate change, their maturity and current ability to operate at scale are highly
debated. The rapid development, deployment, and diffusion of such methods will likely require the
coordination of science, technology, policy, and societal support. This article proposes a
bibliometric approach to quantify the public use of early-stage research in CDR. Specifically, we
employ generalized linear models to estimate the likelihood that scientific advances in eight
different carbon removal solutions may induce (i) further production of scientific knowledge, (ii)
technological innovation, and (iii) policy and media discussion. Our main result is that research in
CDR is of significant social value. CDR research generates significant, positive, yet heterogeneous
spillovers within science and from science to technology, policy, and media. In particular, advances
in Direct Air Capture spur further research and tend to result in patentable technologies, while Blue
Carbon and Bio-energy with Carbon Capture and Storage appear to gain relative momentum in the
policy and public debate. Moreover, scientific production and collaborations cluster geographically
by type of CDR, potentially affecting long-term carbon removal strategies. Overall, our results
suggest the existence of coordination gaps between science, technology, policy, and public support.

1. Introduction

Increasing evidence suggests that meeting ambitious
climate targets will require removing large stocks of
carbon dioxide from the atmosphere [1–3]. Tackling
climate change by removing CO2 from the atmo-
sphere has been a tantalizing idea since the 1980s
[4]. Planting trees, or rather designing forest manage-
ment programs, has been among the first solutions
proposed in the literature [5]. Over time, a broader
and more sophisticated set of solutions have been
developed, generally referred to asNegative Emissions

Technologies (NETs) or CDR methods, which include
(i) solutions enhancing existing natural processes
that remove carbon from the atmosphere and the
oceans, and (ii) those using chemical processes to, for
example, capture CO2 directly from the ambient air
and store it elsewhere [2].

The literature on mitigation pathways now men-
tions carbon removal as a pivotal element in meet-
ing the Paris Agreement objectives and tackling global
warming [2, 6, 7]. In most scenarios, the transition
toward net zero emissions will require the extens-
ive deployment of CDR solutions to balance the
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inevitable difficulties of cutting short-term emissions
even more drastically [8]. However, as of today, there
are doubts on the possibility of immediate, large-scale
deployment of CDR solutions, and their use as a tech-
nical or policy panacea may be implausible and even
hazardous [9–12]. The inclusion of these technologies
in the design of climate policy pathways could risk
delivering misleading guidelines if it underestimates
the long and uncertain process that moves from basic
research to the systemic diffusion of complex tech-
nical artifacts [13–18]. Indeed, the evidence about
how different CDR solutions could fully develop and
diffuse is still inconclusive. However, the history of
technological change clearly shows that rapid dif-
fusion of disruptive technologies may vastly benefit
from coherent science-technology-policy landscapes
[19, 20].

This article examines the effectiveness of CDR
research in producing knowledge spillovers, and its
relationship with innovation, policy, and media. In
particular, we quantify the likelihood that early-stage
scientific advances across eight carbon removal solu-
tions may (i) stimulate the production of further
scientific advances, (ii) foster technological innov-
ation, and (iii) enter the policy and public debate.
Moreover, we investigate the geographical distribu-
tion of CDR research, using relative comparative
advantage to identify the scientific specializations of
countries and single out themain research hubs of the
global innovation system.

Different CDR solutions have been mostly evalu-
ated along five dimensions: negative emissions poten-
tial (i.e. Gt Ceq per year), energy requirements, land
and water usage, and economic costs (US$ per t Ceq)
[21, 22]. Overall, no universally superior option has
been identified [23]. This article adds novel dimen-
sions to the multi-faceted comparison of various car-
bon removal technologies and, to the best of our
knowledge, provides the first quantitative estimates
of the spillovers of CDR research. To do so, we integ-
rate citation data from scientific articles with inform-
ation from patents, policy documents, and non-
technical media mentions (e.g. social media, news-
papers, blogs), from multiple data sources; namely:
Web of Science (WoS), Microsoft Academic Graph
(MAG), Reliance on Science (RoS), and Altmetric
(see sections 2.1 and Data SI for more details).

We focus on the following list of eight solu-
tions: Afforestation and Reforestation (AR), Bio-
energy with Carbon Capture and Storage (BECCS)11,
Biochar, Blue carbon (BC), Direct Air Capture

11 BECCS articles do not include standard CCS methods to isol-
ate the negative emissions technology papers from the literature
related to point capture. To do this, our procedure is to set exclu-
sions for co-firing, co-generation and coal in the query used to
retrieve BECCS articles, as in [24, 25].

(DAC)12, Enhanced weathering (EW), Ocean
fertilization (OF), and Soil Carbon Sequestration
(SCS). We occasionally group methods following the
approach used in the ‘The State of CDR’ 2024 report
[3]. In particular, we distinguish between conven-
tional and novel solutions. The former class refers to
methods that are well established and widely repor-
ted by countries as part of land use, land-use change
and forestry activities (AF, BC and SCS), while the
latter includes solutions that are promising yet at an
earlier stage of development (in our context: BECCS,
Biochar, DAC, EW, and OF).

Leveraging methods developed in the innovation
and applied economics literature, we measure the
use of scientific research, i.e. its spillovers, through
the analysis of citation networks, reconstructed on
the basis of 20 years of data on scientific production
[27–29]. However, we move beyond citations in the
scientific domain to incorporate knowledge flows to
technological innovations (i.e. patents) and to the
policy and public discourse (i.e. policy documents
and media outlets) [30–32]. Firstly, we document the
broader public impact of CDR research throughmen-
tions in different media channels, integrating large
data sources that link the scientific literature to several
different public domains. Next, we model spillovers
through regression techniques [33, 34]; finally, we use
geo-localization and network analysis techniques to
study specialization and identify countries where sci-
entific advances contribute themost to policy or tech-
nological development.

This article points towards coordination gaps
between science, technology, and policy in the
domain of carbon removal solutions. Our results,
based on the first wave of CDR scientific develop-
ments, suggest that (i) public use of scientific know-
ledge in carbon removal is substantial, (ii) how-
ever, CDR solutions are very heterogeneous, with few
removal methods solidly linked to inventions; fur-
ther, (iii) world-wide research related to CDR is geo-
graphically concentrated around hubs with differ-
ent specializations. Interestingly, DAC appears as the
most promising solution, with significant knowledge
spillovers across all dimensions. However, policy and
media are relatively more focused on other methods
(BECCS).

2. Data andmethods

2.1. Data and controls
Our analyses employ four main sources of data:
Web of Science (WoS), Reliance on Science (RoS),
Microsoft Academic Graph (MAG—via SciSciNet),
and Altmetric. WoS is a large global citation data-
base maintained by the private company Clarivate,

12 DAC does not explicitly include storage options [26]; see
section 2.1 and Data SI for more details.
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collecting information on millions of research art-
icles. RoS is a publicly available database collect-
ing citations of scientific articles by patents. [35].
SciSciNet is a large open data lake supporting ‘Science
of Science’ research, which is based on MAG [36].
Altmetric is a curated database collecting metrics
complementary to standard citation-based data, such
as mentions on a diverse set of outlets.

To identify CDR articles, we look at keywords,
titles, and abstracts inWoS—as previously done in the
literature [24–26].We retrieve 3301 articles published
between 1998 and 2017, and parse them into eight
different CDR solutions (see section Data SI). The
queries we used to identify DAC articles do not expli-
citly include ‘storage’, contrary to BECCS and in line
with previous studies [24, 25]. All articles returned
by the keywords search with no explicit reference to
a specific CDR solution in their titles or abstracts are
placed in a 9th CDR category labeled General (see
section Data SI for additional details on the articles
and a complete list of the full-length queries). We
also exclude fromour analyses articles related to IAM-
based mitigation scenarios, which tend to gather dis-
proportionate attention to certain removal methods
(e.g. BECCS; see section Data SI). Further, we geo-
localize CDR articles to uncover regions’ specializa-
tion inCDRmethods. Exploiting authors’ affiliations,
we use OpenStreetMap and the R package tmap to
identify the coordinates of the cities (and countries)
linked to each article. We successfully geo-localize
3255 articles out of 3301 (∼ 98% of the overall set).
Articles with authors affiliated with institutions based
in different countries are counted separately in each
country.

Next, we tally the mentions (citations) of each
CDR article using WoS and Altmetric for mentions
by other research articles; RoS and Altmetric for
mentions by patents; and Altmetric for mentions by
policy documents, mainstream media outlets, blogs,
and social media platforms such as Facebook or
Twitter/X13.

We also complement Altmetric with SciSciNet to
retrieve several variables that we employ as control
covariates potentially affecting spillovers, e.g. team
size, number of references. Our sample include CDR
articles collected up to 2017 and spillovers (i.e., cita-
tions and mentions) up to the end of 2021. This time
window is necessary to compare articles in terms of
impact. Scientific articles accrue citations over time,
and thus, scientometric comparisons often include a
time constraint and a normalization [37–40]. In our
setting, a sufficiently long time window is even more
necessary since we do not only look at citations com-
ing from other scientific articles but also mentions
collected from sources that pick up scientific results at

13 Notice that Altmetric tracks mentions to media and public
policy sources globally, with no language restrictions. See section
Data SI for details.

a lower pace (i.e. patents and policy documents [41–
43]). Different samples/alternative specifications do
not affect any of the main results (section Regressions
SI).

A simple comparison of mentions among dif-
ferent CDR methods, although possibly interesting,
might result in biased estimates and misleading con-
clusions. A quantitative comparison, as the one pro-
posed in this work, requires the identification of a
suitable control group to compare with, in a way
to wash away mentions that can be expected ex-
ante for a generic scientific advance. In particular,
to have a clear benchmark when comparing art-
icles’ impact, an ideal setting would comprise articles
related to CDR and articles perfectly equal in all pos-
sible dimensions except for theirmain focus (i.e. CDR
vs. non CDR). Therefore, following the literature on
spillover quantification [27, 28], our analysis builds
on a systematic comparison of CDRpapers with com-
parable non-CDR ones. We create controls of two
types; baseline, comprising articles from any non-
CDR research area, and climate, comprising articles
from non-CDR but climate-related research. In the
baseline case, we start by forming, for each CDR art-
icle, a list of up to 10 non-CDR articles selected at
random from those published in the same year and
the same journal. This produces a pool of about 23K
articles. From such a pool, we create a one-to-one
matched control group, drawing one article (at ran-
dom) from the list of eachCDRarticle. For our regres-
sion analyses, we actually create 30 suchmatched con-
trol groups, repeating the drawing process (without
replacement). These are added, one at a time, to the
CDR articles, resulting in 30 control-augmented data
sets on which we fit our regression models 30 sep-
arate times. Performing such multiple fits is a way
to gauge stability of regression results; each control
group is built to match CDR articles in terms of age
(publication year), and quality (publication venue),
but alternating control groups lets us verify that our
conclusions are not driven by chance in creating the
matches. These controls are referred to as baseline
controls. Further, we use exactly the same procedure to
create 30 one-to-one matched climate control groups.
Here, the list of up to 10 non-CDR articles associated
with each CDR article is selected from climate-related
publications retrieved by queryingWoS as in [44, 45],
which produces a pool of about 20K articles (sections
Data SI and Regressions SI).

To be used in our analysis, non-CDR articlesmust
have information from all the data sources we employ
(i.e. WoS, RoS, SciSciNet, and Altimetric). In prac-
tice, we cannot construct lists of non-CDR articles
(baseline controls) or non-CDR climate-related art-
icles (climate controls) for all 3301 CDR articles. The
number of CDR articles for which we can produce
matched controls with full information is 1467 in
the case of baseline controls, and 1502 in the case of
climate controls. Considering only these CDR articles

3

http://relianceonscience.org.
https://www.nature.com/articles/s41597-023-02198-9#Sec1
http://relianceonscience.org.


Environ. Res. Lett. 19 (2024) 114009 G Tripodi et al

together with their baseline control groups produces
30 ‘samples’ of size 3136 (baseline controls) and 30
‘samples’ of size 3212 (climate controls) to run our
regressions. Sacrificing about half of the retrieved
CDR articles to create usable controls is a stark toll, as
it may introduce different biases in place of the ones
we are trying to eliminate. Reassuringly though, fit-
ting regressions with larger/different sets of CDR art-
icles provides the same insights (section Regressions
SI).

2.2. GLM regressions
Tallies for CDR solutions are normalized against con-
trol tallies. In more detail, we compute the average
number of citations (or mentions), and we take the
ratio with respect to the control group to easily gauge
the relative attention that CDR articles are collecting
in several dimensions.

Beyond the simple count of mentions of CDR
articles (e.g. in other papers, in patents, in policy
documents), we employ Generalized Linear Models
(GLMs) to estimate the multidimensional spillovers
of CDR-related research. Specifically, we use negat-
ive binomial regression to model mention counts in
other scientific articles (i.e. forward citations), and
logistic regressions to model mention occurrences
(binary; yes/no) in patents, policy documents, and
media outlets. Our main model specification can be
written as

g(E(Sikt|CDRik,Tit,Xi)) = α+
∑
k

βkCDRik

+
∑
t

γtTit + δTXi (1)

where i indexes articles; k indexes the eight CDR solu-
tions plus the General CDR category; and t indexes
years. Sikt are responses (counts of forward citations,
or binary values indicating the occurrence of a men-
tion in patents, policy documents, or media outlets);
CDRik are CDRdummies (they are all equal 0 if article
i belongs to the control group); T it are year dummies;
and Xi is a vector of control covariates (see section
Regressions SI for more details). In a GLM, the link
function connects the additive expression on the right
of the equal sign, which is linear in the parameters
(i.e. the βk’s, the γt ’s and the entries of δ), with the
conditional expected value of the response variable.
If we let µ= E(Sikt|CDRik,Tit,Xi), the link function
of a negative binomial regression is g(µ) = logµ, and
that of a logistic regression is g(µ) = log µ

1−µ .
The four spillover regressions (on science, tech-

nology, policy, and media) are all fitted on 30 data
sets—each comprising the same CDR articles and
alternative baseline control groups. In each fit m=
1, . . . ,30, we consider the exponentiated coefficient
estimates exp{β̂km}, and the corresponding 95% con-
fidence intervals [Lkm,Ukm]. In a parallel exercise, the
four spillover regressions are fitted on another 30 data

sets—each comprising the CDR articles and altern-
ative climate control groups. Additional robustness
checks are shown in the SI (section Regressions SI).

In the negative binomial regression, each expo-
nentiated coefficients can be interpreted as the
Incident Rate Ratio (IRR) of the corresponding CDR
solution with respect to the control group (all CDR
dummies equal to 0). Thus, large estimates and con-
fidence intervals entirely above 1 provide evidence of
significant impact. The same holds for the logistic
regressions, where exponentiated coefficients can be
interpreted as Odds Ratios (OR) [46].

2.3. Geographical specialization
To capture the relative specialization of countries in
specific CDR methods, we employ a metric called
Revealed Scientific Advantage (RSA). Such a meas-
ure is based on thewell-knownRevealedComparative
Advantage (RCA), initially developed to analyze
comparative international trade advantages among
countries [47]. Later, the same metric was extensively
used in several applications beyond trade [48, 49]. In
our setting, for each country l andCDR solution k, we
define it as

RSAlk =

wl,k∑
k wl,k∑
l wl,k∑
l,k wl,k

(2)

wherewl,k is the number of articles belonging to CDR
solution k whose author affiliations are located in
country l. Note the tallies of publications here are
aggregated over time and over cities belonging to
each country. RSA values greater the 1 signal relat-
ive specialization. Technology and policy coverage are
defined as: TCk =

wtl,k
wl,k

and PCk =
wpl,k
wl,k

where wtl,k
andwpl,k are, respectively, the number of articles cited
by a patent or a policy document, belonging to CDR
solution k whose author affiliations are located in
country l. Additional details are contained in the SI
(see also sections 2.1, Data SI and Geography SI).

3. Results

3.1. The rise of CDR research within and beyond
science
Our exploration of the landscape of CDR research
starts by mapping the general trends that characterize
the rise of negative emissions as a scientific sub-field,
and how this line of research has been gaining traction
in the last 20 years.

Figure 1 shows the number of articles per year,
partitioned by CDR solution, their geographical dis-
tribution and the share of papers relating to con-
ventional vs. novel methods. This simple comparison
already highlights differences in the scientific special-
izations of countries. Negative emissions research is
growing fast, scientific production is largely domin-
ated by the US and China, but differences apply when
looking at conventional vs novel solutions. Indeed,
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Figure 1. CDR research in the last 20 years. (A) CDR articles from 1998 to 2017 collected through a WoS text search. In addition
to the eight color-coded CDR solutions, the category General is defined residually (it includes articles that match CDR keywords
but do not have solution-specific text patterns in their titles or abstracts). (B) Geographical distribution of CDR articles (raw
counts). (C) Share of novel vs. conventional CDR articles for the top 20 countries (by total number of CDR articles).

the first wave of scientific advances in CDR has been
already disproportionately focused on the develop-
ment of novel methods.

CDR methods are not all alike: crucial differ-
ences have been reported in relation to measurement,
verification, accounting and durability of stored CO2

[50], as well as to costs and requirements [21, 22].
Against this background, we find stark heterogeneity
in their knowledge bases and scientific spillovers (see
also section Knowledge flows SI).

In particular, wemap the knowledge bases (i.e. the
scientific fields upon which CDR methods rely) and
scientific spillovers (i.e. scientific fields influenced by
advances in CDR). Conventional and novel solutions
differ in both aspects, and scientific overlaps are lim-
ited. As expected, conventional solutions are scien-
tifically grounded in soil science and ecology, while
solutions such as BECCS and DAC are engineering-
driven. Perhaps more interestingly, as CDR solutions
build on different scientific fields, the directions of
potential spillovers follow accordingly. To better illus-
trate this, we show the bipartite networks linking each
CDR solution with the fields most frequently cited
(see section Knowledge flows SI for more detail) in
its knowledge base (figure S8(A)) and in the set of
its scientific spillovers (figure S8(B)). Overall, the het-
erogeneity in the former is closely reflected in the lat-
ter. Some CDR solutions can certainly be compat-
ible if used together, but they do not appear to be
synergic in the knowledge they build upon and pro-
duce. As technical development and diffusion require

time-expensive knowledge accumulation [16, 17],
this result points to the urgency of an early definition
of clear and technologically targeted carbon removal
strategies.

3.2. Multidimensional impacts of different CDR
solutions
Our key result is that CDR research consistently pro-
duces larger impacts than its control groups across
science, technology, policy, andmedia. This is already
visible from relative mention counts (see figure 2). As
expected, the relative impact is lower when CDR art-
icles are matched against the climate control group
(climate change is a very impactful area of research
per se). Interestingly enough, however, when com-
pared to articles within the climate change literature,
CDR research shows a disproportionately larger link
to actual technological developments (results are also
confirmed through regression analyses; see section
Regressions SI).

Figure 3 breaks down results across CDR solu-
tions. Impacts are shown as bar-plots for what
concerns novel and conventional CDR solutions
(figure 3(A)) and as radar charts (figure 3(B)) of
the mentions normalized against baseline controls
(see also figure S12 for robustness). While scientific
spillovers are similar across CDR solutions, marked
differences emerge in other impact dimensions. For
instance, BECCS and BC are relatively more pop-
ular than other solutions in policy documents and
media outlets, and EW is intensively discussed in the

5
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Figure 2. Public use of CDR scientific advances. Bar-plots illustrating the relative number of mentions that CDR articles collect
with respect to the one-to-one matched control groups (i.e. ratio of counts). Values above 1 signal a larger number of
citations/mentions than expected from the control group. (A) Multi-dimensional impact of CDR research compared to the
baseline control. (B) Multi-dimensional impact of CDR research compared to the climate control. Additional results using
regression techniques are provided in figure S18.

news and—disproportionately—on social media. At
the same time, most CDR solutions do not display
strong technological spillovers, with the exception of
DAC—whose articles are mentioned by patents seven
times more frequently than controls. AR is, on aver-
age, across dimensions, the least impactful CDR solu-
tion. Conversely, BC appears to exert the largest aver-
age impact, though its articles are mentioned by pat-
ents less frequently than controls, suggesting a con-
cerning lack of technological impulse. Interestingly,
these patterns are largely confirmed even when CDR
articles are compared against the climate controls. In
particular, the link between DAC articles and patent
mentions appears to be even stronger (see figure S12).

3.3. Quantifying spillovers in science, technology,
policy, and the media
In this section, we continue our investigation of
the impact of CDR research on science, technology,
policy, and the media, modeling the multidimen-
sional spillovers taking into account potential con-
founding variables as well as addressing the possible
variability related to the matching procedure.

Since, for any given article, mentions in other
scientific articles (i.e. forward citations) are more
abundant than mentions in patents, policy doc-
uments or media outlets, we employ different

Generalized Linear Models. In particular, we employ
a negative binomial regression to model mention
counts in scientific articles, and three logistic regres-
sions tomodelmention occurrences in patents, policy
documents, and media outlets (these are viewed as
binary; an article is either mentioned or not). We fit
these regressions resorting again to controls to bal-
ance our comparisons, and repeating the fits several
times (see section 2.1).

Figure 4 and table 1 summarize the results for
the four spillover regressions (on science, techno-
logy, policy, and media). In particular, we present
exponentiated coefficient estimates and correspond-
ing 95% confidence intervals. Exponentiated coeffi-
cients are interpreted as Incident Rate Ratios (IRR;
negative binomial regression) or Odds Ratios (OR;
logistic regression) of CDR solutions vs controls, and
we evaluate these effect sizes capturing both standard
statistical accuracy (confidence intervals) and stabil-
ity to control selection.

Overall, our regression analysis confirms that
CDR research generates larger spillovers than controls
(except for technological spillovers linked to conven-
tional methods, figure 4(A)). More in detail, despite
both novel and conventional CDR methods look sci-
entifically promising, some differences emerge in the
other dimensions. Novel CDRmethods show positive
technological spillovers, but relative fewer mentions

6
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Figure 3.Multidimensional impacts of CDR research. (A) Bar-plots illustrating the relative number of mentions that novel and
conventional CDR articles collect with respect to the one-to-one matched control groups (i.e. ratio of counts). Values above 1
signal a larger number of citations/mentions than expected from the control group. (B) For each CDR solution, a radar chart
shows mentions of articles belonging to the solution in other scientific articles (citations), patents, policy documents, and various
traditional and social media outlets (news, blogs, Facebook, Twitter/X). Mentions are normalized (i.e. ratio of counts) to baseline
controls (articles matching publication year and venue but unrelated to CDR). Values greater than 1 signal a positive effect with
respect to the control group. The grey area at the center of radar charts signals a ratio≤ 1. The top-left chart concerns the residual
category General (CDR articles that could not be attributed to specific CDR solutions). Next, left to right and top to bottom:
(AR) Afforestation and reforestation; (BECCS) Bio-energy with Carbon Capture and Storage; (Biochar) Biochar; (BC) Blue
Carbon; (DAC) Direct Air Capture; (EW) Enhanced Weathering; (OF) Ocean Fertilization; (SCS) Soil Carbon Sequestration.

from policy and media outlets than conventional
ones. Such results might be partially explained by
the technological content (see also section Knowledge
flows SI) of some CDR options and the familiar-
ity that characterizes conventional CDR methods,
such as AR [51]. It is also worth mentioning that
the direction of casualty in this case (i.e. familiarity-
policy/media interest) is not straightforward and can-
not be assumed from our empirical exercise. When
looking at specific CDR, however, the picture that
emerges is nuanced. Biochar, BC and DAC stand out
as the solutions with the most significant impacts
on science—on average across multiple fits, their
articles collect 2.12 (Biochar), 2.06 (BC), and 1.49

(DAC) timesmore citations in scientific journals than
baseline controls (figure 4(B-Science), table 1 left-
most panel). However, only DAC and Biochar show
significant impacts also on technological develop-
ment, with a marked gap in favor of DAC—on aver-
age across fits, their articles are 3.45 (DAC) and 2.10
(Biochar) times more likely to be mentioned in pat-
ents than baseline controls (figure 4(B-Technology),
table 1 center-left panel). Considering policy docu-
ments and media outlets, BC and BECCS stand out
as the solutionswith themost significant likelihood of
beingmentioned (figures 4(B-Policy) and (B-Media),
table 1 center-right and right-most panels). More
in detail, DAC is the only carbon removal solution
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Figure 4. CDR spillovers in science, technology, policy, and media. (A) Effect sizes for novel and conventional CDR solution vs.
baseline controls. (B) Effect sizes for each CDR solution (and for the General CDR category) vs. baseline controls. (A), (B)
Exponentiated coefficients estimates are shown as dots and corresponding 95% confidence intervals as horizontal segments.
These represent Incident Rate Ratios for the negative binomial regression relative to Science, and Odd Ratios for the logistic
regressions relative to Technology, Policy andMedia. Results are from repeated fits of the regressions on 30 data sets augmented
with different matched control groups (non-CDR articles). Boxes are drawn as to highlight average estimates (mid-lines), lower
end of CIs (left margin) and upper end of CIs (right margin) across the 30 fits. For each regression, boxes entirely to the right of 1
(dashed vertical line) indicate CDR solutions whose spillovers are stably significant across different selections of matched
controls. In the regression relative to technology, the BC box is collapsed because no valid estimates are produced (BC articles
have no mentions in patents). All regressions are based on equation (1) and include fixed effects for publication year and further
control covariates—e.g. to take into account whether articles are open access, the team size (number of authors), and the number
of references (to capture articles of different types, such as long reviews or shorter pieces, especially relevant in general audience
journals).

Table 1. CDR spillovers in science, technology, policy, and media. Average exponentiated coefficient estimates, lower ends of CIs, and
upper ends of CIs across the 30 fits of the four regressions, as described in the legend of figure 4. Year dummies and other control
covariates are included in all regressions, and the number of articles in each of the 30 augmented data sets (CDR articles+matched
control group), i.e. the sample size for each fit, is 3136 (see Sections 2.1 and 2.2 for details). The lower end of the CI above 1 signals
positive and significant results.

Science Technology Policy Media

CDR expβ CI expβ CI expβ CI expβ CI

General 1.36 [1.24,1.5] 0.93 [0.52,1.68] 2.45 [1.89,3.16] 1.18 [0.92,1.51]
AR 1.02 [0.91,1.15] 0.10 [0.01,0.72] 2.48 [1.83,3.37] 1.05 [0.77,1.44]
BECCS 1.18 [0.97,1.43] 0.78 [0.27,2.24] 3.88 [2.38,6.33] 3.45 [1.93,6.17]
Biochar 2.12 [1.87,2.39] 2.10 [1.18,3.73] 1.16 [0.8,1.68] 1.17 [0.86,1.61]
BC 2.06 [1.67,2.56] 8 4.65 [2.71,8] 2.79 [1.44,5.43]
DAC 1.49 [1.25,1.77] 3.45 [1.97,6.05] 2.82 [1.72,4.63] 2.18 [1.38,3.45]
EW 1.30 [0.99,1.69] 2.45 [0.8,7.46] 4.12 [2.12,7.99] 3.27 [1.47,7.27]
OF 0.66 [0.51,0.87] 1.23 [0.24,7.3] 1.69 [0.86,3.34] 1.59 [0.78,3.25]
SCS 1.25 [1.09,1.43] 0.25 [0.06,1.08] 3.35 [0.86,3.34] 1.22 [0.85,1.74]

Year dummies 4 4 4 4

Control covariates 4 4 4 4

Matched control groups 30 30 30 30
Sample size 3136 3136 3136 3136

Note: No valid estimates for BC in Technology (no mentions in patents).

showing positive and significant spillovers in every
dimension. Other solutions only stand out in some
dimensions. This signals a crucial difference (between

DAC and other methods) in terms of coordina-
tion effectiveness of science, technology, policy, and
media coverage. Interestingly, a positive, although not
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statically-significant, signal characterizes EW. Indeed,
EW represents a promising solution with potentially
positive spillovers spanning through all the afore-
mentioned dimensions. As of today, however, and
perhaps due to a smaller sample size (n< 100) we
cannot detect a robust effect. Our results are robust
to several checks, including the use of (i) different
control groups (i.e. climate-related), (ii) alternative
model specifications (OLSwith log counts as depend-
ent variable), as well as (iii) different data sources (see
section Regressions SI for details).

Mentions in scientific journals (i.e. forward cita-
tions) are well established as a partial but effective
proxy for spillovers in science [52, 53]. In contrast,
to date, the use of mentions in policy documents to
quantify spillovers in the policy domain is less well
understood [32]. Hence, as an additional exercise, we
try to disentangle positive and negative mentions in
policy documents, estimating their sentiment [54].
Our results suggest that, on average, policy docu-
ments citing CDR-related research show a positive
attitude, with a higher sentiment ratio for documents
citing BECCS (see section Policy sentiment analysis
SI). Public perception is crucial to understand the
trajectories of development and deployment of cli-
mate technologies, especially for CDR and geoen-
gineering, and generally favors methods perceived as
more natural [55–57]. Further investigating how local
and global actors (e.g. local governments and inter-
national organizations) discuss different technologies
and whether their vision is aligned with the public
view will be a challenging yet necessary endeavor for
both researchers and policymakers.

In summary, our analyses suggest that advances in
CDR-related research have a stronger ability to stimu-
late further scientific developments than comparable
advances in other research fields—even than com-
parable advances in climate change research unre-
lated to CDR. Nevertheless, to date, most CDR-
related research hardly leaves the ‘ivory tower’ to
make its way into technological innovations; we find
evidence for such a transition only for DAC and
Biochar. In addition, impacts in the policy and media
dimensions seem relatively disconnected from those
in science and technology. For instance, research in
BECCS exhibits the strongest link to policy docu-
ments, though its spillovers to science and techno-
logy are small and not significant. To some extent,
standard CCS methods may be technologically close
to BECCS in practical applications. However, our
focus is to uncover the potential use of BECCS’ sci-
entific advances in patents. Therefore, we only focus
on ‘pure’ BECCS articles rather than looking at the
CCS literature and its already well-established tech-
nological application [18].

In general, DAC and BC generate synergic
spillovers to both technical and public dimensions.
On the contrary, BECCS and Biochar generate

isolated, but yet significant, spillovers to either sci-
ence (Biochar) or policy (BECCS). These findings
have also implications for climate and innovation
policies that aim to identify and foster solutions that
connect technical advances with social and public
impact.

3.4. The geography of CDR research
Prior studies have shown that innovation is dispro-
portionately concentrated around hubs located close
to where they are needed or where there are relev-
ant scientific and technological capabilities [58–60].
To investigate the geographical distribution in neg-
ative emissions research, we geolocalize CDR art-
icles using author affiliation data from WoS (see
section 2.1). Geo-localization allows us to investigate
the heterogeneity of scientific production and meas-
ure the relative specializations of different countries
(see sections 2.3 and Geography SI for details).

As mentioned before, figure 1(B) depicts the total
number of CDR articles, highlighting that the US and
China maintain their role as the primary research
hubs worldwide. We now switch to considering CDR
solutions separately.

First, to investigate specialization, we compute
Relative Scientific Advantages (RSA) for each coun-
try and CDR solution.While European countries and
the USA specialize in engineering-based solutions
requiring industrial facilities (specifically BECCS and
DAC), China focuses on more conventional solutions
(specifically AR, SCS) and Biochar, though its special-
ization levels are generally low. Switzerland displays
the highest degree of specialization in DAC across the
globe, while Indonesia—one of the largest reserves
of coastal forests—is almost entirely specialized in
BC (see figure 5(A)). This evidence of high country-
level specializationmay have relevant implications for
the future of CDR deployment. Since technologies
require knowledge to be operated, and such know-
ledge is typically cumulative and tacit [16, 17], car-
bon removal strategies should coherently match local
capabilities with the technical requirements of CDR
solutions, as to increase the likelihood of rapid dif-
fusion. For instance, countries with high renewable
and nuclear energy penetration may want to develop
knowledge in DAC. Conversely, countries subject to
drought or water scarcity may avoid solutions such as
BECCS [61].

Next, we use citations from patents and policy
documents to measure the relative influence that
countries play in the diffusion of knowledge to the
technological or policy sphere. In more detail, for
each country, we define a measure of policy and tech-
nological coverage as the share of CDR articles that
get cited by patents or policy documents over the total
number of articles related to a given CDR solution in
the same country. When doing so, a first-order obser-
vation is that most countries produce science that is
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Figure 5. Countries’ scientific specialization, technology and policy coverage. (A) Revealed Scientific Advantage of selected
countries (CDR articles> 10). White cells indicate values below 1. (B) Share of articles cited by patents and policy documents by
country and CDR. Countries with less than 3 articles in any given CDR are omitted.

somehow influential for the policy debate (i.e. men-
tions in policy documents). As points in figure 5(B)
tend to concentrate in the upper-left area, a larger
share of CDR articles get cited by policy reports
rather than patents. On the technological side, as
far as DAC is concerned, we can notice that some
countries (such as Switzerland) can act as techno-
logical hubs in linking scientific research to innov-
ation. Interestingly, the company that first brought
to market a commercial DAC solution was founded
as a spin-off of the ETH in Zurich. This example
highlights the importance of basic scientific research
in developing technologically viable climate solutions
and the role of geographical proximity between sci-
ence and technology (see figures S19 and S20 for city-
level descriptive analyses). Indeed, discovery, tech-
nological innovation, and entrepreneurship benefit
from co-location, which facilitates collaboration and
knowledge sharing [62, 63]. However, some loca-
tions with a high potential to accelerate advances in
CDR remain relatively overlooked in policy docu-
ments (e.g. China). We further investigate the poten-
tial mismatch in public interest by ranking countries
in all four dimensions (figure S23). Overall, we find
evidence of missing alignment: countries that lead

the way in scientific production lag behind in other
dimensions. These results suggest that some countries
already relatively successful in scientific commercial-
ization might benefit from a more active role in
policy, while others that are relativelymore influential
in the policy debate might redirect some effort to the
commercialization potential of scientific discoveries
(e.g. USA). However, let us emphasize that exceptions
exist, and we find some consistency for DAC and EW:
Switzerland, Canada and the USA rank consistently
well (top 5) for DAC, while England, Germany, the
Netherlands and the USA for EW. China is relatively
consistent (top 10) across all dimensions in Biochar.

4. Discussion and conclusions

Climate change will require a combination of novel
scientific research, practical technological innova-
tions, targeted policy and public support14. We
provide a quantitative comparison of CDR solutions
from the perspective of the public use of science,
focusing on the first wave of CDR developments. We

14 See, for example, calls for attention by the EU Commission and
the UK government.
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consider multiple impact dimensions, investigating
spillovers of CDR research onto science itself, tech-
nology, policy, and the media. Scientific advances
in CDR capture public interest, generating larger
spillovers than similar scientific results in different
fields as well as within the climate-related literature

However, they are quite removed from practical
innovation and themarketplace, especially when con-
sidering conventional solutions. As of today, DAC
appears to be the most promising solution in terms of
actual technological spillovers. In contrast, BECCS—
which is the most popular solution in the integrated
assessment literature and significantly covered in
policy documents—does not display robust impacts
on technology. Since patenting precedes cost reduc-
tion in climate technologies [64], our results suggest
that BECCS deployment might be more difficult than
previously thought and that DAC should be consist-
ently included in mitigation scenarios. Among solu-
tions based on a biological capture process, Biochar
exhibits sizable and positive science-to-science and,
although to a lesser extent, science-to-technology
spillovers. Yet, this solution is not prominent in policy
documents and media. Finally, we find that CDR
research and collaborations cluster geographically,
generating different areas of specialization and dif-
ferent hubs for each solution. It is unclear, though,
whether the emerging geographical landscape of
CDR is coherent with that of broader mitigation
pathways.

The analyses presented here have, of course,
a number of limitations. The first type of limit-
ations concerns the quantification of impacts. We
retrieve relevant articles characterizing the first wave
of CDR research with a query strategy based on spe-
cific keywords and patterns, but this may be sub-
optimal due to the fast-changing and interdisciplin-
ary nature of CDR research [65]. Advanced Machine
Learning approaches (e.g. Large Language Models)
may improve article identification and the defini-
tion of disciplinary spans. We perform article match-
ing to produce effective control groups, iterate model
fits on multiple control groups to gauge result sta-
bility, and employ a variety of control covariates,
model specifications, and other robustness checks—
but we cannot, and do not, claim to be able to identify
causal mechanisms. Finally, scientific and technolo-
gical trajectories in the early stages of -development
are intrinsically challenging for standard statistical
predictions, as relatively small advances might lead to
sudden and sizable leaps forward. For instance, a spe-
cific breakthrough may precipitate the patenting and
accelerate the impact on the technological develop-
ment of an existing CDR solution, or an entirely novel
and universally superior solution may emerge and
change the whole dynamics of impacts and spillovers.
Our analysis is not a technology forecast exercise but
rather a first exploration of the public use of CDR

scientific advances in several and often overlooked
dimensions.

From a policy perspective, our findings provide
two insights. First, when evaluating the applicabil-
ity of a diversified portfolio of CDR technologies,
their knowledge bases and spillovers should be con-
sidered carefully; our analyses provide little evidence
of synergies among them. Second, given the limited
impacts of CDR in the technology domain (at least for
what concerns the first wave of advances), the urgency
of their diffusion at scale would benefit from both
conventional and unconventional innovation policies
[66–69]. In addition, the evidence of strong posit-
ive knowledge spillovers could support a mission-
oriented approach towards CDR, but it is necessary to
consider the heterogeneity that characterizes different
carbon removal solutions [70].

Our future research will aim at studying (i)
novel waves of CDR advancements, (ii) the science-
technology nexus of conventional and novel CDR
patents, (iii) policy coordination to support CDR
across science, technology, policy, and media.
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